
Rapid Content Browsing in Hierarchical
Space-Filling Representations using Distortion

Techniques

by

Kang Shi

A dissertation submitted in partial fulfillment of
the requirement for the degree of

Master of Science

Department of Computer Science
Faculty of Graduate Studies

University of Manitoba

Winnipeg, Manitoba, Canada, 2005

c© 2005 Kang Shi

Abstract

Large hierarchies, such as trees or variants thereof, require complex interaction

models as they typically span beyond the available display space. Space-filling

visualizations, such as the TreeMap, are well-suited for displaying large hierarchies

in limited viewing space. They are also designed to display the properties of nodes

in hierarchies in space-filling visualizations. To browse the contents of the hierarchy,

the primary mode of interaction is by drilling-down through many successive layers.

In this thesis I introduce a distortion algorithm based on fisheye and continuous

zooming techniques for browsing and searching data in space-filling representations,

such as the TreeMap. The motivation behind the distortion approach is for assisting

users to rapidly browse information displayed in the TreeMap without opening

successive layers of the hierarchy. For searching tasks the distortion technique

assists users in identifying the search results even when the hierarchy is dense and

is capable of conveying importance level of search results.

i

Abstract ii

Three experiments were conducted to evaluate the new approach. In the first

experiment (N=20) the distortion approach is compared to the drill-down method.

Results show that subjects are quicker and more accurate in locating targets of

interest using the distortion method. The second experiment (N=12) evaluates the

effectiveness of the distortion technique in a task requiring context, we define as

the context browsing task. The results show that subjects are quicker and more

accurate in locating targets with the distortion technique in the context browsing

task. The results of both these experiments provide strong evidence that distortion

based techniques applied to space-filling visualization facilitates rapid browsing.

The last experiment (N=12) evaluates the effectiveness of the distortion technique

for presenting search results. The results do not show any improvement in the

distortion method over currently available techniques for presenting search results.

Keywords: browsing, searching, distortion, hierarchy navigation, focus+context,

drill-down, space-filling visualization, TreeMap, semantic zooming.

Acknowledgement

I am greatly grateful to my supervisor Dr. Pourang P. Irani for his guidance and

advice during my study. Dr. Irani is an erudite and polite professor in both research

work and life. He introduced me an attractive research area, “human-computer

interaction” and taught me related knowledge. I am greatly grateful for the time

Dr. Irani spent and his patience in revising my thesis. I am also deeply thankful to

Dr. Irani for leading me to a publication and teaching me methods of research.

I am thankful to Richard M. Zobarich who spent time on the experiment data

analyses in my thesis. I am thankful to Dr. Ben Li for assisting in the development

of the algorithms.

Especially, I am thankful for the support from Dr. Yangjun Chen and Dr. Michel

Toulouse when I encountered difficulties.

I am greatly indebted to my parents Wujie Shi and Minhua Kang who guide

me and encourage me in all aspects of my life. I am also thankful to my wife Kai

iii

Abstract iv

Huang for her help and encouragement.

I am thankful to the HCI Lab and all the participants in my experiments.

Last but not least, I would like to thank all my friends for their help and for

the days we spent together.

Contents

1 Introduction 1

1.1 Goal of the Thesis . 4

1.2 Organization of the Thesis . 4

2 Related Work 6

2.1 Presentation . 6

2.1.1 Visualizing Hierarchical Structures 7

Cone Tree . 8

Hyperbolic Browser . 9

2.1.2 Space-Filling Visualizations 10

TreeMap . 12

CushionMap . 16

Sunburst . 17

2.1.3 Focus+Context . 18

Table Lens . 19

Focus+Context in the Sunburst 21

Information-Slices . 22

2.2 Interaction . 23

2.2.1 Browsing Techniques Applied to the TreeMap 24

Brushing . 24

Quantum TreeMap . 25

v

Abstract vi

Photomesa . 25

2.2.2 Continuous Semantic Zooming 27

2.2.3 Search and Search Results Visualization 29

Motion Queries . 30

WaveLens . 31

Lighthouse . 32

3 Algorithms 35

3.1 Uni-Distortion Technique . 35

3.2 Data Structure . 37

3.3 Computing Neighbours . 39

3.3.1 Compute Left Neighbour . 41

3.3.2 Compute Right Neighbour 42

3.3.3 Compute Top Neighbour . 43

3.3.4 Compute Bottom Neighbour 44

3.4 Changing Node Size . 45

3.5 Distorting Neighbours . 45

3.5.1 Distort Left Neighbour . 45

3.5.2 Distort Right Neighbour . 47

3.5.3 Distort Top Neighbour . 48

3.5.4 Distort Bottom Neighbour 50

3.6 Uni-Distortion Algorithm . 51

3.7 Multi-Distortion Technique . 54

3.8 Multi-Distortion Algorithm . 56

4 Evaluation 60

4.1 Hypotheses . 60

4.2 Experiment One - Browsing . 62

4.2.1 Method . 62

Contents vii

Subjects . 62

Materials . 63

Procedure . 64

4.2.2 Results and Discussion . 65

4.3 Experiment Two - Browsing with Context 69

4.3.1 Method . 70

Subjects . 70

Materials . 70

Procedure . 71

4.3.2 Results and Discussion . 73

4.4 Experiment Three - Search Results Representation 75

4.4.1 Method . 76

Subjects . 76

Materials . 77

Procedure . 78

4.4.2 Results and Discussion . 79

5 Conclusion and Future Work 83

5.1 Contributions . 87

5.2 Future Work . 88

Bibliography 90

Appendixes 96

List of Tables

4.1 Average completion times for wide and deep hierarchies with both methods (stan-
dard deviations are in parentheses). 67

4.2 Average completion times for Wide and Deep hierarchies with both Methods
(standard deviations are in parentheses). 74

4.3 Average completion times for small and large result sets with both methods
(standard deviations are in parentheses). 80

4.4 Average error rate for small and large result set with both methods. 81

viii

List of Figures

1.1 Typical hierarchical structure represented as a tree. Only part of the tree is
visible in the limited rectangular display region. 3

2.1 Cone tree [9] . 8

2.2 Hyperbolic Browser displaying the hierarchy of the web site inxight.com [9]. . . 9

2.3 Tree and a possilbe space-filling representation. The space reserved for each node
is equivalent to the weight of the node. The color of each node represents the
type of each node. 11

2.4 Tree structure (a) and its corresponding TreeMap visualization (b). The letters
are the labels of nodes, the numbers following the letters are the weights of nodes. 12

2.5 TreeMap uses a drill-down approach to open successive layers of a hierarchy.
Selecting a parent node opens it and presents the subtree in the entire view.
A total number of three drill-down operations are required to inspect the node
highlighted above. 14

2.6 Cushion TreeMap [25] . 16

2.7 Sunburst visualization [23] . 17

2.8 Table Lens from inxight.com. The left side of the red line is the focal area, the
right side of the red line is the context area. 20

2.9 Sunburst (a) has been developed with three different focus+context methods:
(b) angular detail, (c) detail outside and (d) detail inside. These techniques are
well-suited for browsing the structure of a hierarchy [23]. 21

2.10 Information-Slices [9]. 22

2.11 PhotoMesa [2] . 26

2.12 Continuous Semantic Zooming applied to a clustered network. Details of each
cluster are visible based on the level of zooming employed. Progressing from (a)
to (d) reveals more details as smooth transitions are created between views [20]. 28

ix

Figures x

2.13 Medium sized node-link graph. Motion of the nodes are indicated by the arrows. 30

2.14 LightHouse . 33

3.1 Distortion can be applied to nodes of interest. As the node expands, content
data is revealed. From rest (a) to full expansion of a selected node (d). 36

3.2 Implementation results of the uni-distortion algorithm. The red arrow indicates
selection (b)-(d) and the green arrow indicates release of the mouse button (e)
and (f). 53

3.3 The behavior of the multi-distortion algorithm. Figure (a) is the original state,
figure (b)-(d) indicate the size of each node increased, figure (e)-(f) indicate the
size of each node decreased. After state (f), the state of TreeMap goes back to (a). 55

3.4 Implementation results of the multi-distortion algorithm. (a) is the initial state.
(b) shows the TreeMap is distorting (nodes with a ”T” inside are target nodes).
In figure (c), the labels on the nodes indicate the importance level. After all
search results are identified, the TreeMap goes back to initial state. 59

4.1 Interface used in experiment 1. When users click a node, the content of the node
is shown (if the node is a picture file). Users are required to browse the TreeMap
until he/she finds the target picture. 65

4.2 Context of image e (image not shown to participant) consists of images a, b, c, d,
and four other files. Image a is a sibling of the target e, image b is in the sibling
subtree of the target’s parent, and image c is a sibling of the target’s parent.
Image d is a sibling to the subtree containing a, b, c, and e. 69

4.3 Interface used in experiment 2. When users click a node, the content of the node
is shown (if the node is a picture file). Users are required to browse the TreeMap
until he/she find the target picture in the specified context. 72

4.4 Interface used in experiment 3. When users click a node, an number is shown as
the order of the users’ click (if the node is a search result). Users are required
to identify all search results. (a) is using the distortion method, (b) is using the
highlight method. 79

5.1 Distortion of TreeMap on a PDA. (a) shows the initial state, in which a user can
get previews of pictures. In (b), the user opens a picture to get detail information.
In (c), the user can read the description of the picture without switching window
or running another application. In (d), the user can open another picture to
compare them. The user can switch quickly between pictures and descriptions. 89

List of Algorithms

1 ComputeLeftNeighbour(A) . 41
2 ComputeRightNeighbour(A) . 42
3 ComputeTopNeighbour(A) . 43
4 ComputeBottomNeighbour(A) . 44
5 ChangeNodeSize(A, δ) . 45
6 DistortLeft(amount) . 46
7 DistortRight(amount) . 47
8 DistortTop(amount) . 49
9 DistortBottom(amount) . 50
10 DistortAlgorithm(A) . 52
11 OneNodeinMultiDistortAlgorithm(A) 57
12 MultiDistortAlgorithm(A1, A2, ..., An) 58

xi

Chapter 1

Introduction

Information visualization consists of using computer-supported, interactive, visual

representations of abstract data to amplify cognition [6]. Visualization amplifies

cognition by organizing information and thereby reducing the amount of search

performed by the user for locating required data. Visual representations can also

amplify cognition by increasing the memory and processing resources available to

the user by off-loading internal cognitive structures onto a display. Finally, visual-

izations allow users to detect patterns and facilitate perceptual inferences.

However, as the visualization gets more complex (either by scaling it to larger

sizes of data or due to its limited representational capacity) users will typically

require more time to locate items of interest to make inferences from the display.

1

CHAPTER 1. INTRODUCTION 2

This problem is compounded by the fact that the choice of visual encodings and

representations are chosen by the designer of the visualization and therefore users

do not have a significant amount of flexibility in selecting and modifying base

representations. Therefore, if items of interest are not ’immediately’ perceived or

if patterns are not easily detectable in the visualization users will not invest time

to identify these.

In many cases, the data source of the information being visualized is structured.

For instance, temperature fluctuations on a given day can be structured linearly,

flight routes for an airline can be organized as a network and a library’s directory

can be organized hierarchically. Hierarchical structures are widely and abundantly

used. A large quantity of data is organized hierarchically as it can simplify the

categorization of information. Hierarchical data is typically represented in the

form of a tree structure (Figure 1.1). In a tree (also referred to as a classical or

conventional node-link tree), the elements or data points are represented as nodes

and the hierarchical parent-to-child relationships are represented as links.

