

Notations for Software Engineering Class Structures

Pourang Irani

Faculty of Computer Science, University of Manitoba
Winnipeg, MB, R3T 2N2, Canada
irani@cs.umanitoba.ca

Abstract. This builds on previous work in which we have developed
diagramming principles based on theories of structural object perception. We
call these geon diagrams. We have previously shown that such diagrams are
easy to remember and to analyze. To evaluate our hypothesis that geon
diagrams should also be easy to understand we carried out an empirical study to
evaluate the learnability of geon diagram semantics in comparison with the
well-established UML convention. The results support our theory of
learnability. Both �novices� and �experts� found the geon diagram syntax
easier to apply in a diagram-to-textual description matching task than the
equivalent UML syntax.

1 Introduction

Conceptualizing the design of a system is an important element of the entire software
development process. This activity is supported by the use of sketches and diagrams
to capture various aspects of the system being modeled. Many forms of diagrams
have been developed for modeling software engineering problems such as those
available through the Unified Modeling Language (UML) [6]. Although these
diagrams are general and complete, the choice of graphical notations appear to be
somewhat arbitrary so that only an expert in the field can easily learn them.

To some extent, learning and using software engineering semantics is analogous to
learning semantics in a natural language. Chomsky's theory that language
understanding is based on innate deep cognitive structures is now widely, if not
universally, held [2]. It has also been argued that there is a similar deep structure in
vision, although the purpose of this structure is not communication but perception of
the environment. The perceptual theory of Marr contains visual primitives such as
�blobs�, �bars�, and �terminations� [5]. These are interpreted according to a visual
syntax thereby enabling us to understand 3D structured objects [1]. Jackendoff [4]
argues that the rules of visual structure are similar to verbal language rules. He
further proposes that there are cognitive �correspondence rules� between the visual
meaning of a 3D structure and linguistic structure. This provides a natural link
between visual structure and linguistic structures that may help explain why certain
kinds of diagrams are easy to understand.

In our previous work [3], we derived a set of "naturally" occurring �geon
correspondence rules� (or GCRs) to map diagram semantics. Here we describe the
subset relevant to software class structures:

A. Blackwell et al. (Eds.): Diagrams 2004, LNAI 2980, pp. 441-445, 2004.
© Springer-Verlag Berlin Heidelberg 2004

442 Pourang Irani

Fig. 1. Representing some related entities in a system describing a Space Center

GCR1: Inheritance - Geons with same shape can be used to denote is-a relationship.
GCR2: Dependency - If geon A is on-top-of geon B this suggests that geon A is
supported by geon B.
GCR3: Aggregation - shows that Geon A is contained within Geon B, shown as an
internal component attached to the same primitive geon on the outside.
GCR4: Multiplicity - to show multiple associations between two entities a series of
attachments can best denote such a relationship.

Figure 1 illustrates an example of how these rules describe related entities of a
Space Center. The Space Center has-many Buildings (containment with multiple
connecting lines), and has-many Spacecraft. A Gas Station and a Lab are two
different types of buildings (same shape primitive as Building). The Gas Station has
Fuel (containment with connection). Shuttles are also a type of Spacecraft (same
shape primitive). Shuttles have-many Wings, and has-one Engine. The Engine
depends on Fuel (depicted on-top-of the Fuel entity).

While our previous results showed that the geon correspondence rules were easier
to recall and more intuitive than UML rules [3], they did not say anything directly
about their ability to help people match a diagram to a problem domain.

2 Experiment

We hypothesized that it should be possible to learn diagram semantics, more
accurately in diagrams created with the perceptual notation presented above in
comparison with an equivalent UML graphical notation. Error rate was measured for
matching diagrams to informal written descriptions of various real-world problem
domains.

2.1 Method

Diagrams. Five problem descriptions incorporating the semantics of generalization,
dependency, one-to-many, and aggregation were constructed. The semantics in the
problems were clearly presented using their common terminology. For example, to
describe related entities of a neighborhood (Fig. 2.) the following text was provided:

Notations for Software Engineering Class Structures 443

"The neighborhood depends on the city for clean water, sewage and garbage
disposal. Many families live in this neighborhood. The neighborhood has a school
and a pharmacy. It also has several types of stores: a grocery store, a convenience
store, and a bakery." Only one of the four diagrams accurately depicted the
relationships in the corresponding problem description. The remaining three diagrams
mis-represented several relationships.

