
What Role Can Adaptive Support Play in an Adaptable
System?

Andrea Bunt, Cristina Conati, Joanna McGrenere
Department of Computer Science

University of Bristish Columbia
201-2366 Main Mall

Vancouver, B.C., Canada

{bunt,conati,joanna}@cs.ubc.ca

Joanna McGrenere

ABSTRACT
As computer applications become larger with every new version,
there is a growing need to provide some way for users to manage
the interface complexity. There are three different potential solu-
tions to this problem: 1) an adaptable interface that allows users to
customize the application to suit their needs; 2) an adaptive inter-
face that performs the adaptation for the users; or 3) a combination
of the adaptive and adaptable solutions, an approach that would be
suitable in situations where users are not customizing effectively
on their own. In this paper we examine what it means for users
to engage in effective customization of a menu-based graphical
user interface. We examine one aspect of effective customization,
which is how characteristics of the users’ tasks and customization
behaviour affect their performance on those tasks. We do so by us-
ing a process model simulation based on cognitive modelling that
generates quantitative predictions of user performance. Our results
show that users can engage in customization behaviours that vary
in efficiency. We use these results to suggest how adaptive support
could be added to an adaptable interface to improve the effective-
ness of the users’ customization.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Interaction styles, Evaluation/methodology

General Terms
Human Factors

Keywords
adaptable interfaces, adaptive interfaces, customization, cognitive
modelling, GOMS, user modelling, mixed-initiative

1. INTRODUCTION
As the functionality in software applications grows, graphical

user interfaces become more and more complex. As a result, it is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001 ...$5.00.

becoming increasingly necessary to help users manage this com-
plexity. How to best solve this problem is a topic of debate. Some
researchers suggest placing users in control of managing this com-
plexity by making the interface adaptable, i.e., allowing users to
customize the application to suit their needs. Others advocate mak-
ing the interface adaptive, i.e., able to model the individual user’s
interests, preferences and usage characteristics to allow the inter-
face to tailor itself to each user (see [17] for a discussion).

The debate between adaptable and adaptive approaches to inter-
face design was quite prominent in the early 1990s, and seems to
have settled into the Intelligent User Interfaces community favour-
ing adaptivity, while others in the HCI community favour adaptable
solutions. Neither of the two communities, however, has fully ad-
dressed the problems with each approach. The adaptive approach
can suffer from some users feeling a lack of control over the pro-
cess, a lack of transparency and a lack of predictability [3, 4]. As
a matter of fact, there are very few formal user studies that indicate
if and when adaptation is effective. As for the adaptable approach,
which has also not been extensively evaluated, there are indications
that users rarely customize (e.g., [10]). Furthermore when they do
customize, it is not clear if they can do so effectively.

We take a different stance on the adaptable vs. adaptive debate.
Rather than try to prove that one approach is better than the other,
our goal is to integrate the two. We believe that a system should
take into account characteristics of the users, the tasks they need to
perform and the interface, and choose the right approach given the
full context of use. If the user is able to customize effectively on
his/her own, no system-initiated adaptation is required. If not, the
system could intervene to provide assistance. Thus, we advocate
a mixed-initiative approach to interface adaptation. While mixed-
initiative paradigms have been investigated in the context of other
aspects of human-computer interaction, so far there have been few
attempts to apply it to the adaptation of interface elements.

Before building such a system, however, we need to gain a better
understanding of the value of customization and of adaptive sup-
port for it. In particular, we need to understand 1) if customization
is worth the effort, 2) if users can customize effectively, and if not,
3) what specific features the adaptive system should take into ac-
count to provide support for effective customization. This paper
focuses on issues 1 and 3. In addition, we draw on previous results
to discuss issue 2 – the adaptable interface designed and evaluated
by McGrenere et al. [12, 13]. Their evaluation provided useful in-
sights on how users chose to customize their interfaces when given
an easy-to-use mechanism, but did not measure the efficiencies of
these strategies. If we are to provide adaptive support to help users
take full advantage of an adaptable interface, we need to be able to

1

identify when and why users are not able to customize effectively
on their own. By comparing the efficiency of different customiza-
tion strategies and relating these differences to factors such as user
expertise and task composition, we are one step closer to creating
adaptive support for customization.

One way to determine how user customization affects perfor-
mance would be through a user study. Such a study, however,
would have to involve both a large number of subjects (to get a
range of customization behaviour) and multiple sessions (to give
participants an incentive to customize and to see how customiza-
tion helps with the given tasks as they are performed repeatedly).
We have chosen to first gain insight into effective customization in a
low cost manner by using a process model to simulate and compare
different customization scenarios and strategies. The goal is then to
use the insight gained from this exploratory analysis to inform the
design of future user studies that can test more specific hypotheses.
The process model we have developed relies on a well-established
technique for interface evaluation known as Goal, Operators, Meth-
ods and Selection Rules (GOMS)[1]. We use GOMS modelling
to look at two main aspects of customization strategy, when users
should customize and how they should customize.