A common research theme in information visualization is to find new techniques

for displaying large trees in a limited display space. As shown in figure 1.1, to locate

items of interest in a tree can be problematic. A lot of white space is introduced

as trees become wider and deeper. In order to view items of interest in the tree,

CHAPTER 1. INTRODUCTION 3

Links

Nodes

Display area

(screen)

Figure 1.1: Typical hierarchical structure represented as a tree. Only part of the tree is visible

in the limited rectangular display region.

users have to use the scroll bars to move the focus from one area to another. For

large trees (which are deep and wide at the same time) this method of interaction is

inhibitive and users may not perceive patterns in the entire collection of the data.

Several techniques have been developed to represent and display large trees in

a limited display space. Space-filling techniques such as the TreeMap, is one ef-

fective approach. However, several problems arise with the standard navigation

scheme in the TreeMap. In the thesis, I introduce a distortion method for navigat-

ing and browsing data in space-filling representations. Distortion techniques have

been widely used to enhance information visualization tools. The basic concept

CHAPTER 1. INTRODUCTION 4

behind distortion techniques is to increase the amount of space for items with in-

terest and decrease the space for items which are not of immediate interest to the

user [8]. The distortion algorithms were developed in this thesis for browsing nodes

in hierarchies, for allowing users to maintain relationships between nodes, and for

visualizing search results in space-filling representations, such as the TreeMap.

1.1 Goal of the Thesis

The goal of this thesis is to create distortion techniques for browsing node informa-

tion and for facilitating the visualization of search results in space-filling visualiza-

tions. Subgoals that follow from this are:

• to implement a distortion algorithm which can be applied to a well-known

space-filling visualization, the TreeMap,

• to evaluate the effectiveness of the distortion algorithms.

1.2 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 introduces work related to my research. It reviews techniques in the

CHAPTER 1. INTRODUCTION 5

field of information visualization for the visualization of hierarchical and space-

filling hierarchical visualizations. Chapter 2 also discusses focus+context tech-

niques, browsing techniques applied to the TreeMap, and continuous semantic

zooming technique. All of these have inspired the idea of distortion in this research.

Finally, chapter 2 summarizes the relevant research on search results visualization.

Chapter 3 describes the distortion algorithm. The algorithm can be divided

into two parts, single node distortion (uni-distortion) and multiple node distortion

(multi-distortion). Both of these algorithms are described using pseudo-code in

detail.

Chapter 4 describes the user evaluation of the new techniques. Three exper-

iments that were designed to compare the distortion techniques to conventional

techniques are described and their results are discussed.

Chapter 5 summarizes the contribution of this thesis, and also outlines future

directions for this work.

Chapter 2

Related Work

This thesis builds upon principles developed in two main areas of information vi-

sualization, presentation and interaction. In this chapter I present the related

literature in both of these areas.

2.1 Presentation

In information visualization, presentation is concerned with how to adequately dis-

play information such that users can immediately see patterns, structures or con-

tent. One area related to this thesis is the presentation of hierarchical structures.

This area focuses on different solutions for presenting large quantities of data into a

limited display space while showing necessary detailed information. In this section,

6

CHAPTER 2. RELATED WORK 7

I describe three areas of research which are directly related to the thesis. The first

group of research presents alternative presentation methods than the traditional

node-link tree for visualizing large hierarchical structures in a limited space. The

second set of work describes the various techniques referred to as space-filling vi-

sualizations. These techniques are also designed with the intent of showing large

hierarchies. The third category of research describes the concept of focus+context

techniques and their applications.

2.1.1 Visualizing Hierarchical Structures

Hierarchical data structures are interacted with regularly. They describe the rela-

tionships among entities in organizations, in file systems, and in family genealogies.

The most common form of hierarchical representation is a node-link tree. However,

trees are difficult to browse and are not space efficient. A significant amount of

space remains unused in the background as a result of creating an adequate layout

for the nodes. Many techniques have been developed to represent and display large

trees in a limited display region [22]. Two techniques which have shown promising

results for depicting large trees in limited space are the Cone Trees [19] and the

Hyperbolic Browser [13].

CHAPTER 2. RELATED WORK 8

Cone Tree

A cone tree [19] (Figure 2.1) can represent large hierarchical information in a 3D

Figure 2.1: Cone tree [9]

space. The root of the tree is the apex of a cone and is placed near the top of

the 3D space. The children are evenly placed around the circumference of the

base. The children layers are always lower than the parent layer, and the cones

in each layer have the same height. The bottom layer of the cone tree matches

the width of the 3D space to insure that all nodes of the tree can be represented

in the space. To browse the nodes in a cone tree, the users click on the node

of interest and this action brings the target node and its path to the front. The

CHAPTER 2. RELATED WORK 9

cones are transparently represented and the rotation is animated so that the user

can easily understand and maintain the relationships between nodes in the tree.

Cone trees are capable of displaying hierarchies with over a million nodes in a fixed

display region. The drawback to the cone tree approach is that as a result of its

3D representation a significant amount of nodes are occluded. This has shown to

degrade users’ performance [19].

Hyperbolic Browser

The hyperbolic browser [13] (Figure 2.2) is another example of a hierarchical repre-

Figure 2.2: Hyperbolic Browser displaying the hierarchy of the web site inxight.com [9].

sentation capable of displaying large hierarchies. The information is laid out onto

CHAPTER 2. RELATED WORK 10

a hyperbolic plane and is then mapped onto a circular display region. In the initial

state, the root of the tree is placed at the center of the hyperbolic plane, and the

children are placed around the root, level by level. The leaf nodes are placed near

the edge of the plane. To browse the hierarchy, users can drag any visible node to

another position to translate the view. The hyperbolic browser relies heavily on

the interaction mechanisms such as selecting and dragging nodes. Without these

the user cannot obtain information from the representation.

Although cone trees and the hyperbolic browser are a significant improvement

over the classical node-link tree, they do not make efficient use of the entire display

region. In addition, as the hierarchy gets more complex, a high degree of clutter

is introduced. As a result, new techniques referred to as space-filling visualizations

have been developed.

2.1.2 Space-Filling Visualizations

One approach to resolving the problem of inefficient use of space for viewing ele-

ments in a hierarchy is the use of space-filling visualizations. Space-filling visual-

izations [10] divide the display space into nested blocks. As shown in figure 2.3,

the root of the tree has three children, so the rectangle is divided into three blocks

vertically. Each child has two children so that each block is divided into 2 blocks

CHAPTER 2. RELATED WORK 11

Figure 2.3: Tree and a possilbe space-filling representation. The space reserved for each node

is equivalent to the weight of the node. The color of each node represents the type of each node.

horizontally. Unlike classical node-link trees, in Space-Filling visualizations, blocks

represent nodes in the hierarchy and the nesting relationships among blocks repre-

sent links between parents and children. The size of each block in the space-filling

visualization is the weight attributed to that node in the tree. For instance, in fig-

ure 2.3, the weight of the blue node is larger than the weight of the green node. If

this representation depicted a file structure, larger files would have a larger weight

and would therefore be represented using larger blocks. Furthermore, the color of

the blocks is used to map some properties of the node. For example, in figure 2.3

the color of the blocks denotes the type of the nodes. The red color block could be

.EXE files, the brown color blocks could be .TXT files in a file directory.

The TreeMap [12], the CushionMap [25], and the Sunburst [23] are examples of

space-filling visualizations.

CHAPTER 2. RELATED WORK 12

TreeMap

Johnson and Shneiderman [12] developed a space-filling visualization method called

the TreeMap which can represent large hierarchical structures in a 2D rectangular

area (The algorithm of TreeMaps is described in appendix I). TreeMaps make effi-

cient use of the display area and provide structural information. In the TreeMap,

the display area is divided into nested rectangular regions to map an entire hier-

archy of nodes and their children. Each node uses an amount of space relative to

the weight of the item being represented in the hierarchy. Figure 2.4 (b) shows a

m1
n2

g1

o1
p1

i1

j1

q1

r2
s1

a12

c3 d1 e5

g1 h2 i1 j1 k1 l3

o1 p1 q1 r2 s1

b3

f3

m1 n2

(a)

(b)

Figure 2.4: Tree structure (a) and its corresponding TreeMap visualization (b). The letters are

the labels of nodes, the numbers following the letters are the weights of nodes.

TreeMap visualization which is constructed from the tree in figure 2.4 (a). TreeMaps

CHAPTER 2. RELATED WORK 13

give an integrated view of the entire hierarchy and thereby simplify the amount of

interaction required to locate items of interest in large hierarchies. In most cases,

TreeMaps will help users quickly locate the requested nodes and with a glance allow

them to get related information. For instance, users can quickly locate the largest

or smallest element in a hierarchy, such as the largest or smallest file if the TreeMap

represented a file system.

TreeMaps are well-suited for revealing global patterns in the data such as large

pockets of empty space on a disk drive. However, the standard browsing mecha-

nisms provided for inspecting the data can be complex, in particular as the size of

the hierarchy grows larger. The method utilized by the TreeMap for browsing data

is through drilling down into (moving down) the hierarchy or rolling up (moving up)

to find nodes of interest. This interaction approach is very common and has been

widely established by file and directory explorers provided in most current operat-

ing systems. The typical user interaction for locating a node consists of clicking the

parent directory (or subtree) in which might reside a node of interest. The subtree

fills the entire space and the user can recursively select subtrees until reaching their

final location or node (Figure 2.5). This form of interaction is analogous to zooming

into a region of interest with each step of the zoom operation being a subtree in

the hierarchy. In general, and particularly in the context of this thesis, content

browsing refers to the task of locating specific content, such as a photograph or

CHAPTER 2. RELATED WORK 14

Figure 2.5: TreeMap uses a drill-down approach to open successive layers of a hierarchy. Select-

ing a parent node opens it and presents the subtree in the entire view. A total number of three

drill-down operations are required to inspect the node highlighted above.

document. This is analogous to flipping through pages of a catalog of products or

a phone directory.

Several problems arise with the standard navigation scheme of drilling down

and rolling up. Users can spend a significant amount of time browsing for specific

items in hierarchies using such an interaction. In space-filling visualizations the only

visual cue available to the user for locating a node are its visual attributes, such as

color and size of node. This reduces the user’s ability to quickly find elements unless

they can adequately match the object sought after to its visual mappings. Another

drawback with the drill-down approach is the number of unnecessary “trips” a user

CHAPTER 2. RELATED WORK 15

may take to reach the file adequately. In the drill-down approach, traversing each

successive layer requires abandoning the previous view. This can typically lead to

disorientation during navigation and reduce the amount of context available for the

task. The lack of context in browsing can negatively impact performance as the

user has to internally reorient and reestablish relations between views to determine

the group or cluster to which an element belongs to.

As an enhancement to the TreeMap, Turo and Johnson [24] use animation to

present relative changes over a sequence of time. In their research the animation

is used to show the change of node weight such as an increase in stock price over

a fixed period of time. However, their animation is not continuous and works in

discrete steps. They also use animation to exaggerate the property of nodes. An

exponential function is applied to the nodes such that large nodes become very

large and small nodes shrink even further. The rationale for doing this is to show

more clearly the presence of large items in the hierarchy. Their technique does not

scale well to browsing or searching tasks. Furthermore, the distortion is simply

created by scaling the size of all the objects.

The navigation problems inherent in the TreeMap representation, as discussed

above, will be addressed in this thesis by introducing a new distortion technique for

the TreeMap. The next few sections discuss the research leading to the techniques

CHAPTER 2. RELATED WORK 16

developed here.

