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Abstract. This builds on previous work in which we have developed 
diagramming principles based on theories of structural object perception.  We 
call these geon diagrams.  We have previously shown that such diagrams are 
easy to remember and to analyze. To evaluate our hypothesis that geon 
diagrams should also be easy to understand we carried out an empirical study to 
evaluate the learnability of geon diagram semantics in comparison with the 
well-established UML convention.  The results support our theory of 
learnability.  Both �novices� and �experts� found the geon diagram syntax 
easier to apply in a diagram-to-textual description matching task than the 
equivalent UML syntax. 

1 Introduction 

Conceptualizing the design of a system is an important element of the entire software 
development process. This activity is supported by the use of sketches and diagrams 
to capture various aspects of the system being modeled. Many forms of diagrams 
have been developed for modeling software engineering problems such as those 
available through the Unified Modeling Language (UML) [6]. Although these 
diagrams are general and complete, the choice of graphical notations appear to be 
somewhat arbitrary so that only an expert in the field can easily learn them.  

To some extent, learning and using software engineering semantics is analogous to 
learning semantics in a natural language. Chomsky's theory that language 
understanding is based on innate deep cognitive structures is now widely, if not 
universally, held [2]. It has also been argued that there is a similar deep structure in 
vision, although the purpose of this structure is not communication but perception of 
the environment.  The perceptual theory of Marr contains visual primitives such as 
�blobs�, �bars�, and �terminations� [5]. These are interpreted according to a visual 
syntax thereby enabling us to understand 3D structured objects [1]. Jackendoff [4] 
argues that the rules of visual structure are similar to verbal language rules.  He 
further proposes that there are cognitive �correspondence rules� between the visual 
meaning of a 3D structure and linguistic structure. This provides a natural link 
between visual structure and linguistic structures that may help explain why certain 
kinds of diagrams are easy to understand.  

In our previous work [3], we derived a set of "naturally" occurring �geon 
correspondence rules� (or GCRs) to map diagram semantics. Here we describe the 
subset relevant to software class structures: 
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Fig. 1. Representing some related entities in a system describing a Space Center 

GCR1: Inheritance - Geons with same shape can be used to denote is-a relationship. 
GCR2: Dependency - If geon A is on-top-of geon B this suggests that geon A is 
supported by geon B.   
GCR3: Aggregation - shows that Geon A is contained within Geon B, shown as an 
internal component attached to the same primitive geon on the outside. 
GCR4: Multiplicity - to show multiple associations between two entities a series of 
attachments can best denote such a relationship. 

Figure 1 illustrates an example of how these rules describe related entities of a 
Space Center. The Space Center has-many Buildings (containment with multiple 
connecting lines), and has-many Spacecraft. A Gas Station and a Lab are two 
different types of buildings (same shape primitive as Building). The Gas Station has 
Fuel (containment with connection). Shuttles are also a type of Spacecraft (same 
shape primitive). Shuttles have-many Wings, and has-one Engine. The Engine 
depends on Fuel (depicted on-top-of the Fuel entity). 

While our previous results showed that the geon correspondence rules were easier 
to recall and more intuitive than UML rules [3], they did not say anything directly 
about their ability to help people match a diagram to a problem domain.   

2 Experiment 

We hypothesized that it should be possible to learn diagram semantics, more 
accurately in diagrams created with the perceptual notation presented above in 
comparison with an equivalent UML graphical notation. Error rate was measured for 
matching diagrams to informal written descriptions of various real-world problem 
domains. 

2.1 Method 

Diagrams. Five problem descriptions incorporating the semantics of generalization, 
dependency, one-to-many, and aggregation were constructed. The semantics in the 
problems were clearly presented using their common terminology. For example, to 
describe related entities of a neighborhood (Fig. 2.) the following text was provided: 
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"The neighborhood depends on the city for clean water, sewage and garbage 
disposal. Many families live in this neighborhood. The neighborhood has a school 
and a pharmacy. It also has several types of stores: a grocery store, a convenience 
store, and a bakery." Only one of the four diagrams accurately depicted the 
relationships in the corresponding problem description. The remaining three diagrams 
mis-represented several relationships.  

Training. Twenty-six paid volunteers were collectively given an hour-long 
instruction on the various semantics and their respective notations. The training 
included an introduction to object oriented modeling, a description of each semantic 
with its UML and geon diagram notation, and sample UML and geon diagrams of 
complete systems with objects and their relationships. The emphasis during the 
training was placed on the concept underlying each semantic. It was only during this 
training phase that subjects had access to viewing the notations. The subjects were 
asked to return a week later for the experiment. At the testing stage they were tested 
individually. 

Task. For this experiment we used a diagram-to-problem matching paradigm. After 
reading each problem description, the subject was asked to match one of the four 
diagrams created for that problem. The subject marked on the hand-out sheet the 
number of the matching diagram. The problem descriptions were available to the 
subjects while reading the diagrams, and so they could occasionally consult the 
description. Therefore we were not testing subject memory of a given problem text.  

Subjects were restricted to two minutes for matching a diagram to a problem 
description. A within-subject design was used where half the subjects matched the 
UML diagrams first and the other half matched the geon diagrams first. 

Twelve of the 26 subjects had previous exposure to UML (experts), the others had 
never been exposed to UML (novices). 

2.2 Results 

The results are obtained by averaging each subject's scores. Overall subjects matched 
the informal problem descriptions to Geon diagrams with an error of 14.6% vs. 
36.2% with the UML diagrams. A One-Sample T-Test (or Sign Test) statistically 
shows that subjects performed better with the geon diagrams (p < 0.0001). 
Combining the results we can say that there were more than twice as many errors in 
analyzing and matching the UML diagrams than the Geon diagrams. 
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Fig. 2. Sample UML and equivalent Geon diagram for representing entities of a neighborhood  

2.3 Discussion 

The results obtained from the experiment described here, show that the mapping of 
specific software engineering semantics (inheritance, dependency, etc.) onto �geon 
correspondence rules� can be used as guidelines for making effective diagrams. In 
particular we see that the geon diagrams are well suited for learning a subset of 
object-oriented concepts such as those necessary for modeling software class 
structures. In comparing the learnability of matching problems to diagrams, we found 
that subjects, regardless of their experience in software modeling, were capable of 
learning and interpreting the perceptual syntax with fewer errors. The results were 
particularly significant in showing that with very little training, experts (subjects 
experienced only with UML diagrams and semantics through a software engineering 
course at the university) performed better with the geon diagrams. The use of a 
diagrammatic notation that requires minimal training may be particularly useful in 
instances where end users are involved in the development process and therefore need 
to quickly learn the diagrammatic notations. The experiment described in this paper 
focused on only one aspect of learning, i.e. matching problem descriptions to 
diagrams. While this constitutes a justifiable starting point for this line of research, 
further experimentation needs to be conducted in order to determine whether the geon 
notation can facilitate the process of software modeling by allowing the user to create 
proper abstractions of a problem. 
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