In the rest of this paper, we describe how our GOMS models
were used to generate performance estimates of customization be-
haviour. We begin with a brief description of related work. We
then describe the GOMS simulation models. Next, we illustrate the
results of the simulation and we conclude by discussing the impli-
cations for intelligent adaptive interfaces.

2. RELATED WORK
Other work that has studied the trade-offs between adaptable and

adaptive systems includes [12, 13] and [5]. Both studies, however,
had confounding variables that preclude getting a definitive sense
of when and why adaptivity is better than adaptability. The field
study described in [12, 13] compared a prototype adaptable inter-
face to the SMART MENUS adaptive interface of Microsoft Word
2000 (MSWord). The study showed that the majority of the partic-
ipants preferred the control offered by the adaptable interface and
made extensive use of the customization facilities. These results,
however, cannot be used to conclude that adaptable interfaces are
always superior. While the adaptable interface was carefully de-
signed to be easy to use, the adaptive interface is known to have de-
sign flaws, mostly due to the unpredictability of its behaviour [4].
Furthermore, the conditions were not counterbalanced. The study
in [5], which focused on the adaptation and adaptability of content
rather than interface elements, presented anecdotal evidence that
some subjects strongly preferred the adaptable version while oth-
ers strongly preferred the adaptive version. But in this study, the
adaptable mechanism was somewhat cumbersome, once again pre-
venting a fair comparison between the two approaches. The fact
that these two studies obtained somewhat differing results, could
suggest combining the two approaches by carefully designing both
the adaptive and adaptable mechanisms, and thoroughly evaluating
the circumstances under which each mechanism is most effective.

There have already been proposals of systems that mix adapta-
tion and adaptability (e.g, [2] and [16]). These systems often have
some aspects that are adaptive and others that are adaptable, or the
user can turn off or override the adaptive behaviour. There are two
main differences between these systems and what we are propos-
ing. First, the adaptation is related to the presentation of content
rather than interface elements. Second, they do not guide or sup-
port user-initiated adaptation in any way.

One exception is FlexExcel [15], which provides adaptive sup-
port for customization in Excel. This support comes in two main

forms: 1) when the user repeatedly invokes the same Excel func-
tion with the same parameters, the system suggests defining a new
macro or short-cut; and 2) the system reminds the user of already
existing adaptations. The system-initiated adaptation relies mainly
on frequency counts. In an evaluation of the system, the authors
found that users often had difficulty using the information provided
by the system-suggested adaptations. We believe that this mixed-
initiative approach is the right direction, and that the reason for
these results is that more needs to be understood in terms of how
the adaptations (user-initiated or system-suggested) affect perfor-
mance and which user characteristics (other than frequency of use)
should be taken into consideration.

3. GOMS ANALYSIS
To compare how different types of customization affect perfor-

mance in terms of time on task, we use the Goal Methods Oper-
ators and Selection rules (GOMS) cognitive modelling technique
[1]. GOMS models are a family of engineering models that are used
to evaluate an interface design by predicting performance of simu-
lated sequences of actions. Creating a GOMS model requires iden-
tifying the user’s goals (i.e., tasks) in a given interface and the meth-
ods available to achieve them. Methods are decomposed hierarchi-
cally until they consist of primitive interface operators (e.g., key-
strokes, moving the mouse from one target to another and clicking
mouse buttons). These primitive operators have associated times,
usually gathered through empirical studies.

Running a GOMS model allows one to simulate the set of in-
terface actions that a user would take to perform a particular task.
For example, to select a menu item, the user would perform the fol-
lowing sequence of actions: 1) find the menu heading; 2) point the
mouse at the menu heading; 3) click the mouse button (at which
point the menu items are displayed); 4) find the desired menu item;
5) point the mouse at the menu item; 6) click the mouse button to
select the item.

GOMS has been shown to be particularly effective at compar-
ing two or more interface designs [6]. This is exactly the goal we
are trying to accomplish in this paper, where the different interface
configurations we compare correspond to different customization
behaviours.

While GOMS performance estimates are usually calculated by
hand, we run our models automatically by using the GLEAN tool
[7]. GLEAN takes as input a GOMS model written in a procedural-
like language and a simulated interface written in C++. Using these
two inputs, GLEAN executes the model and generates a predicted
execution time, broken down by individual methods, based on es-
tablished values for the primitive operators.

Next we describe the components of our GLEAN simulation. We
also describe extensions we made to GLEAN in order to perform
this work.

3.1 The Simulation
The GLEAN tool generates performance predictions by execut-

ing a GOMS model of user actions on a simulated interface. For the
purpose of our experiments, the simulated interface is the adapt-
able version of MSWord proposed in [12, 13]. The interface in-
cludes a customization mechanism that allows users to maintain
two versions of the MSWord interface: the Full Interface with all
the available features, plus a Personal Interface that contains only
a subset of features selected by the user. A toggle button allows
users to switch back and forth easily between the two interfaces at
any time.