CushionMap

CushionMap [25] extends and enhances the appearance of standard TreeMap. Wijk

and Wetering [25] were interested in revealing the structure of the hierarchy in the

TreeMap particularly for the balanced tree. If each parent has the same number of

children with the same size, the standard TreeMap becomes a regular grid. In this

case, users can hardly figure out the ancestor of a node. CushionMap uses shading

to show the hierarchy structure. Figure 2.6 shows a CushionMap, which displays

Figure 2.6: Cushion TreeMap [25]

the surface in illuminated shades. In the CushionMap, the parent-child relation-

ship is much clearly presented than in the standard TreeMap. However, even very

small nodes in the cushion map are difficult to extract visually. Furthermore, Cush-

CHAPTER 2. RELATED WORK 17

ionMap make use of the same drill-down technique as the TreeMap and therefore

relationships between elements in a hierarchy can be difficult to assimilate.

Sunburst

Stasko and Zhang [23] designed a radial space-filling visualization method called

Sunburst (Figure 2.7). Sunburst uses a radial layout to represent hierarchical struc-

tures, with elements represented as parts of concentric circles. As shown in figure

Figure 2.7: Sunburst visualization [23]

2.7, the root of the hierarchy is placed in the center of concentric circles. Other

elements are arranged around the center according to the level order in the hier-

archy, and the deepest level is furthest away from the center. The angular wedge

CHAPTER 2. RELATED WORK 18

taken by an item corresponds to the weight of the node (size of a file, importance,

etc.) and the color of an item corresponds to the type of a node. The authors

of Sunburst compared Sunburst to TreeMap. Their evaluation shows that users

perform similarly with both tools on small hierarchies.

In general space-filling techniques are well suited at displaying large quantities

of data in a limited display space. However, a high level of interaction is necessary

for providing the contents of the data being represented. As revealed in the images

presented in this section on space-filling visualizations, small items are difficult to

see as they are given a size proportional to the size or weight of all the elements

in the hierarchy. To identify and present details of regions that are not clearly

visible or that occupy a small amount of the display space, additional presentation

techniques have been developed. One such technique is the focus+context method.

2.1.3 Focus+Context

Focus+Context techniques have been designed for allowing the user to see details

that are in focus while maintaining context information of the global view. Gen-

erally in focus+context, the size of the items in focus increases to present enough

details, and the size of the non-focus items decreases but is still visible to show the

relevant information. Focus+context methods have been applied to the display of

CHAPTER 2. RELATED WORK 19

graphs [8], trees [18], and tabular data [17].

Fisheye views [8] are a specific case of focus+context techniques. They provide a

balance of local details and global structure information. By using distortion, fish-

eye views increase the size of local space to present more detailed information. On

the other hand, fisheye views decrease the size of non-focal items that constitute the

context. Fisheye views are used in information visualization to display large infor-

mation structures, and to facilitate users’ attention to local details. Focus+Context

techniques assist users in viewing peripheral information while maintaining their

focus on the elements of interest. Examples of visualizations that have adopted fish-

eye views are the Table Lens [17], Sunburst [23], and Information-Slices [1]. Table

Lens [17] is an example of fisheye views applied to a tabular rectangular structure.

Sunburst [23] and Information-Slices [1] are examples of hierarchical space-filling

visualizations using fisheye views. The TreeMap representation being a rectangu-

lar space-filling representation can take advantage of the implementation of fisheye

views discussed here.

Table Lens

Table Lens is a technique [17] that was designed for visualizing large tables. Using

focus+context or fisheye techniques, Table Lens modifies the layout of a table by

dividing the table into a focal area and context area. In the focal area, Table Lens

CHAPTER 2. RELATED WORK 20

uses distortion to increase the space without bending any row and column. Cells

divide the focal space to the appropriate size to show enough detail information

from the table. In the context area, cells divide the space equally to maintain the

structural information and only shows part of the content in the cells. In Table

Lens, users can define more than one focal area to obtain detail information from

different parts of the table. Figure 2.8 shows an example of Table Lens. Focus (on

the left side of the red line) is shown in clear detail. Context (on the right side of

the red line) is shown in a demagnified manner.

Figure 2.8: Table Lens from inxight.com. The left side of the red line is the focal area, the right

side of the red line is the context area.

CHAPTER 2. RELATED WORK 21

Focus+Context in the Sunburst

Stasko and Zhang [23] designed three focus+context displays for the Sunburst:

angular detail, detail outside and detail inside (Figure 2.9). These techniques allow

Figure 2.9: Sunburst (a) has been developed with three different focus+context methods: (b)

angular detail, (c) detail outside and (d) detail inside. These techniques are well-suited for brows-

ing the structure of a hierarchy [23].

users to interact with subtrees in the hierarchy by facilitating the view of small

items in detail while providing context of the entire hierarchical structure. Each

technique takes advantage of smooth animated transitions between the views to

help users maintain their orientation during navigation tasks. While each of these

CHAPTER 2. RELATED WORK 22

techniques is well suited for showing detail and overview of the hierarchy structure,

they are not created with the intention of viewing the content of nodes within

hierarchies.

Information-Slices

Another example of focus+context for space-filling visualizations is the Information-

Slices technique [1] for displaying the details of substructures within a hierar-

chy (Figure 2.10). As the user clicks on a node, its representative sub-structure

Figure 2.10: Information-Slices [9].

is opened using a semi-circle presentation and linked by an arc. As in the fo-

cus+context techniques for the Sunburst, the semi-circle is designed primarily to

CHAPTER 2. RELATED WORK 23

facilitate detail viewing of substructures within a hierarchy.

In both the visualizations described above, focus is created by ”fanning-out” and

enlarging the subtree of interest. Context is provided by presenting the original hi-

erarchy in the same view and by visually depicting the relation between the subtree

and its location in the original hierarchy. Radial space-filling visualizations have

the added advantage of being capable of showing the hierarchical structure more

explicitly than other space-filling representations such as the TreeMap. Therefore

replicating the same type of focus+context techniques onto the TreeMap may not

lead to a visually comprehensible presentation. In addition, the use of fisheye views

in the TreeMap will facilitate content browsing, which has not been implemented

in the space-filling techniques discussed above.

2.2 Interaction

Presentation methods and interaction techniques are highly complementary in vi-

sualization tools. Interaction allows users to find specific information of interest

that is being presented. Without interaction, users cannot take full advantage of

the presentation. Interactions come in many forms which include browsing and

searching. In this thesis, the techniques that have been developed for browsing

and searching in the TreeMap will be discussed later. A review of the research on

CHAPTER 2. RELATED WORK 24

browsing, zooming, and searching techniques is discussed in the sections below.

2.2.1 Browsing Techniques Applied to the TreeMap

Several interaction techniques have been developed for browsing information con-

tent in the TreeMap structure. Brushing is a technique that uses highlights to

isolate important items in a dataset. Quantum TreeMap is a technique that im-

proves the classical TreeMap, and Photomesa is an application that helps users

browse and organize photos. All of them are used for browsing information content

in the TreeMap.

Brushing

Brushing for example, is an effective technique for browsing information and per-

forming exploratory data analysis. In particular, brushing is a technique which

assists the user in selectively isolating subsets of data for exploration and inspec-

tion. Fua et al. [7] designed an interactive structure-based brushing technique which

can be used to perform selection in hierarchical datasets. Structure-based brush-

ing was applied to TreeMaps to assist users in selecting clusters of interest using

a structure-based coloring [7]. Using this tool, users can specify regions of interest

based on the location or depth of the clusters of interest in the hierarchy. By dy-

CHAPTER 2. RELATED WORK 25

namically selecting a bounding region in the structure-based brush, corresponding

elements in the TreeMap get highlighted. Using such a technique clusters of interest

(based on the variable being mapped in the display) can be selectively inspected.

This technique however, does not display the content of nodes in the TreeMap.

Quantum TreeMap

The primary variation of the TreeMap that has facilitated direct browsing of hierar-

chical content is the Quantum TreeMap [5]. Quantum TreeMaps were designed to

facilitate browsing of entities in a hierarchy that consist of ’quantum’ or indivisible

size, such as images. An integral component of the quantum TreeMap is an ordered

layout algorithm which maximizes the amount of space available for the nodes in

the hierarchy by rearranging the display based on the size of the elements.

Photomesa

Photomesa (Figure 2.11) [2], an application based on the Quantum TreeMap, dis-

plays a thumbnail of all images in a directory. The basic mechanism for browsing

images or other content is achieved by hovering or zooming into thumbnails of in-

terest. Smooth animation between different endpoints in the zooming operation

facilitates context viewing. However, the objects zoomed into overlap the Quan-

tum TreeMap and occlude parts of the display region. Furthermore, to navigate

CHAPTER 2. RELATED WORK 26

Figure 2.11: PhotoMesa [2]

or browse from one region to another the user needs to roll out (move out from

the current viewing space) and drill back (move into, which includes panning or

scrolling) into the area of interest. Another characteristic of the Quantum TreeMap

is that the underlying hierarchical structure of the information is collapsed onto a

flattened view to facilitate the task of browsing. The motivation to flatten the

hierarchical structure is based on the assumption that users are typically interested

in groups of items and not the inter-structural relationships between these.

In the techniques described above, drilling down into levels of the hierarchy is

the prevalent form of navigation. Brushing provides a mechanism for selecting and

filtering items of interest based on its visual property (such as color mapping) or

depth in hierarchy. In the case of the Quantum TreeMaps, hierarchical structures

CHAPTER 2. RELATED WORK 27

with elements of heterogeneous sizes and content may not be easily browse-able.

An implicit requirement for the technique I introduce is to allow users to investigate

node content in the tree without any transformation on the underlying hierarchical

structure. In addition, a requirement for browsing content in the TreeMap would

be to allow access to content in the structure without the need of traversing all the

layers in the hierarchy. The solution to this restriction was derived from the results

on the work in continuous semantic zooming, described next.

2.2.2 Continuous Semantic Zooming

The work conducted in this thesis is primarily inspired by the concept of contin-

uous semantic zooming (CSZ) developed by Schaffer et al [20]. This technique is

characterized by two distinct but interrelated components: continuous zooming [4]

and presentations of semantic content at various stages of the zoom operation. CSZ

manages a 2D display by recursively breaking it up into smaller areas. A region of

interest becomes the focus and as the continuous zoom is applied, successive layers

of a display “open up” (Figure 2.12). At each level of the operation the technique

enhances continuity through smooth transitions between views and maintains lo-

cation constraints to reduce the user’s sense of spatial disorientation. The amount

of detail shown in parts of the display is controlled by pruning the display and

CHAPTER 2. RELATED WORK 28

Figure 2.12: Continuous Semantic Zooming applied to a clustered network. Details of each

cluster are visible based on the level of zooming employed. Progressing from (a) to (d) reveals

more details as smooth transitions are created between views [20].

presenting items of non interest in summary form. A study comparing continuous

semantic zooming to drill-down (full zoom), on a network of hierarchical clusters,

shows that users can navigate and perform tasks related to node-link diagrams

more efficiently with CSZ than with the traditional approach [20].

Continuous semantic zooming has been applied to information structures other

than topological graphs. Datelens [3] employs continuous semantic zooming to

reveal varying degrees of content in tabular structures in a smooth and continuous

manner. The distortion in Datelens is linear and is applied to the cells of interest in

a grid. As the level of distortion increases semantic information is revealed based on

CHAPTER 2. RELATED WORK 29

the size of the region available for the display. An evaluation comparing Datelens

to common calendar based interactions reveals that continuous semantic zooming

enhances content browsing in tabular structures [3]. The distortion algorithm used

in Datelens cannot be directly applied to the TreeMap as the alignment of cells

in the TreeMap is not symmetrical. Furthermore, the TreeMap uses a hierarchical

and not a tabular structure.

The approach I have implemented is similar in concept to the continuous seman-

tic zoom: smooth transition between zoom levels is applied and content visibility

is increased as the nodes enlarge.