Training. Twenty-six paid volunteers were collectively given an hour-long
instruction on the various semantics and their respective notations. The training
included an introduction to object oriented modeling, a description of each semantic
with its UML and geon diagram notation, and sample UML and geon diagrams of
complete systems with objects and their relationships. The emphasis during the
training was placed on the concept underlying each semantic. It was only during this
training phase that subjects had access to viewing the notations. The subjects were
asked to return a week later for the experiment. At the testing stage they were tested
individually.

Task. For this experiment we used a diagram-to-problem matching paradigm. After
reading each problem description, the subject was asked to match one of the four
diagrams created for that problem. The subject marked on the hand-out sheet the
number of the matching diagram. The problem descriptions were available to the
subjects while reading the diagrams, and so they could occasionally consult the
description. Therefore we were not testing subject memory of a given problem text.

Subjects were restricted to two minutes for matching a diagram to a problem
description. A within-subject design was used where half the subjects matched the
UML diagrams first and the other half matched the geon diagrams first.

Twelve of the 26 subjects had previous exposure to UML (experts), the others had
never been exposed to UML (novices).

2.2 Results

The results are obtained by averaging each subject's scores. Overall subjects matched
the informal problem descriptions to Geon diagrams with an error of 14.6% vs.
36.2% with the UML diagrams. A One-Sample T-Test (or Sign Test) statistically
shows that subjects performed better with the geon diagrams (p < 0.0001).
Combining the results we can say that there were more than twice as many errors in
analyzing and matching the UML diagrams than the Geon diagrams.

444 Pourang Irani

Fig. 2. Sample UML and equivalent Geon diagram for representing entities of a neighborhood

2.3 Discussion

The results obtained from the experiment described here, show that the mapping of
specific software engineering semantics (inheritance, dependency, etc.) onto �geon
correspondence rules� can be used as guidelines for making effective diagrams. In
particular we see that the geon diagrams are well suited for learning a subset of
object-oriented concepts such as those necessary for modeling software class
structures. In comparing the learnability of matching problems to diagrams, we found
that subjects, regardless of their experience in software modeling, were capable of
learning and interpreting the perceptual syntax with fewer errors. The results were
particularly significant in showing that with very little training, experts (subjects
experienced only with UML diagrams and semantics through a software engineering
course at the university) performed better with the geon diagrams. The use of a
diagrammatic notation that requires minimal training may be particularly useful in
instances where end users are involved in the development process and therefore need
to quickly learn the diagrammatic notations. The experiment described in this paper
focused on only one aspect of learning, i.e. matching problem descriptions to
diagrams. While this constitutes a justifiable starting point for this line of research,
further experimentation needs to be conducted in order to determine whether the geon
notation can facilitate the process of software modeling by allowing the user to create
proper abstractions of a problem.

References

[1] Biederman, I., Recognition-by-Components: A Theory of Human Image Understanding,
Psychological Review, 94:2, 115-147, 1987.

[2] Chomsky, N., Aspects of the theory of syntax, Cambridge, Mass: MIT Press, 1965.
[3] Irani, P., Ware, C. and Tingley, M., Using Perceptual Syntax to Enhance Semantic

Content in Diagrams, IEEE Computer Graphics & Applications, 21:5, 76-85, 2001.
[4] Jackendoff, R., On Beyond Zebra: The relation of linguistic and visual information,

Cognition, 26, 89-114, 1987.

Notations for Software Engineering Class Structures 445

[5] Marr, D., Vision: A computational investigation into the human representation and
processing of visual information, San Fransisco, CA: Freeman, 1982.

[6] Object Management Group, Unified Modeling Language (UML�), version 1.4,
September 2001.

	Notations for Software Engineering Class Structures
	Introduction
	Experiment
	Method
	Results
	Discussion

	References