The purpose of having two interfaces is to allow a user to work
in a functionality reduced interface, but with access to the full func-

2

Task Description Summary of Relevant Actions # of Task
Features

Distribution Total # of Features
Invocations (Size)

Letter A very basic editing task Formatting the layout and font of parts of the text 8 items across 3 menus 14
Report A conference-style multi-

sectioned document
Formatting section headings; parts of the text; setting
the document layout; inserting page numbers; format-
ting references; language checking

16 items across 5 menus 66

Table A split cell table Inserting a table; inserting additional rows and col-
umns; and formatting the table

8 items across 2 menus +
1 icon

10

Revisions MSWord’s revision track-
ing functionality

Inserting comments; accepting or rejecting comments 3 items across 2 menus 9

Figure Adding a figure Inserting a figure from a file; adding a caption 3 items across 2 menus 3

Table 1: The tasks simulated by our GOMS models.

tionality one click away. The customization mechanism was specif-
ically designed to be as lightweight as possible. As a rough indi-
cation of the amount of effort required to customize, adding or re-
moving a feature to/from the Personal Interface requires six button
clicks. If the user adds or removes multiple features at the same
time, each additional feature requires only two more button clicks
(i.e., the customization overhead is four clicks and each feature re-
quires two clicks). We chose to focus on this two-interface model
because it has been thoroughly evaluated for usability. There are, of
course, other forms of customization that we could have modelled,
but they would first have to be thoroughly tested to avoid having
lack of usability as a confounding variable in any study comparing
adaptability and adaptivity.

Different tasks and different combinations of tasks are likely to
benefit from different types of customizations. Our goal is to de-
termine the efficiency of different customization strategies and how
they depend of factors including user expertise, the user’s combi-
nation of tasks, and individual task complexity. Thus, we built five
GOMS models, all of which are based on tasks that users would
realistically perform using MSWord. The five tasks are described
briefly in Table 1. The tasks have been designed to vary in com-
plexity, where task complexity is a function of the number of task
features involved (the fourth column in Table 1) and the total num-
ber of feature invocations (task size – the last column in Table 1).
The GOMS models of the five tasks contain only the menu and icon
actions the user would have to perform to complete the task, and do
not simulate any of the typing or cognitive work. This is based on
the assumption that those components would be the same regard-
less of customization strategy. We are interested only in comparing
differences owing to customization.

3.2 Factors Affecting Performance
At the level of GOMS primitive operators, the number of features

in one’s Personal Interface is likely to affect performance in at least
two ways. One factor is mouse pointing time. It takes longer for a
user to point to a menu item that is further down the list. GLEAN’s
primitive operator for mouse pointing addresses this issue by using
Fitts’ Law to calculate the time to point to a target [11].

The second factor likely to impact overall performance is visual
search time. A menu with more items will take most users more
time to search through. In addition, it will take most users longer
to find the correct menu when there are more menu headings. The
search time is also likely to depend on the level of user expertise,
i.e. the user’s familiarity with the interface [14]. The types of visual
search documented in the literature include:

1. Exhaustive Linear Search [9]: The user examines every menu
item in a linear fashion.

2. Self-Terminating Search [9]: The user examines every menu
item but terminates the search when s/he finds the target.

3. Hick’s Law [8]: The time to decide among the menu items is
a logarithmic function of the number of alternatives.

4. Default: Any visual search operation is assigned a constant
value [14]

GLEAN models only the Default search. It assigns a default
value of 1.2 seconds to any visual search operation regardless of
menu length. As we will discuss shortly, the different types of
search strategies can be related to user expertise. Our goal is to
study how user experience affects customization, and so we modi-
fied GLEAN so that it could simulate all four visual search strate-
gies listed above. We then defined four expertise categories with
respect to the visual search strategies. In the next section we de-
scribe how we defined these categories.

3.2.1 Relating Experience to the Visual Search Pa-
rameters

Norman [14] states that, with experience, users are no longer af-
fected by the number of items in a menu; thus, the search behaviour
of a highly experienced user can be reasonably approximated by the
Default strategy. Landaurer [8] states that Hick’s Law is applica-
ble when users find the menu items easily distinguishable, when
they know the menu item is present in the menu, and they have
had substantial practice with it. Thus, this search strategy seems
to indicate a user who is very familiar with the interface but not
sufficiently experienced to be unaffected by the number of menu
items. There is no work that explicitly relates usage of Exhaustive
Linear Search and Self-Terminating Search to user expertise. It is
reasonable to assume, however, that Self-Terminating would be a
search strategy easier to employ by users who are more familiar
with a target menu, since they would be able to tell when they have
reached the item they are looking for without having to evaluate all
items available.

We use the four different search strategies to identify four lev-
els of expertise, ranging from Default to Exhaustive Linear Search
in order of decreasing expertise. Exhaustive Linear Search, Self-
Terminating Linear Search and Hick’s Law include a parameter that
can be related to the amount of time it takes the user to process an
individual item (we call this parameter Time per Item). Time Per
Item is likely a function of both a user’s reading speed and familiar-
ity with the menu items. Thus, we define our categories of expertise
as follows:

• Extreme Expert: Default Search.