2.2.3 Search and Search Results Visualization

Another form of interaction is searching. Search techniques are widely used in many

areas of interaction such as in file system search, Internet search, etc. Generally,

search includes three steps: users submit search keywords to the system, the system

searches the data base, and finally search results are presented to the users. In

most cases, the search results are presented in plain text to the users. This requires

scanning and scrolling the results. Furthermore, users have difficulty in knowing

the priority of one result and the relationship between two search results. Some

techniques such as Motion Queries [26], WaveLens [16], and Lighthouse [14], have

CHAPTER 2. RELATED WORK 30

been developed to solve these problems.

Motion Queries

C. Ware and R. Bobrow [26] describe an interactive technique which supports vi-

sual queries on graphs containing up to a few thousand nodes. In a medium sized

node-link graph which contains more than 20 or 30 nodes (figure 2.13), a main

Figure 2.13: Medium sized node-link graph. Motion of the nodes are indicated by the arrows.

problem [26] is that the nodes and links in the graph become visually incompre-

hensible. Based on this kind of graph, the targets of query actions are a group of

nodes which link each other. Therefore, how to represent the query results in a

CHAPTER 2. RELATED WORK 31

clearly visible way is the major objective of the work in [26].

In Ware and Bobrow’s solution, simple motion is used to highlight the query

results. To achieve their purpose, they demonstrate five methods which are static

highlighting and four motion highlighting methods (circular, jolt, crawl, and ex-

panding nodes). In three experiments, they record response time and accuracy

of the participants in locating query results using the five methods. The results

suggest that querying large graphs, motion highlighting is more efficient and more

accurate than static highlighting. In this research I extend the results of Ware and

Bobrow to showing search results in the TreeMap. In particular I develop algo-

rithms to use simple motion by distorting the nodes that are relevant to the search

results.

WaveLens

With most Internet search engines, search results are displayed as a linear list of

text. In most case, if the searching engine can return more than just a few lines of

each page which is found, users will find the particular web page easier. Typically,

users want to view enough quantities of results to compare each result in the limited

screen space. To view linear lists, scrolling is the fundamental interaction technique

available. However, scrolling can be ineffective for very large lists. Paek et al. [16]

designed a system referred to as the WaveLens to address these problems by using

CHAPTER 2. RELATED WORK 32

fish eyes representations.

WaveLens shows each search result in just a few numbers of lines, similar to a

normal search engine list. However, this list is compressed such that scrolling is

kept to a minimum. When the mouse cursor moves and hovers over one of the result

items, a fish eye lens is applied vertically in the page, and this result becomes the

focus of the fish eye lens. For the focused result, WaveLens fetches more samples

from the target web page and shows them on the screen and compresses other result

items to save the screen space. In addition, WaveLens magnifies the item of interest

by using a large font, and minimizes the furthest result item from the focused item

using a small font. Moving the mouse cursor over another result will change the

focus and magnify the newly selected information instead.

Paek et al. compared the WaveLens technique with normal static search results

list. Their studies show that with WaveLens, participants complete search tasks

more quickly and more accurately [16]. In my research, I will also apply some of

the concepts used in the Wavelens system, in particular the idea of distorting the

display to show items of relevance in the search result set.

Lighthouse

Lighthouse [14] (Figure 2.14) is an interface for a Web-based information retrieval

CHAPTER 2. RELATED WORK 33

Figure 2.14: LightHouse

system. In normal search engines, result items are in a list of text and sorted

by the similarity index to the query terms (usually no more than 10 items per

page). Normally, users open the link of each result item and judge whether the

web page is the correct target. If not, the user will go back to the result items list

and open another. For most users, the necessary sequence of actions are tedious

and unproductive, therefore they often stop looking after browsing the first set of

results without achieving their expected goal. Furthermore, search engines do not

show the similarity levels between two or more result sets. Consequently, users may

repeatedly open pages that are similar in content.

Lighthouse is designed to address these problems. In lighthouse, the first 50

ranked results are listed to the left and right side of the screen. To save space, only

CHAPTER 2. RELATED WORK 34

the title of each result is shown. Up to 50 spheres are used and are floating in the

middle of the screen, which correspond to the search results. The structure of the

spheres are grouped and the position of each sphere represents the ranks and the

relationships of the search results. The spheres with higher ranks are closer to the

users and have larger sizes (can cover spheres with lower ranks). Two spheres that

are very similar to each other will be located near one another. While the mouse

cursor hovers upon a sphere, a popup window which contains a brief introduction

of the target page will appear. Thus, users can decide to click the sphere to view

the target page or view other spheres. Studies have shown that users are more

successful with Lighthouse than with normal text listing methods.

The concept of simple motion as used by Ware and Bobrow [26], the fisheye

method used in Wave Lens [16], and the use of relevance order as demonstrated in

Lighthouse [14] have been adopted for displaying search results in the TreeMap, as

discussed in Chapters 3 and 4.

Chapter 3

Algorithms

This chapter describes the distortion algorithm I have implemented. The distortion

algorithm modifies the sizes of the blocks for each node of interest (target node) and

its neighbours dynamically. The distortion algorithm is composed of computing

neighbours, changing node size, and distorting nodes. I applied the distortion

algorithm on browsing single node (uni-distortion) and representing multiple search

results (multi-distortion).

3.1 Uni-Distortion Technique

To facilitate rapid browsing of node contents within a space-filling representa-

tion of hierarchies, such as the TreeMap, I designed algorithms that apply the

35

CHAPTER 3. ALGORITHMS 36

focus+context and continuous zooming techniques described in Chapter 2. This

technique is significantly different than the current drill-down approach provided

in the TreeMap representation. The behavior of the algorithm is depicted in fig-

ure 3.1 below. The content of the node appears as the node of interest grows. The

Figure 3.1: Distortion can be applied to nodes of interest. As the node expands, content data

is revealed. From rest (a) to full expansion of a selected node (d).

expansion is triggered as the user selects a node with the cursor and until the node

remains selected, i.e. the user clicks down with the mouse and does not release it.

This is analogous to the continuous zooming technique which expands nodes and

magnifies regions of interest. The major difference here being that in this technique

the magnification of a node causes other nodes to contract or decrease in size. The

concept of showing node content as it increases is similar to the idea of semantic

CHAPTER 3. ALGORITHMS 37

zooming [20] where additional information is provided as the user magnifies the

object. This is different than regular zooming which simply magnifies the geometry

of the object. In the following sections I describe the various algorithms developed

for achieving the distortion effect. I first describe the data structures that were

necessary for the algorithms.

3.2 Data Structure

Each displayable item in the TreeMap is represented as a node in the tree. The

algorithm for displaying a TreeMap is well-known and described in [21]. Each node

must contain enough information so that it can be redrawn as needed. In addi-

tion, each node must contain additional information, which will enable detection of

neighbours and proper distortion of nodes.

We define a node to contain the following information:

• size (weight): indicates the size of a node. For a data file, this may be the

size of a file. For a directory, this may be the cumulative size of all the files

contained within it.

• width, height : the width and height of the node when it is drawn on the

screen. These values are computed based on its size and the size of its parent

CHAPTER 3. ALGORITHMS 38

node.

• amount : the increment of distortion for each step.

• orientation: this field determines whether the node is displayed horizontally

or vertically with respect to its siblings in the TreeMap. Nodes at the same

level have the same orientation, and the orientation alternates between levels

of the TreeMap.

• parent : this field is a pointer to the parent node.

• prevSibling, nextSibling : these are pointers to the node’s previous and next

siblings. A node’s previous sibling is the sibling that is drawn to the left of it,

if the orientation is horizontal and is the sibling that is drawn above it, if the

orientation is vertical. A node’s next sibling is the sibling that is drawn to

the right of it, if the orientation is horizontal and is the sibling that is drawn

below it, if the orientation is vertical.

• children: this is an array of pointers to each of its children.

• leftNeighbour : this pointer is set to its left sibling (in the TreeMap) which

contains the node of interest, if this is the ”right-neighbour” of the node of

interest. Otherwise it is set to NULL. The rightNeighbour, topNeighbour,

bottomNeighbour member variables are defined in a similar manner. This

CHAPTER 3. ALGORITHMS 39

variable is described in more detail in the next section.

In addition to the data structure for a node, there are several other important

data items in the distortion algorithm. The root of the tree is denoted by ROOT.

The constant MIN SIZE will denote the smallest width or height that a node can

shrink to. The constant MAX SIZE denotes the largest width or height that a

node can grow to. Finally, we have four global variables gLeftNeighbour, gRight-

Neighbour, gTopNeighbour, gBottomNeighbour which denote the left, right, top and

bottom neighbours of the node of interest. These four variables represent the nodes

that will shrink to make room for the node of interest.

3.3 Computing Neighbours

When a node A has been selected as the ”node of interest”, that is, the node that is

to be distorted, the first step of the distortion process is to compute the neighbours

of A. A neighbour of a node A is any other node B such that:

1. A and B have overlapping borders in the TreeMap,

2. B is not an ancestor of A, and

3. B is as near the root node as possible.

CHAPTER 3. ALGORITHMS 40

Suppose A has a left-neighbour B; that is, B is a neighbour of A where B’s right

border and A’s left border intersect. Furthermore, suppose C is some other node

where C’s right border and A’s left border intersect and C is not an ancestor of A.

Then, by the above definition, it can easily be seen C must be an ancestor of B.

This is similarly true for the right-neighbour, top-neighbour and bottom-neighbour

of A, which are defined similarly as left-neighbour. Thus, using this definition,

any node A has at most one left-neighbour, right-neighbour, top-neighbour, and

bottom-neighbour.

Suppose that B is the left-neighbour of A, it is useful to keep track of the

ancestor C of A such that B and C are at the same level in the tree, which is stored

in B.rightNeighbour. Clearly, B and C are siblings. This information is useful when

applying the distortion algorithm, which is explained below. It is easy to see that

C must be B.nextSibling. Note that it is possible for A and B to be at the same

level, in which case C is A, as B.nextSibling is A. Similarly, we can define the right-

neighbour, top-neighbour and bottom-neighbour. It should be noted that the four

neighbours of a node A must be distinct and it is possible for node A to not have

a neighbour.

CHAPTER 3. ALGORITHMS 41

3.3.1 Compute Left Neighbour

Algorithm 1 computes the left-neighbour of a node A. Since the left-neighbour of

A is to the left of A, we check to see if A.PrevSibling is NULL only when the

orientation is horizontal.

Algorithm 1 ComputeLeftNeighbour(A)

if A 6= ROOT then

if A.orientation = HORIZ and A.PrevSibling 6= NULL then

LeftNeighbour ← A.PrevSibling

LeftNeighbour.RightNeighbour ← A

return(LeftNeighbour)

else

return(ComputeLeftNeighbour(A.parent))

end if

else

LeftNeighbour ← NULL

return(LeftNeighbour)

end if

When ComputeLeftNeighbour is called with the ”node of interest”, say A, the

algorithm will determine its left-neighbour B such that A’s left border intersects B’s

right border. The routine will return B, and B.RightNeighbour is set to B.NextSibling,

which is A, if A and B are at the same level, or else an ancestor of A.

CHAPTER 3. ALGORITHMS 42

3.3.2 Compute Right Neighbour

Algorithm 2 computes the right-neighbour of a node A. Since the right-neighbour

of A is to the right of A, we check to see if A.NextSibling is NULL only when the

orientation is horizontal.

Algorithm 2 ComputeRightNeighbour(A)

if A 6= ROOT then

if A.orientation = HORIZ and A.NextSibling 6= NULL then

RightNeighbour ← A.NextSibling

LeftNeighbour.RightNeighbour ← A

return(RightNeighbour)

else

return(ComputeRightNeighbour(A.parent))

end if

else

RightNeighbour ← NULL

return(RightNeighbour)

end if

When ComputeRightNeighbour is called with the node A, the algorithm will

determine its right-neighbour B such that A’s right border intersects B’s left border.