• Expert: Hick’s Law with a Time Per Item of 0.15 sec.

• Intermediate: Self-Terminating Search with Time Per Item
of 0.5 sec.

• Novice: Exhaustive Linear Search with a Time Per Item of
1.0 sec.

3

Figure 1: Experiment 1 results. The number of Task Completions it takes for the Personal Interface to outperform the Full Interface
given the Up Front and As You Go strategies. For clarity of display, the graphs have different scales.

The values for Time per Item in each category are compatible with
the values listed in the literature, but our experiments do not ex-
actly replicate the conditions of previous experiments. As a result
we choose values that are conservative estimates of the Time Per
Item for each category. Our claim is not that these four categories
perfectly model the behaviour of users with those levels of exper-
tise, but rather that they provide four reasonable models that span
user experience.

4. EXPLORATORY EXPERIMENTS
This section discusses two experiments we performed using the

GLEAN simulation and the results that they generated. The first
experiment addresses the issue of whether or not the overhead of
customization pays off within a reasonable amount of time. It also
compares customization strategies that vary in terms of when fea-
tures are added to the Personal Interface. The second experiment is
aimed at comparing strategies that differ in terms of what features
users choose to add to their Personal Interface. We now discuss the
details of these experiments.

4.1 Experiment 1: When to Customize
If users are able to customize their interfaces perfectly, do they

perform their tasks more efficiently? A reduced interface is bound
to be more efficient, but customization takes time. The goal of
this experiment is three-fold. First, we want to see whether or not
the overhead to perform customization pays off within a reasonable
amount of time, assuming that the user has perfect foresight (i.e.,
adds exactly the features that s/he needs to the Personal Interface).
Second, we want to compare the performance of two different cus-
tomization strategies that differ in when customization is performed
during the interaction. Third, we want to see how task complexity
and user expertise influence the payoff.

To achieve these goals, we implemented GLEAN models for
three customization strategies. These strategies are abstracted ver-
sions of those adopted by users in [12] where they were free to
choose any strategy.

1. Up Front: The user adds all interface features that s/he plans
to use before s/he starts the given task.

2. As You Go: The user adds the interface features incremen-
tally (one function at a time) when they are first required to
complete a given task.

3. No Customization: The user does not customize and uses the
Full Interface.

The procedure for running the experiment is as follows. We ran
the GLEAN simulation with models for the three customization
strategies, two tasks (Letter and Report), and each of the four ex-
pertise categories. The assumption here is that the user repeats the
same task over time and does not perform any other task. Letter
and Report where chosen because they represent different levels of
task complexity while being plausible tasks that one would repeat
every day. To answer the question “can customization improve per-
formance,” we present the results in terms of the number of times
the user would have to complete the target task (task completions)
with the Personal Interface before it would outperform the Full in-
terface, in terms of time to complete the task (payoff).

Can Customization Improve Performance? Our results indicate
that customization can be worth the necessary effort. Figure 1 dis-
plays the number of task completions required for each expertise
category before the given customization strategy pays off over No
Customization. In the great majority of cases, users see a pay-
off within twenty task completions. In all cases, as expertise in-
creases, the number of task completions increases. This indicates
that users with more experience are less impacted by unused fea-
tures in their interfaces and, therefore, must wait longer to see a
payoff in customization. With larger task size (greater number of
feature invocations), customization begins to payoff sooner because
of the larger number of menu selections per task that are performed
faster.1 This results in a particularly dramatic effect for Interme-
diates and Novices, who often see the payoff immediately. The
overall trends are not surprising, but the magnitude of the effect for
Intermediates and Novices was unexpected.

If so, When? According to Table 2, based solely on the cus-
tomization time, Up Front is always faster than As You Go – almost
twice as fast in some cases. The one small benefit of the As You Go
strategy is that users spend a longer percentage of their tasks with
smaller Personal Interfaces. This saving, however, does not out-
weigh the extra customization time incurred by this strategy, since
the Up Front strategy always leads to an earlier payoff than the As
You Go strategy (see Fig. 1).

1In general we should also expect an effect based on the number of
task features. In particular, the higher the number, the more delayed
the payoff, because the size of the Personal Interface gets closer to
the size of the Full Interface.

4

Task Expertise Up Front (secs) As You Go (secs)
Letter Extreme Expert 72 123
Letter Expert 61 112
Letter Intermediate 104 156
Letter Novice 144 296
Report Extreme Expert 137 250
Report Expert 116 282
Report Intermediate 205 318
Report Novice 493 605

Table 2: The customization time for Letter and Report based
on expertise and customization strategy.

(b) Experiment 2

W
he

n

(a) Experiment 1

What

Up Front

As You Go

Everything Frequent Only

X Up Front

As You Go

Everything Frequent Only

X

X X

Figure 2: The two dimensions to customization strategy. The
X’s represent the combinations of strategies investigated in
each experiment.

In summary, the results of this experiment show that customiz-
ing can be worthwhile, particularly for Novices. The most efficient
time to perform the customization is Up Front, when the user can
customize perfectly (i.e., has perfect foresight of the needed fea-
tures). It may seem quite obvious that customization should save
time by allowing one to work in a smaller interface, but we believe
that a quantitative measure of this saving is important for deter-
mining whether or not it is worthwhile helping users to customize.
We are aware that performance is not the only factor that triggers
user customization, but we argue that knowledge of performance
gains would make it much easier to motivate a user to customize a
particular way.

4.2 Experiment 2: What to Customize
Unlike in Experiment 1, users are not likely to always be per-

forming exactly the same tasks. Rather, they are likely to perform a
combination of different tasks, with certain tasks being performed
more frequently than others. This experiment is designed to explore
which functions should be added to the Personal Interface under
multiple task conditions, and how this depends on task combina-
tion and user expertise. Thus, while the first experiment addressed
the When dimension of customization strategy, now we focus on the
What dimension by analyzing the performance of two customiza-
tion strategies that differ in the subset of functions that are added to
the Personal Interface (see Fig. 2). As in the previous experiment,
these strategies are based on customization behaviours observed in
[12].

1. Everything: The user adds all features to the Personal Inter-
face necessary for both the frequent and infrequent tasks.

2. Frequent Only: The user adds only those features necessary
for the more frequently performed task, and then must switch
to the Full Interface to perform the infrequent task.

To isolate the effect of the Everything vs. Frequent Only strate-
gies, we assume Up Front customization. We restrict our inves-
tigation to combinations of two tasks, with the non-frequent task

being performed once in the task sequence. The pairs of tasks (see
Table 3) were selected based on task composition, which we de-
fine as a task’s complexity (task size and number of task features)
and the distribution of task features across the menus. We consider
the distribution of features across menus (depth vs. breadth of the
menus) because it affects interface complexity. Longer menus take
longer to search through, but additional menu headings factor in
all menu item searches as the user must first locate the appropriate
menu heading and then the appropriate menu item.

Which customization strategy will be more effective involves
tradeoffs between three main factors:

1. Time to complete each instance of the frequent task. With
Everything, the more frequent task is executed in a larger
Personal Interface than with Frequent Only, because the Per-
sonal Interface contains the features for both tasks as op-
posed to just the features for the frequent task. As a result, we
expect the frequent task to be slower in the Everything condi-
tion. How much slower it is should depend on the complexity
of the Personal Interface, user expertise and the composition
of the infrequent task.

2. Time to complete each instance of the infrequent task. With
Everything, the user can perform the infrequent task in the
Personal Interface rather than in the Full Interface. Thus, the
execution time of the infrequent task should be faster in the
Everything condition. How much faster it is should depend
on the complexity of the Personal Interface, user expertise
and size of the infrequent task.

3. Customization time. The Everything condition requires ad-
ditional features for the infrequent task to be added to the
Personal Interface. The difference in customization time for
the two strategies will depend on the number of features in
the infrequent task and user experience.

Table 3 summarizes the variables that we manipulated in this
experiment. The dependent variable is the total time necessary to
complete the given ratio of tasks. As in the previous study, we
used GLEAN to simulate the performance of the two customiza-
tion strategies, with various combinations of tasks, task ratio, and
user expertise. Tables 4 and 5 provide a high-level summary of our
results. Table 4 indicates which strategy is more efficient for each
combination without including customization time, while Table 5
includes the additional customization time required for the Every-
thing strategy. For each task combination in Tables 4 and 5, where
the most efficient strategy depends on user expertise or ratio (the
last column in each table), Tables 6 and 7 indicate the task ratio at
which the Frequent Only strategy begins to outperform the Every-
thing strategy for each of the expertise categories. A range of ratios
(e.g., (10-20):1) indicates that the exact ratio at which the Frequent
Only begins to outperform Everything lies somewhere within that
range. We now discuss the results in these tables by first ignoring
customization time to isolate the effects of different interface con-
figurations on performance. Later we examine how the additional
customization time for the Everything strategy affects the results.

4.2.1 Comparing Strategies Without Customization
Time

The results given in Tables 4 and 6 provide preliminary evidence
of two factors that influence the efficiency of customization strate-
gies when customization time is ignored.

1. The distribution of the features in the infrequent task, which
determines the Personal Interface menus to which these items
are added.

5

Independent Variable Description Levels
Strategy Which functions are added to the Personal Interface Everything, Frequent Only
Combination of Tasks Frequent/Infrequent Letter/Table, Report/Table, Report/Figure, Letter/Table, Re-

port/Revisions, Letter/Revisions
Ratio The number of times the user will perform the same fre-

quent task for every one infrequent task.
1:1, 2:1, 3:1, 4:1, 10:1, 20:1, 100:1

Expertise Categories of user expertise. Extreme Expert, Expert, Intermediate, Novice

Table 3: A description of the independent variables in Experiment 2.