The routine will return B, and B.LeftNeighbour is set to B.PrevSibling, which is A,

if A and B are at the same level, or else an ancestor of A.

CHAPTER 3. ALGORITHMS 43

3.3.3 Compute Top Neighbour

Algorithm 3 computes the top-neighbour of a node A. Since the top-neighbour of

A is to the left of A in the tree structure, we check to see if A.PrevSibling is NULL

only when the orientation is vertical.

Algorithm 3 ComputeTopNeighbour(A)

if A 6= ROOT then

if A.orientation = V ERT and A.PrevSibling 6= NULL then

TopNeighbour ← A.PrevSibling

TopNeighbour.BottomNeighbour ← A

return(TopNeighbour)

else

return(ComputeTopNeighbour(A.parent))

end if

else

TopNeighbour ← NULL

return(TopNeighbour)

end if

When ComputeTopNeighbour is called with the node A, the algorithm will de-

termine its top-neighbour B such that A’s top border intersects B’s bottom border.

The routine will return B, and B.BottomNeighbour is set to B.NextSibling, which

is A, if A and B are at the same level, or else an ancestor of A.

CHAPTER 3. ALGORITHMS 44

3.3.4 Compute Bottom Neighbour

Algorithm 4 computes the bottom-neighbour of a node A. Since the bottom-neighbour

of A is to the right of A in the tree structure, we check to see if A.NextSibling is

NULL only when the orientation is vertical.

Algorithm 4 ComputeBottomNeighbour(A)

if A 6= ROOT then

if A.orientation = V ERT and A.NextSibling 6= NULL then

BottomNeighbour ← A.NextSibling

BottomNeighbour.TopNeighbour ← A

return(BottomNeighbour)

else

return(ComputeTopNeighbour(A.parent))

end if

else

BottomNeighbour ← NULL

return(BottomNeighbour)

end if

When ComputeTopNeighbour is called with the node A, the algorithm will de-

termine its bottom-neighbour B such that A’s bottom border intersects B’s top

border. The routine will return B, and B.TopNeighbour is set to B.PrevSibling,

which is A, if A and B are at the same level, or else an ancestor of A.

CHAPTER 3. ALGORITHMS 45

3.4 Changing Node Size

When the size of a node is modified, this needs to be propagated to all its children.

All children nodes change their size according to the original proportion. The

recursive propagation algorithm is described in algorithm 5.

Algorithm 5 ChangeNodeSize(A, δ)

n ← number of children of A

oldsize ← A.size

A.size ← A.size + δ

for i = 0 to n− 1 do

ChangeNodeSize(A.children[i], (oldsize + δ) ∗ A.children[i].size/oldsize)

end for

3.5 Distorting Neighbours

The following algorithm decreases the size of the neighbors on each side of the

target node.

3.5.1 Distort Left Neighbour

Algorithm 6 decreases the size of the left-neighbour of the node of interest. This

left-neighbour is given by gLeftNeighbour and initially computed by ComputeLeft-

Neighbour. The algorithm decreases the size of the left-neighbour by amount and

CHAPTER 3. ALGORITHMS 46

increases gLeftNeighbour.RightNeighbour by the same amount. This ensures that

the overall size of the TreeMap is not changed, and the node of interest’s size, which

is a descendent of gLeftNeighbour.RightNeighbour, is increased. If node A is in-

Algorithm 6 DistortLeft(amount)

global gLeftNeighbour {Executes on iteration of the distortion algorithm}
if gLeftNeighbour 6= NULL then

if gLeftNeighbour.width > MIN WIDTH then

ChangeNodeSize(gLeftNeighbour,−amount)

ChangeNodeSize(gLeftNeighbour.RightNeighbour, amount)

else

if gLeftNeighbour.PrevSibling 6= NULL then

temp ← gLeftNeighbour.RightNeighbour

gLeftNeighbour ← gLeftNeighbour.PrevSibling

gLeftNeighbour.RightNeighbour ← temp

else

gLeftNeighbour ← ComputeLeftNeighbour(gLeftNeighbour)

end if

end if

end if

fluenced by algorithm 6 such that its width is less than MIN WIDTH (since the

orientation of the node is horizontal), then propagation is applied. This involves

computing the left-neighbour of node A. There are two possible scenarios. If A has

a sibling to the left of it, then this sibling is now the left neighbour of the node of

CHAPTER 3. ALGORITHMS 47

interest. Otherwise, we need to compute the left neighbour of this node A using

the ComputeLeftNeighbour method.

3.5.2 Distort Right Neighbour

Algorithm 7 decreases the size of the right-neighbour of the node of interest.

Algorithm 7 DistortRight(amount)

global gRightNeighbour {Executes on iteration of the distortion algorithm}
if gRightNeighbour 6= NULL then

if gRightNeighbour.width > MIN WIDTH then

ChangeNodeSize(gRightNeighbour,−amount)

ChangeNodeSize(gRightNeighbour.LeftNeighbour, amount)

else

if gRightNeighbour.NextSibling 6= NULL then

temp ← gRightNeighbour.LeftNeighbour

gRightNeighbour ← gRightNeighbour.NextSibling

gRightNeighbour.LeftNeighbour ← temp

else

gRightNeighbour ← ComputeRightNeighbour(gRightNeighbour)

end if

end if

end if

This right-neighbour is given by gRightNeighbour and initially computed by Com-

puteRightNeighbour. The algorithm decreases the size of the right-neighbour by

CHAPTER 3. ALGORITHMS 48

amount and increases gRightNeighbour.LeftNeighbour by the same amount. This

ensures that the overall size of the TreeMap is not changed, and the node of inter-

est’s size, which is a descendent of gRightNeighbour.LeftNeighbour, is increased.

If node A is influenced by algorithm 7 such that its width is less than MIN WIDTH

(since the orientation of the node is horizontal), then propagation is applied. This

involves computing the right-neighbour of node A. There are two possible scenarios.

If A has a sibling to the right of it, then this sibling is now the right neighbour

of the node of interest. Otherwise, we need to compute the right neighbour of the

node A using the ComputeRightNeighbour method.

3.5.3 Distort Top Neighbour

Algorithm 8 decreases the size of the top-neighbour of the node of interest. This

top-neighbour is given by gTopNeighbour and initially computed by ComputeTop-

Neighbour. The algorithm decreases the size of the top-neighbour by amount and

increases gTopNeighbour.BottomNeighbour by the same amount. This ensures that

the overall size of the TreeMap is not changed, and the node of interest’s size, which

is a descendent of gTopNeighbour.BottomNeighbour, is increased.

If node A is influenced by algorithm 8 such that its width is less than MIN HEIGHT

(since the orientation of the node is vertical), then propagation is applied. This

CHAPTER 3. ALGORITHMS 49

involves computing the top-neighbour of node A. There are two possible scenarios.

If A has a sibling to the left of it, then this sibling is now the top neighbour of the

node of interest. Otherwise, we need to compute the top neighbour of this node A

using the ComputeTopNeighbour method.

Algorithm 8 DistortTop(amount)

global gTopNeighbour {Executes on iteration of the distortion algorithm}
if gTopNeighbour 6= NULL then

if gTopNeighbour.height > MIN HEIGHT then

ChangeNodeSize(gTopNeighbour,−amount)

ChangeNodeSize(gTopNeighbour.BottomNeighbour, amount)

else

if gTopNeighbour.PrevSibling 6= NULL then

temp ← gTopNeighbour.BottomNeighbour

gTopNeighbour ← gTopNeighbour.PrevSibling

gTopNeighbour.BottomNeighbour ← temp

else

gTopNeighbour ← ComputeTopNeighbour(gTopNeighbour)

end if

end if

end if

CHAPTER 3. ALGORITHMS 50

3.5.4 Distort Bottom Neighbour

Algorithm 9 decreases the size of the bottom-neighbour of the node of interest. This

bottom-neighbour is given by gBottomNeighbour and initially computed by Com-

puteBottomNeighbour. The algorithm decreases the size of the bottom-neighbour

Algorithm 9 DistortBottom(amount)

global gBottomNeighbour {Executes on iteration of the distortion algorithm}
if gBottomNeighbour 6= NULL then

if gBottomNeighbour.height > MIN HEIGHT then

ChangeNodeSize(gBottomNeighbour,−amount)

ChangeNodeSize(gBottomNeighbour.TopNeighbour, amount)

else

if gBottomNeighbour.NextSibling 6= NULL then

temp ← gBottomNeighbour.TopNeighbour

gBottomNeighbour ← gBottomNeighbour.NextSibling

gBottomNeighbour.TopNeighbour ← temp

else

gBottomNeighbour ← ComputeBottomNeighbour(gBottomNeighbour)

end if

end if

end if

by amount and increases gBottomNeighbour.TopNeighbour by the same amount.

This ensures that the overall size of the TreeMap is not changed, and the node

of interest’s size, which is a descendent of gBottomNeighbour.TopNeighbour, is in-

CHAPTER 3. ALGORITHMS 51

creased.

If node A is influenced by algorithm 9 such that its width is less than MIN HEIGHT

(since the orientation of the node is vertical), then propagation is applied. This

involves computing the bottom-neighbour of node A. There are two possible sce-

narios. If A has a sibling to the right of it, then this sibling is now the bottom

neighbour of the node of interest. Otherwise, we need to compute the bottom

neighbour of this node A using the ComputeBottomNeighbour method.

3.6 Uni-Distortion Algorithm

The distortion algorithm increases the size of a node of interest while shrinking its

neighbours. While the user clicks on the node of interest. The node grows as the

mouse selection is maintained and returns to its original size upon release of the

mouse selection. The contents are revealed gradually as the node grows in size.

Instead of presenting only a subset of the tree during the exploration operation (as

is the case with the drill-down), in this approach the user can continuously select

items from any location in the hierarchy and inspect their contents. Traversing

layers of the hierarchy is thereby removed.

Algorithm 10 describes the final distortion algorithm. It begins by determining

the neighbours of the node of interest, A. Then it decreases each of the sizes of

CHAPTER 3. ALGORITHMS 52

these neighbours of A, while increasing the size of A which provides the distortion

effect. Then the entire TreeMap is redrawn. This process is repeated until an

external event stops the distortion process, or the node of interest being increased

has reached a fixed maximum width or height.

Algorithm 10 DistortAlgorithm(A)

global gLeftNeighbour, gRightNeighbour

global gTopNeighbour, gBottomNeighbour

gLeftNeighbour ← ComputeLeftNeighbour(A)

gRightNeighbour ← ComputeRightNeighbour(A)

gTopNeighbour ← ComputeTopNeighbour(A)

gBottomNeighbour ← ComputeBottomNeighbour(A)

while DISTORTING = true and A.width < MAX SIZE and A.height <

MAX SIZE do

DistortLeft(amount)

DistortRight(amount)

DistortTop(amount)

DistortBottom(amount)

RedrawTreeMap(ROOT)

Sleep(sleep interval)

end while

Figure 3.2 below shows the effect of clicking and releasing a node. The content

appears as the node is being opened and the distortion appears gradually. The next

section describes the multi-distortion algorithm used for showing search results.

CHAPTER 3. ALGORITHMS 53

Figure 3.2: Implementation results of the uni-distortion algorithm. The red arrow indicates

selection (b)-(d) and the green arrow indicates release of the mouse button (e) and (f).

CHAPTER 3. ALGORITHMS 54

3.7 Multi-Distortion Technique

The distortion of the nodes in the TreeMap can also be applied to the represen-

tation of search results. For instance, after viewing the TreeMap representation,

users may typically be interested in searching for items with specific content (for

example, files with certain keywords). Typically this type of interaction will result

in obtaining a set of result items with each item having a degree of importance.