Task Combination Everything Frequent Depends on
(Frequent/Infrequent) Only Expertise or

Ratio
Report/Figure

√

Letter/Table
√

Report/Table
√

Letter/Figure
√

Letter/Revisions
√

Report/Revisions
√

Table 4: The most efficient customization strategy for each task
combination without including customization time.

Task Combination Everything Frequent Depends on
(Frequent/Infrequent) Only Expertise or

Ratio
Report/Figure

√

Letter/Table
√

Report/Table
√

Letter/Figure
√

Letter/Revisions
√

Report/Revisions
√

Table 5: The most efficient customization strategy for each task
combination including customization time.

2. The complexity of the frequent task relative to the infrequent
task.

The distribution of features in the infrequent task is an important
factor since certain features, when they are added to the Personal
Interface with the Everything strategy, have a greater impact on the
execution of the frequent task than others. An infrequent task fea-
ture can have a large impact because 1) it gets added to a menu
in the Personal Interface that is often used by the frequent task, or
2) it requires an entirely new menu heading. Adding a new menu
heading is especially costly because it affects every visual search
operation in the Personal Interface. When infrequent task features
are intrusive to the frequent task, Frequent Only becomes the more
efficient strategy at certain ratios and levels of expertise. To il-
lustrate this effect, we can examine the Report/Figure and the Re-
port/Revisions combinations in Table 4. In both combinations, the
infrequent task contains only three functions, yet Everything is al-
ways the most efficient strategy for Report/Figure, while Frequent
Only is more efficient at certain levels of expertise and ratios for
Report/Revisions (see Table 6). The difference can mostly likely
be attributed to the fact that the features in the Revision task add
an entirely new menu heading, while two of the three Figure task
features are added to menus that are rarely used by the Report task.

Let’s now consider how task complexity, in conjunction with fea-
ture distribution, influences strategy efficiency. First, when an in-
frequent task feature is intrusive, the impact is greater for a larger
frequent task than a smaller frequent task. For example, consider

the Report/Table vs Letter/Table combinations in Table 6. The Ta-
ble task adds another menu heading. The impact of this addition
is greater for the larger task (Report) than the smaller task (Letter),
since the larger task has more feature invocations to be impacted by
the extra menu heading. As a result, Frequent Only becomes more
efficient than Everything at lower ratios for Report/Table than for
Report/Letter. In the absence of especially intrusive features, the
number of features in the frequent task relative to the infrequent
task is also likely to be a factor. If the Personal Interface contains
a large number of features (for the frequent task), adding a small
number of infrequent task features will not have much effect. This
is not the case, however, if the Personal Interface is small to begin
with. Both the Report/Figure vs. Letter/Figure combinations and
the Report/Revisions vs. Letter/Revisions combinations illustrate
this trend (see Table 6).

4.2.2 User Expertise
As in Experiment 1, the less experience a user has, the more

s/he is affected by extra features. Thus, as user expertise decreases,
Table 6 shows that Frequent Only usually starts to become more
efficient than Everything at a smaller ratio. This is because of the
higher impact of additional features on the speed of the frequent
task. For example, we see that for the Report/Table task combina-
tion (without including customization time) Everything is the most
efficient strategy for a Novice until s/he performs the Report task
three times for every one Table task (3:1), as opposed to an Extreme
Expert, for which Everything is always more efficient.

4.2.3 Including Customization Time
The discussion in the previous two subsections concentrated only

on how the presence or absence of features in the two customization
strategies affects performance. This ignores, however, the fact that
Everything requires an extra amount of customization time that will
vary according to the number of infrequent task features and the
user’s expertise. Tables 5 and 7 include this additional customiza-
tion time. For many of the combinations, the extra customization
does determine which customization strategy is more effective. Ev-
erything remains the most effective for the Report/Figure combina-
tion for all ratios and expertise categories because the extra cost is
minimal given the few features in the Figure task. On the other
hand, for three of the combinations that depend on expertise and/or
ratio when ignoring customization time (Letter/Table, Report/Table
and Letter/Figure), Frequent Only is always the most efficient strat-
egy when customization time is included. Therefore, the perfor-
mance savings from having the additional features present in the
reduced interface is often not as great as the time needed to cus-
tomize them.