In this case, the distortion technique described earlier will be applied to multiple

nodes simultaneously. The new algorithm is a special case of the general algorithm

described earlier.

Some major differences between the multi-distortion technique and the uni-

distortion technique are as follows. In the multiple distortion algorithm, a target

node cannot become a neighbour of other target nodes, and one node cannot become

a neighbour of two target nodes. Furthermore, additional mappings will be used in

the multiple distortion algorithm. The distortion method has one primary attribute:

the amount of distortion (amplitude). This attribute can be used to distinguish

the levels of significance for each result. Therefore, significance is assigned to the

amplitude of the distortion. For instance, a distortion with a large amplitude can

imply more important content than a distortion with a small amplitude.

The behavior of the multi-distortion algorithm is depicted in figure 3.3. Figure

CHAPTER 3. ALGORITHMS 55

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The behavior of the multi-distortion algorithm. Figure (a) is the original state,

figure (b)-(d) indicate the size of each node increased, figure (e)-(f) indicate the size of each node

decreased. After state (f), the state of TreeMap goes back to (a).

CHAPTER 3. ALGORITHMS 56

3.3 (a) is the initial state of the TreeMap. The highlighted nodes are the search

result nodes which will get distorted. Figure 3.3 (b) to (d) shows that the size of

the nodes increased due to the distortion. The amplitude of the distortion indicates

the priority of the node. Larger amplitude represents higher priority. Figure 3.3

(e) to (f) show that the size of nodes decrease because of the distortion. After state

(f), the TreeMap returns back to state (a).

3.8 Multi-Distortion Algorithm

Algorithm 11 describes the distortion of one node in the multi-distortion technique.

It starts by determining the neighbours of the node of result, A. If the neighbours

are not other result nodes or neighbours of other result nodes, it decreases the size of

these nodes. The size of A increase at the same time to provide the distortion effect.

Then the entire TreeMap is redrawn. This process is repeated until an external

event stops the distortion process or the node has reached a fixed maximum width

or height.

Algorithm 12 describes the final multi-distortion algorithm. A1, A2, ..., An are

search result nodes which should be distorted. Algorithm 11 is applied one by one

on these result nodes to generate multiple distortions.

CHAPTER 3. ALGORITHMS 57

Algorithm 11 OneNodeinMultiDistortAlgorithm(A)

global gLeftNeighbour, gRightNeighbour

global gTopNeighbour, gBottomNeighbour

bool isResult {Whether a node is a search result}
bool isNeighbour {Whether a node is a neighbour of another search result}
gLeftNeighbour ← ComputeLeftNeighbour(A)

gRightNeighbour ← ComputeRightNeighbour(A)

gTopNeighbour ← ComputeTopNeighbour(A)

gBottomNeighbour ← ComputeBottomNeighbour(A)

while DISTORTING = true and A.width < MAX SIZE and A.height <

MAX SIZE do

if not gLeftNeighbour.isResult and not gLeftNeighbour.isNeighbour then

DistortLeft(amount)

end if

if not gRightNeighbour.isResult and not gRightNeighbour.isNeighbour then

DistortRight(amount)

end if

if not gTopNeighbour.isResult and not gTopNeighbour.isNeighbour then

DistortTop(amount)

end if

if not gBottomNeighbour.isResult and not gBottomNeighbour.isNeighbour

then

DistortBottom(amount)

end if

RedrawTreeMap(ROOT)

Sleep(sleep interval)

end while

CHAPTER 3. ALGORITHMS 58

Algorithm 12 MultiDistortAlgorithm(A1, A2, ..., An)

OneNodeinMultiDistortAlgorithm(A1)

OneNodeinMultiDistortAlgorithm(A2)

...

OneNodeinMultiDistortAlgorithm(An)

Figure 3.4 shows the implementation results of multi-distortion algorithm. Fig-

ure 3.4 (a) shows the initial state of the TreeMap. Figure 3.4 (b) shows the TreeMap

being distorted. After the search keywords submitted, all result nodes distort in

different amplitudes according to the relevance to the search keywords. According

to the amplitude of the distortion, users can give an order of each search result.

As shown in figure 3.4 (c), the labels on the nodes indicate the importance level of

each node. The node with a label “1” has the highest importance level. After all

search results are identified, the TreeMap goes back to (a).

CHAPTER 3. ALGORITHMS 59

(a)

(b)

(c)

T

T

T

T

Figure 3.4: Implementation results of the multi-distortion algorithm. (a) is the initial state.

(b) shows the TreeMap is distorting (nodes with a ”T” inside are target nodes). In figure (c),

the labels on the nodes indicate the importance level. After all search results are identified, the

TreeMap goes back to initial state.

Chapter 4

Evaluation

Three experiments were designed to evaluate the effectiveness of the distortion

technique. Experiment 1 evaluate the effectiveness of the distortion technique in

browsing. Experiment 2 evaluates the effectiveness of the distortion technique in

browsing with context. Experiment 3 evaluates the effectiveness of the distortion

technique in representing search results. The following results were anticipated:

4.1 Hypotheses

From the results of the research discussed in Chapter 2, I have formulated the

following hypotheses.

60

CHAPTER 4. EVALUATION 61

• Hypothesis 1: Overall, users will locate the contents of interest faster via the

distortion technique versus the drill-down technique.

• Hypothesis 2: In deep hierarchical structures, users will locate the targets

faster via the distortion technique versus the drill-down technique.

• Hypothesis 3: In the distortion technique, performance will not differ between

deep and wide hierarchies.

• Hypothesis 4: The distortion technique will allow users to maintain relation-

ships among various areas of a TreeMap more efficiently than the drill-down

technique.

• Hypothesis 5: With small results set (number of results ≤ 5), users will iden-

tify all search results faster via the distortion technique versus the highlight

technique.

• Hypothesis 6: With small results set (number of results ≤ 5), users will

identify all search results more accurately via the distortion technique versus

the highlight technique.

• Hypothesis 7: With large results set (5 < number of results ≤ 10) using the

highlight technique, users can identify all search results faster than with the

distortion technique.

CHAPTER 4. EVALUATION 62

• Hypothesis 8: With large results set (5 < number of results ≤ 10) using the

highlight technique, users can identify all search results more accurately than

with the distortion technique.

4.2 Experiment One - Browsing

Experiment 1 was designed to compare the Drill-Down method (conventional brows-

ing approach) to the Distortion method for locating specific content (pictures) in

the TreeMap. In this experiment subjects were required to locate specific images,

but alternatively I could have asked subjects to locate text file or any other type

of data.

4.2.1 Method

Subjects

Twenty undergraduate students participated in the experiment and were assigned

to one of the two conditions: Distortion first or Drill-Down first. Subjects were

volunteers from a computer science course in human-computer interaction. All

were familiar with the concept of file and directory structures and had reasonable

experience performing standard file management routines. None had any previous

CHAPTER 4. EVALUATION 63

experience with the TreeMap although they were familiar with space-filling concepts

and the TreeMap representation.

Materials

Two different types of hierarchy were used for the experiment: deep and wide.

The deep hierarchy was constructed using six levels, with a maximum of three

sub-directories per node. The wide hierarchy was created with a depth of three

levels, and each node contained a maximum of six sub-directories. Both types of

hierarchies, deep and wide, contained thirty different pictures each and more than

three hundred files of various other types. To reduce learning effects, I used two

sets of hierarchies (Set A and Set B) which were created with the same hierarchical

structures but entirely different images and files. Half the participants started

the experiment with the Drill-Down method and the other half started using the

Distortion method. After completing the tasks in one set of hierarchies with one

method, the participants switched onto the other set of hierarchies with the other

method. All tasks in the experiment required that subjects locate a specific picture

in the TreeMap.

Participants performed the experiment on a 17” monitor with a 1024×768 res-

olution. The prototype ran over Windows XP. The task was described to them

before they began running the trials.

CHAPTER 4. EVALUATION 64

Procedure

Before starting the experiment, each subject got familiarized with both browsing

techniques. The experiment started when the participant indicated that he or she

was comfortable using the tool and its interface.

In each task, I randomly chose one picture as a target picture from all thirty

pictures in a hierarchy, and displayed the target picture to the participant in a

window outside of the TreeMap. Half of the image files used as targets were small

and occupied only a small fraction of space on the display. The other half of the

image files are bigger. The subject was required to browse the hierarchy until

he/she located the target image in the TreeMap. The target image was available

throughout the task. Figure 4.1 shows the interface used in experiment 1.

Each participant performed 3 trials with wide hierarchies and 3 trials with

deep hierarchies in the following sequence W1, D1, W2, D2, W3, and D3, where

W represents the wide hierarchies and D represents the deep hierarchies. The

participant was free to end the trial if they could not locate the specified picture.

A time limit was not imposed for this task. I recorded whether the participant

located the correct target, whether the participant withdrew from the task, and

the time to execute the task in all conditions. In summary, the whole experiment

involved: 20 participants × 2 main conditions × 2 types of hierarchies × 3 trials =

CHAPTER 4. EVALUATION 65

TreeMapImage to locate

Figure 4.1: Interface used in experiment 1. When users click a node, the content of the node is

shown (if the node is a picture file). Users are required to browse the TreeMap until he/she finds

the target picture.

240 trials in total.

4.2.2 Results and Discussion

To test the first three hypotheses, I measured subjects’ performance on the given

task with respect to time until completion. I recorded the average response for

locating the target. Of 240 trials to locate the target, 13 attempts were incomplete.

CHAPTER 4. EVALUATION 66

Of these 13 attempts to locate the target, 9 attempts resulted in giving up on the

task. All 13 incomplete/give-up results were excluded from the data analysis.

The results are summarized in Table 4.1 (The detailed result of the analysis is

in Appendix II). Average completion times were not consistent with the normality

assumptions in both datasets (distortion or drill-down). The analysis was therefore

performed on the log transform of the recorded performance times. The time to

locate target data were analyzed by means of a 2 × 2 (Type of Method × Hierarchi-

cal Structure) one-way analysis of variance (ANOVA), with both Type of Method

(Drill-Down vs. Distortion) and Hierarchical Structure (Deep vs. Wide) serving as

repeated measures. An alpha level of 0.05 was used for all statistical tests. Type of

Method was found to be significant (F(1, 19) = 50.70, p < 0.001) with the Distor-

tion method group’s mean task time (28.79 sec) being faster than the Drill-Down

method group’s (56.06 sec). The main effect for Hierarchical Structure was not

statistically significant (F(1, 19)=1.74,p = 0.20). However, a significant interaction

effect was found between Type of Method and Hierarchical Structure, F(1, 19) =

5.10, p = 0.036.

In conjunction with the means, it is clear that participants completed the task

faster overall with the Distortion method vs. the Drill-Down method, regardless

of conditions of Hierarchical Structure; this supports the first hypothesis. The

CHAPTER 4. EVALUATION 67

Wide Deep

Distortion 31.06 (12.68) sec 26.51 (13.02) sec

Drill-Down 47.63 (20.97) sec 64.48 (29.69) sec

Table 4.1: Average completion times for wide and deep hierarchies with both methods (standard

deviations are in parentheses).

significant interaction tells us that the effect of Type of Method depends on the

level of Hierarchical Structure. The simple effect of Method for the wide hierarchical

structure clearly indicates that a faster mean task time is achieved via the Distortion

method than the Drill-Down method (31.06 seconds vs. 47.63 seconds). The simple

effect of Method for the deep hierarchy is more pronounced (26.51 seconds vs. 64.48

seconds). The 95% confidence intervals for the simple effects of Method at both

levels of Hierarchical Structure are significantly different. Taken together with the

significant main effect found for Type of Method, there is strong support for the

second hypothesis, i.e. the Distortion Method will be faster than the Drill-Down

Method, especially in deep trees.

A close observation of mean completion times for the distortion technique re-

veals that on average subjects are faster with deep hierarchies than with wide

hierarchies. A paired sample T-Test shows this difference in means to be non-

significant (T(1,19)=1.412, p=0.174), supporting hypothesis 3, i.e. subjects will

CHAPTER 4. EVALUATION 68

perform equally well on deep and wide hierarchies with the distortion technique.

We did not observe any differences in mean completion times for targets occu-

pying a fraction of the display space. However, in certain cases we observed that

participants ignored potential targets if these occupied a small amount of space.

Less than 3.75% of the total number of trials consisted of participants missing small

targets. In hierarchies with over thousand nodes this could potentially affect the

performance of the distortion technique. A possible solution to alleviate this prob-

lem would consist of combining the drill-down to open a node (which increases the

reserved space) followed by distortions.

The results of the first experiment suggest that the distortion technique is a

better alternative than the conventional drill-down interaction used for browsing

content in TreeMaps. However the first experiment does not test whether distortion

facilitates browsing for content within some pre-specified context. Context can

serve as an aid to browsing tasks by allowing the user to view the content of data

in neighboring cells. The second experiment, described below, is designed to test

whether context around a node can be examined more efficiently with the distortion

approach.

CHAPTER 4. EVALUATION 69

4.3 Experiment Two - Browsing with Context

Focus+context techniques are designed with the aim to facilitate navigation or

browsing of elements by presenting in the same view a cluster of items defined as

the context. Experiment 2 was designed to compare the Drill-Down method to the

Distortion method for locating an object within a pre-specified context. Context

is defined as being a set of images spatially and hierarchically related in a certain

configuration. As shown in Figure 4.2, the context for the target (e) is made up of

Figure 4.2: Context of image e (image not shown to participant) consists of images a, b, c, d,

and four other files. Image a is a sibling of the target e, image b is in the sibling subtree of the

target’s parent, and image c is a sibling of the target’s parent. Image d is a sibling to the subtree

containing a, b, c, and e.

CHAPTER 4. EVALUATION 70

four images (a, b, c and d) and four other files. We hypothesize that participants

will locate objects quicker and with fewer errors using the Distortion method over

the Drill-down method in a task requiring context (Hypothesis 4).

4.3.1 Method

Subjects

Twelve graduate students participated in the experiment and were assigned to one

of the two conditions: Distortion first or Drill-Down first. Subjects had a bachelor

degree in either computer science or computer engineering. All were familiar with

the concept of file and directory structures and had reasonable experience perform-

ing standard file management routines. None had any previous experience using

the TreeMap and were not familiar with space-filling concepts.

Materials

As in experiment 1, two different types of hierarchy were used for the experiment:

deep and wide. The deep hierarchy was constructed using six levels, with a max-

imum of three sub-directories per node. The wide hierarchy was created with a

depth of three levels, and each node contained a maximum of six sub-directories.

Participants performed the experiment on a 17” monitor with resolution 1024×768

CHAPTER 4. EVALUATION 71

and ran the prototype over Windows XP. The task was described to them before

they began the trials.

Procedure

Before starting the experiment, each subject got familiarized with both browsing

methods. Once each participant indicated that he or she was comfortable using the

tool and its interface, the experiment started.

The task, defined as the context browsing task, consisted of locating a picture

within a preconfigured context. The target image was not shown to the user as we

wanted the subject to identify the target based on its neighbouring images and their

interrelations. In this experiment, context is defined by the spatial arrangement

and structural relation of objects with respect to the target. Figure 6 is a sample

context for node (e) used in the experiment. This task is similar in concept to the

sub-structure identification task defined in [11]. By defining such a task, subjects

would need to visually maintain the relative positions and relationships between

files while browsing for the target image. Figure 4.3 shows the interface used in

experiment 2.

Each participant performed the task with three different deep hierarchies and

three different wide hierarchies using both methods. Each hierarchy contained

CHAPTER 4. EVALUATION 72

Target Context

TreeMapContext of the

node to locate

Figure 4.3: Interface used in experiment 2. When users click a node, the content of the node is

shown (if the node is a picture file). Users are required to browse the TreeMap until he/she find

the target picture in the specified context.

seven unique contexts, ten pictures and more than three hundred other types of

files. In each task, we randomly chose one context from a hierarchy, and displayed

the context to the participant in a separate window outside of the TreeMap.

Two sets of hierarchies (A and B) were used for reducing learning effects. They

were constructed with similar structure but different sets of images. Half the par-

ticipants started the experiment with the Drill-Down method and the other half

started using the Distortion method. After completing the tasks in one set of hier-

archies with one method, the participants switched onto the other set of hierarchies

CHAPTER 4. EVALUATION 73

with the other method. The participant was given the choice to withdraw from the

task when he or she could not locate the target picture. For each task the subject

was given a maximum time limit of 120 seconds.

I recorded whether the participant located the correct target, whether the par-

ticipant withdrew from the task, whether the participant exceed the time limit,

and the time to execute the task in all cases. In summary, the whole experiment

involved: 12 participants × 2 main conditions × 2 types of hierarchies × 3 trials =

144 trials in total.

4.3.2 Results and Discussion

Context was held constant across all conditions. The time to locate target data

was analyzed by means of a 2 × 2 (Type of Method × Hierarchical Structure)

univariate analysis of variance (ANOVA), with both Type of Method (Drill Down

vs. Distortion) and Hierarchical Structure (3 Nodes Wide vs. 6 Nodes Deep) serving

as repeated measures.

The results are summarized in Table 4.2 (The detailed result of the analysis

is in Appendix II). An alpha level of 0.05 was used for all statistical tests. The

main effect of Type of Method was found to be significant, F(1, 11) = 22.69,

p = 0.01, with the Distortion method group’s mean task time (37.70 seconds)

CHAPTER 4. EVALUATION 74

Wide Deep

Distortion 34.73 (8.38) sec 40.66 (11.16) sec

Drill-Down 53.05 (16.55) sec 59.6 (23.09) sec

Table 4.2: Average completion times for Wide and Deep hierarchies with both Methods (stan-

dard deviations are in parentheses).

being faster than the Drill-Down method group’s (56.33 seconds). The main effect

of Hierarchical Structure was not statistically significant, F(1, 11) = 1.06, p =

0.33. Finally, an interaction effect was not found between Type of Method and

Hierarchical Structure, F(1, 11) = 0.007, p = 0.935.

Out of 144 trials, 12 timeouts were recorded over 6 participants. All 12 timeouts

were observed when subjects were interacting with the Drill-Down technique. From

the 12 timeouts, 10 were reported on the Deep hierarchy. In addition to the 12

timeouts, 3 out of the 144 trials were giveups. All three trials were on the distortion

technique. Similarly, only 2 out of 144 trials were recorded as incorrectly found,

one on the Distortion and the other on the Drill-Down technique.

These results support the hypothesis in that participants will perform better

in a context browsing task with the Distortion method than with the Drill-Down

approach. The context browsing task assesses the participants’ ability to maintain

relations between elements in the structure. In the Distortion approach this is fa-

CHAPTER 4. EVALUATION 75

cilitated as the user, upon opening nodes, can inspect them and decide whether the

appropriate relations exist. In the Drill-Down approach participants are required

to drill-down and roll-up over several iterations to assess the existence of such re-

lationships. In the Drill-Down approached we observed that in many cases nodes

that were previously visited would be visited over again to confirm their content.

We believe this is one factor that caused the degradation in performance with the

Drill-Down technique.

Results from experiments 1 and 2 provide evidence that distortion can be used

to efficiently browse node content in hierarchies visualized as space-filling repre-

sentations. Experiment 3 was designed to test the effectiveness of distortion as a

method for identifying search results. For distortion to be effective, users will have

to locate search results quicker and also be able to identify which results are more

relevant. Both criteria were tested in the experiment described next.

4.4 Experiment Three - Search Results Repre-

sentation

Experiment 3 was designed to compare the Distortion technique to the conventional

method of showing search results (highlight) to indicate the level of importance of

CHAPTER 4. EVALUATION 76

multiple search results in the TreeMap. Importance level can be defined by how

often search keywords occur in a node, or whether all search keywords occur in

a node, etc. Importance levels in the distortion technique is mapped onto the

amplitude of distortion, ie. the larger the amplitude, the higher the importance.

In the highlight approach importance level is indicated by the level of saturation.

The more saturated the node, the higher the importance.

4.4.1 Method

Subjects

Twelve graduate students participated in this experiment. Half of the subjects

were assigned to one condition: Distortion first, and half of them were assigned

to the other condition: Highlight first. Subjects were from the computer science

department and engineering department and were familiar with the concept of

searching in windows file systems and searching on the Internet. All subjects were

familiar with the highlight technique and the TreeMap, but none had any experience

using distortion to represent search results in the TreeMap.

CHAPTER 4. EVALUATION 77

Materials

One hierarchy containing one thousand files was used for this experiment. Two

different types of search keywords were used for the experiment: long and short.

Using the short search keywords, the search would generate 3, 4, or 5 search results

(small set). Using the long search keywords, the search would generate 6, 8, or 10

search results (large set). Six short search keywords and six long search keywords

were used in the experiment. To reduce learning effects, I used two sets of search

keywords (Set A and Set B) which would generate the same numbers of search

results but in entirely different positions. Half the subjects started the experiment

with the Distortion method and the other half started with the Highlight method.

After completing the tasks using one set of keywords, the subjects switched to use

the other set of keywords with the other method.

This experiment consisted of two types of representations: distortion and high-

light. In the distortion method, all search results were animated in and out using

distortions until the subjects identified all results or the subjects withdrew from

the task. The amplitude of the distortion represented the importance level of each

result. A result with larger amplitude has a higher importance level. In the high-

light method, all search results were filled by a color. Subjects were required to

identify all the results or could withdraw from the task. The saturation of the color

CHAPTER 4. EVALUATION 78

represented the importance level of the result. A result with higher saturation has

a higher importance level.

Participants performed the experiment on a 19” monitor with resolution 1024×768

and ran the prototype over Windows XP. The task was described to them before

they began the trails.

Procedure

Before starting the experiment, each subject got familiarized with both represen-

tations. Once each participant indicated that he or she was comfortable using the

tool and was familiar with the interface, the experiment started.

Each participant performed the tasks with six different short keywords and six

different long keywords using both methods. The 12 trials were executed in the

following sequence S1, S2, S3, ..., S6, L1, L2, L3, ..., and L6, where S represents

the small sets of search results and L represents the large sets of search results.

No time limit was set for this task, and the subjects were free to finish the trial

if they could not identify all search results. Figure 4.4 shows the interface used in

experiment 3.

I recorded the time to execute the task, the number of results identified by the

subjects, and whether the subject identified the correct importance level for each

CHAPTER 4. EVALUATION 79

(a) (b)

Keywords TreeMaps

Figure 4.4: Interface used in experiment 3. When users click a node, an number is shown as the

order of the users’ click (if the node is a search result). Users are required to identify all search

results. (a) is using the distortion method, (b) is using the highlight method.

search result in all conditions. In summary, the whole experiment involved: 12

subjects × 2 main conditions × 2 type of search result sets × 6 trials = 288 trials

in total.

4.4.2 Results and Discussion

To test hypotheses 5, 6, 7, and 8 mentioned at the beginning of this section, I

recorded the time it took the participants to select the items that are in the search

set. The participants selected the items in order of importance (from most impor-

tant to least important). Accuracy in selecting the order of importance was also

CHAPTER 4. EVALUATION 80

Small Set Large Set

Distortion 5.01 (1.47) sec 7.06 (2.83) sec

Highlight 2.43 (0.66) sec 3.30 (1.11) sec

Table 4.3: Average completion times for small and large result sets with both methods (standard

deviations are in parentheses).

recorded, i.e. to get a perfect score the participant would need to select the items

from most important to least important in the correct order.