4.2.4 Magnitude of Differences
In addition to determining which strategy is more efficient, our

results also indicate how large the differences between the strate-
gies are. The magnitude of the difference varies according to ex-
pertise and task combination. As an example, Figure 3 shows that

6

Task Combination (Frequent/Infrequent) Extreme Expert Expert Intermediate Novice
Letter/Table *(>100):1 (10-20):1 (10-20):1 (10-20):1
Report/Table *(>100):1 4:1 3:1 3:1
Letter/Fig (20-100):1 (10-20):1 (4-10):1 4:1
Letter/Revisions *(>100):1 (10-20):1 (4-10):1 (4-10):1
Report/Revisions *(>100):1 (10-20):1 (10-20):1 (10-20):1

Table 6: Task ratio at which Frequent Only becomes more efficient than Everything for the task combinations in Table 4 when the
most efficient strategy depends on ratio and expertise, and customization time is not included. The asterisk indicates that, for the
ratios tested, Everything is always more efficient than Frequent Only

Task Combination (Frequent/Infrequent) Extreme Expert Expert Intermediate Novice
Letter/Revisions 1:1 1:1 2:1 3:1
Report/Revisions 1:1 1:1 1:1 (4-10):1

Table 7: Task ratio at which Frequent Only becomes more efficient than Everything for the task combinations in Table 5 when the
most efficient strategy depends on ratio and expertise, and customization time is included.

Figure 3: The magnitude of the difference between the Every-
thing and Frequent Only customization quantities for the Re-
port/Table combination for different ratios.

after having performed the Report task 20 times and a Table task
once, a Novice would have saved 23 mins by using Frequent Only,
while an Extreme Expert at the same ratio would save about 1 min
(including customization time). At the same ratio (20:1) for the
Letter/Figure tasks2 a Novice would only save 7 mins while an Ex-
treme Expert would still save about 1 min. This is because the few
features in the Figure task do not add much to the complexity of
the Personal Interface.

4.3 Cognitive Overhead
In the above experiments we did not consider the impact of two

types of cognitive overhead involved with customization: 1) having
to decide which features to include in the Personal Interface, and
2) having to figure out that a needed menu item is not in the Per-
sonal Interface and that switching to the Full Interface is required.
The first would make the results in Experiment 1 somewhat less
favourable toward customization. The second would make the Fre-
quent Only strategy in Experiment 2 somewhat less favourable than
our results suggest. We are fully aware of the importance of both
of these cognitive overheads. Future work includes obtaining accu-
rate estimates of their impacts so that they can be included in our
model.

2Not shown in the figure due to lack of space

5. IMPLICATIONS
In this section we describe the implications of our research and

the insights it has provided us into the adaptive vs. adaptable de-
bate. Our main focus has been to investigate whether or not an in-
terface should provide adaptive support for customization. This can
be decomposed into three questions. 1) Is customization worth the
effort in the first place? 2) If so, do users know how to customize
efficiently? 3) If not, can adaptive support for customization be
provided?

5.1 Is Customization Worth the Effort?
The results we have obtained indicate that if customization is

done right, it has the potential to be extremely beneficial in terms
of reduced time on task, even including the time it takes for users
to customize. Most users will see performance benefits within the
first 20 times they execute a task.

5.2 Do Users Know How to Customize Effi-
ciently? Can We Provide Adaptive Sup-
port?

Combining our results with field study data from [12, 13], we
see a number of ways in which users may not be able to customize
efficiently. We also see the potential for adaptive support to help
them overcome their difficulties. First, let’s consider whether or
not users know when to customize. Our results indicate that Up
Front is much more efficient than As You Go, yet 70% of users in
the field study did not engage in this type of strategy. Adaptive sup-
port could be used to encourage users to do as much customization
as possible Up Front. It is possible, however, that in many situa-
tions, users will not be able to foresee all the features that will be
needed. This is particularly true for Novices, who, as our results
show, have the most to lose from inefficient customization. There-
fore, adaptive support could be useful to efficiently implement an
As You Go strategy, for example by recommending modifications at
regular intervals by assessing user behaviour and estimating what
features the user might need the most.

Second, let’s consider whether or not users know how to cus-
tomize (i.e., what features to add). The data from the field study
indicates that 60% of users preferred to add all functions. Yet, our
results show that when users perform one task infrequently com-
pared to another, adding all functions is not always as efficient as
adding only those from the frequent task. Whether or not the in-
frequently used features should be added depends on a number of
factors, including the number of infrequently used features, where

7

these features are located in the menus, the ratio at which the infre-
quent features will be used compared to the frequent features, and
the user’s expertise. This is likely too many factors for a user to
take into consideration when deciding what to customize, particu-
larly for a Novice, who would again have the most to lose from in-
appropriate customization. Adaptive support could be used to help
users be selective about which features they add to their Personal
Interface.

Finally, in the field study, users never removed functions from
their Personal Interfaces and those users who adopted the As You
Go strategy often had trouble continuing to customize as the study
progressed. Our results show that additional features not used on a
regular basis can hurt performance. Their tasks may have evolved
but their Personal Interfaces may not have. Helping users maintain
their Personal Interfaces as their tasks evolve is yet another example
of how adaptive support could help improve user performance.

5.3 Beyond Performance Data
In this paper, we looked at how customization strategies affect

performance. Performance, however, is not the only factor that
should guide adaptation. As indicated by McGrenere et al.[12, 13],
there are a number of subjective factors that must also be taken into
consideration to maintain a high level of user satisfaction. These
factors include how users feel about full-featured interfaces versus
reduced interfaces and how much control users desire over the con-
tent of their interfaces. Some users greatly preferred customizing
their own interfaces, while others did not mind when the system
adapted for them. An adaptive system should be able to balance
these factors with performance considerations when providing the
user with customization suggestions.

Complicating the matter is the fact that sometimes the magni-
tude of the difference between efficient and non-efficient strategies
is quite small. Thus, the system will have to weigh the potential
performance gain against the potential cost associated with a cus-
tomization suggestion, both in terms of user satisfaction and the
cognitive overhead involved in dealing with any advice from the
system.

6. SUMMARY AND FUTURE WORK
Our results, combined with those from the field study in [12,

13], indicate that users may not always be able to customize effi-
ciently. The details of the results suggest what specific problems
user may have, and how adaptive support could help improve user
performance in adaptable environments. The avenues that look
the most promising are: 1) support for Novices, 2) helping users
to customize as early as possible, 3) helping users to be selective
about what they customize, and 4) helping users maintain their cus-
tomized interfaces over time.

As future work, we plan to investigate ways to quantify the ad-
ditional cognitive overhead that exists when users have to switch
back and forth between the Personal Interface and Full Interface,
the cognitive cost of deciding what features to include in the Per-
sonal Interface, and the cognitive overhead that would be intro-
duced by any adaptive interventions. Second, we would like to
explore to possibility of comparing our current results against re-
sults from an evaluation with human participants. Finally, we will
use the results from our simulations to begin constructing the user
model and adaptive algorithm that could provide tailored support
for user customization. This will involve deciding how to best
combine the subjective and objective factors that could influence
effective customization, along with determining when and how the
system should intervene.

7. ACKNOWLEDGEMENTS
We would like to thank Kasia Muldner, Steph Durocher, Rick

Bunt and the anonymous reviewers for their helpful comments on
drafts of the paper. We also thank David Kieras for his help in using
the GLEAN tool and NSERC for supporting this work.

8. REFERENCES
[1] S. Card, A. Newell, and T. P. Moran. The Psychology of

Human-Computer Interaction. Lawrence Erlbaum
Associates, Inc., 1983.

[2] G. Fischer. Shared knowledge in cooperative
problem-solving systems - integrating adaptive and adaptable
components. In Adaptive User Interfaces, pages 49–68.
Elsevier Science Publishers, 1993.

[3] K. Hook. Steps to take before intelligent user interfaces
become real. Interacting with Computers, 12:409–426, 2000.

[4] A. Jameson. Adaptive interfaces and agents. In
Human-Computer Interaction Handbook, pages 305–330.
Erlbaum, 2003.

[5] A. Jameson and E. Schwarzkopf. Pros and cons of
controllability: An empirical study. In Adaptive Hypermedia
and Adaptive Web-Based Systems: Proceedings of AH 2002,
pages 193–202, 2002.

[6] B. E. John and D. Kieras. Using GOMS for user interface
design and evaluation: which technique? ACM Transactions
on Computer-Human Interaction, 3(4):287–319, 1996.

[7] D. E. Kieras, S. D. Wood, K. Abotel, and A. J. Hornof.
GLEAN: A computer-based tool for rapid GOMS model
usability evaluation of user interface designs. In Proceedings
of ACM UIST’95, pages 91–100, 1995.

[8] T. Landauer and D. Nachbar. Selection from alphabetic and
numeric menu trees using a touch screen: Breadth, depth,
and the width. In Proceedings of ACM CHI’85, pages 73–78,
1985.

[9] E. Lee and J. MacGregor. Minimizing user search time in
menu retrieval systems. Human Factors, 27:157–162, 1985.

[10] W. Mackay. Triggers and barriers to customizing software. In
Proceedings of ACM CHI’91, pages 153–160, 1991.

[11] I. S. MacKenzie. Movement time prediction in
human-computer interfaces. In Human-Computer
Interaction: Toward the Year 2000, pages 483–492. Morgan
Kaufmann Publishers Inc., 1995.

[12] J. McGrenere. The Design and Evaluation of Multiple
Interfaces: A Solution for Complex Software. PhD thesis,
University of Toronto, Toronto, Canada, 2002.

[13] J. McGrenere, R. Baecker, and K. Booth. An evaluation of a
multiple interface design solution for bloated software. In
Proceedings ACM CHI 2002, pages 163–170, 2002.

[14] K. Norman. The Psychology of Menu Selection. Ablex
Publishing Corporation, 1991.

[15] R. Oppermann. Adaptively supported adaptability.
International Journal of Human-Computer Studies,
40:455–472, 1994.

[16] K. Papanikolaou, M. Grigoriadou, H. Kornilakis, and
G. Magoulas. Personalizing the interaction in a web-based
educational hypermedia system: the case of inspire. User
Modeling and User-Adapted Interaction, 13(3):213–267,
2003.

[17] B. Shneiderman and P. Maes. Direct manipulation vs.
interface agents. Interactions, 4(6):42–61, 1997.

8