Time to locate search items and accuracy in determining the correct order of im-

portance were analyzed using a repeated measure univariate ANOVA and a paired-

sample T Test (The detailed result of the analysis is in Appendix II). The results are

summarized in Tables 4.3 and 4.4. An alpha level of 0.05 was used for all statistical

tests. The main effect of representation type on time to complete the task and the

main effect of representation type on accuracy were significant, F(1, 11) = 44.61,

p < 0.001 and F(1, 11) = 19.25, p = 0.001 respectively. Participants performed

significantly faster and more accurately when the search results were highlighted

than when they presented using distortion.

The main effect of the size of the search result on time to complete the task was

significant, F(1, 11) = 11.68, p < 0.001. Participants performed significantly faster

when they were presented with a small set of search results (less than five items in

CHAPTER 4. EVALUATION 81

Small Set Large Set

Distortion 4.48% 7.42%

Highlight 3.49% 2.65%

Table 4.4: Average error rate for small and large result set with both methods.

the result set) than when they were presented a large set of results. However, the

main effect of the size of the search result on accuracy was not significant F(1, 11)

= 3.63, p = 0.083.

The participants completed the tasks faster when the search results where high-

lighted vs. distorted in a small result set (T(1, 11)=6.88, p < 0.001). This does not

support Hypothesis 5 (H5). However, The analysis also suggests that participants

were not less accurate in identifying the importance order of items in the result set

with the distortion technique than with the highlight representation in the small

result set (T(1, 11)=1.16, p = 0.27). This does not support with Hypothesis 6

(H6). In the large result set participants performed the task significantly faster

and were more accurate when the results were highlighted than when they were

distorted (T(1, 11)=5.27, p < 0.001 and T(1, 11)=7.06, p < 0.001, respectively).

This is a support of hypotheses 7 and 8.

In general I observe that distorting multiple nodes simultaneously does not

provide any benefit to locating items in the TreeMap. The motivation in using an-

CHAPTER 4. EVALUATION 82

imated distortions was to allow small nodes, that are not clearly visible, to become

visible. However, the results do not indicate a clear advantage. One possible reason

for poor performance with the animated distortion is the amount of distortion that

results from this technique. Furthermore, having nodes distort at different levels

of amplitude may not enhance focus and user concentration. The distortion might

only be beneficial when one node or a few nodes (less than 3 nodes) need to be in

focus.

Chapter 5

Conclusion and Future Work

Interaction is necessary for leveraging the power of visualization systems. With-

out interaction the visualization may only convey partially the information being

represented. As the structures being visualized grow in size, the interaction with

the visualization becomes more complex. A common representation technique for

displaying large hierarchies is the TreeMap. In this visualization the hierarchy oc-

cupies the entire display space and parent-child relationships are presented using

nested relationships. The conventional method of interacting with or browsing the

TreeMap consists of drilling-down and rolling-up through successive layers of the

hierarchy. The disadvantage of drill-down and roll-up operations is the amount of

time it takes the user to reach leaf nodes of the hierarchy, where content typically

83

CHAPTER 5. CONCLUSION AND FUTURE WORK 84

resides. Furthermore, drill-down and roll-up operations do not allow the user to

maintain context of the entire hierarchy.

In this thesis I introduce a new interaction technique that facilitates brows-

ing of elements represented in the common space-filling representation known as

the TreeMap. This interaction technique is based on continuous zooming tech-

niques [20] and uses distortion to allow users to inspect the content of nodes with-

out opening successive layers of the hierarchy. I implemented the algorithms for

single node and multiple node distortions (uni-distortion and multi-distortion, re-

spectively). The uni-distortion technique assists in the task of browsing, in which

the user is locating specific content and is interested in viewing nodes one at a time.

The multi-distortion technique simultaneously distorts several nodes and produces

an animated effect. It was anticipated that such a technique would assist users

in locating different items in the hierarchical structure such as when performing

a search. The conventional TreeMap algorithm was used as the starting point for

drawing the hierarchy, which I extended to implement the distortion algorithms.

Three experiments were conducted to evaluate the effectiveness of the distortion

techniques for the TreeMap. In the first experiment, the distortion technique was

compared to the drill-down approach which is the conventional method of browsing

the TreeMap. The results of the first experiment suggest that subjects are faster

CHAPTER 5. CONCLUSION AND FUTURE WORK 85

at browsing and locating objects of interest in the distortion technique. The effect

is more pronounced when the hierarchy is several layers deep. The main reason

that users perform better at the distortion technique is due to the fact that in the

drill-down approach the user has to drill-down and roll-up during several iterations

until the node is found. In the distortion technique, the user has access to leaf

nodes from the top-most view of the hierarchy. As anticipated, the results show

that performance with the distortion technique is unaffected by the depth of the

hierarchy. However, when nodes are very small, the distortion technique may not

facilitate the browsing task. The results of this experiment show that a small

percentage of nodes were not inspected in the distortion technique due to their

limited display size. A solution to this drawback could be to combine both he drill-

down and the distortion technique into one interaction mode, where the drill-down

is first applied and then the distortion, once the node becomes clearly visible.

In the second experiment, participants were required to locate a sub-structure

of the hierarchy. The sub-structure was identifiable by the number of nodes it

contained, their relative parent-child and sibling-sibling relationships, and by their

content. By browsing the hierarchy to identify the appropriate nodes and their

contents, users were required to locate one node within the sub-structure. This task,

referred to as the context browsing task, was designed to evaluate the effectiveness

of the distortion technique for its ability in assisting users to maintain context while

CHAPTER 5. CONCLUSION AND FUTURE WORK 86

browsing the hierarchy. The results show that participants were quicker in locating

the objects with the distortion method than with the drill-down approach. The

results of the first two experiments corroborate with those of [20] in suggesting

that interactive techniques employing variations of continuous semantic zooming

operations are an enhancement to full zoom approaches (such as drill-down) under

certain conditions.

Finally, the third experiment evaluated the effectiveness of the multi-distortion

technique for assisting users to identify search result sets and the level of importance

for result items in search results. The results of this experiment suggest that the

multi-distortion technique is not as effective as simple highlighting for showing

search result sets. This is primarily due to the high level of distractibility created

by the animations from the multi-distortion technique. An alternative to displaying

the distortions simultaneously would have been to show them in series starting from

the most important to the least important. This would have allowed users to locate

nodes that would have not been visible otherwise but still provide a fair indication

of items in the tree.

CHAPTER 5. CONCLUSION AND FUTURE WORK 87

5.1 Contributions

This thesis offers several contributions to the area of information visualization.

These include:

• the uni-distortion and multi-distortion algorithms. Researchers in the past

have indicated having difficulty designing the distortion algorithms on the

TreeMap due to the level of instability that could result from distributing the

weights of nodes in the hierarchy [24] The algorithms designed in this thesis

are highly stable and robust under user interaction.

• the second contribution is the series of evaluation and their results. Typically,

very few systems in information visualization undergo the process of controlled

experiments. In this case, the technique could have been easily evaluated

since the TreeMap was created with conventional browsing techniques which

assisted as controls for the experiment.

• a final contribution is the context browsing task for testing the interaction’s

capacity for allowing focus+context browsing.

CHAPTER 5. CONCLUSION AND FUTURE WORK 88

5.2 Future Work

I conclude by proposing several lines of research and applications of the distortion

technique for future endeavors. The first line of work could investigate the applica-

tion of the distortion technique to current file browsing systems. Recent work has

shown progress in this area [15], and the distortion technique may prove beneficial

in such systems. Prototypes are necessary in order to establish the best mode of

interaction for such systems.

The TreeMap can be universally used for browsing many forms of hierarchies

and on different platforms. One platform that can take advantage of the TreeMap

and the distortion methods introduced in this thesis is handheld systems, such as

PDAs. Due to the physical characteristics and limitations of handheld devices,

PDAs do not have large display spaces. For multi-tasking systems where users

have to switch between windows frequently, the distortion technique may provide

a good alternative. Multiple windows could reside in the TreeMap and users can

simply distort the nodes for opening those windows most required. For example,

in figure 5.1, users of the PDA need to compare two pictures and read a comment

of one picture simultaneously. In this case, the users can click on the picture to

enlarge it while reading the comments of the picture. The user also can enlarge

these two pictures to compare them in detail. The users can also open more files if

CHAPTER 5. CONCLUSION AND FUTURE WORK 89

Figure 5.1: Distortion of TreeMap on a PDA. (a) shows the initial state, in which a user can get

previews of pictures. In (b), the user opens a picture to get detail information. In (c), the user

can read the description of the picture without switching window or running another application.

In (d), the user can open another picture to compare them. The user can switch quickly between

pictures and descriptions.

CHAPTER 5. CONCLUSION AND FUTURE WORK 90

they need to execute more tasks.

Finally, the distortion technique may be applicable for viewing web pages that

are classified hierarchically. The central question then would consist of determining

whether the distortion technique, which allows focus+context interaction facilitate

web browsing while reducing the amount of disorientation that typically results

from browsing multiple pages in a given browsing session.

All of the above lines of research would necessitate further implementation on

the distortion technique and well-designed studies to evaluate the effectiveness of

the resulting systems.

Bibliography

[1] K. Andrews and H. Heidegger. Information slices: Visualising and exploring

large hierarchies using cascading, semi-circular discs. In INFOVIS, pages 9–12,

1998.

[2] B. B. Bederson. Photomesa: A zoomable image browser using quantum

treemaps and bubblemaps. In Proceedings of the ACM Symposium on User

Interface Software and Technology, pages 71–80, 2001.

[3] B. B. Bederson, A. Clamage, M. Czerwinski, and G. G. Robertson. Datelens: A

fisheye calendar interface for PDAs. ACM Transactions on Computer-Human

Interaction, 11(1):90–119, 2004.

[4] B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer, D. Bacon, and G. W. Fur-

nas. Pad++: A zoomable graphical sketchpad for exploring alternate interface

physics. Journal of Visual Languages and Computing, 7(1):3–32, 1996.

91

BIBLIOGRAPHY 92

[5] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-

tum treemaps: Making effective use of 2d space to display hierarchies. ACM

Transactions on Graphics, 21(4):833–854, 2002.

[6] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information

Visualization: Using Vision to Think. Morgan Kaufmann Publishers, San

Francisco, CA, 1999.

[7] Y. Fua, M. O. Ward, and E. A. Rundensteiner. Structure-based brushes:

A mechanism for navigating hierarchically organized data and information

spaces. IEEE Transactions on Visual Computing and Graphics, 6(2):150–159,

2000.

[8] G. W. Furnas. Generalized fisheye views. In Proceedings of CHI’86, pages

16–23, 1986.

[9] P. P. Irani. Geon diagrams: a perception based method for visualizing structured

information. PhD thesis, University of New Brunswick, 2002.

[10] P. P. Irani, D. Slonowsky, and P. Shajahan. The effect of shading in extracting

structure from space-filling visualizations. In Information Visualization, Eighth

International Conference, pages 209–216, 2004.

BIBLIOGRAPHY 93

[11] P. P. Irani and C. Ware. Diagramming information structures using 3D percep-

tual primitives. ACM Transactions on Computer-Human Interaction, 10(1):1–

19, 2003.

[12] B. Johnson and B. Shneiderman. Treemaps: A space-filling approach to the vi-

sualization of hierarchical information. In IEEE Visualization ’91 Conference,

pages 284–291, San Diego, Ca, October 1991.

[13] J. Lamping and R. Rao. Laying out and visualizing large trees using a hyper-

bolic space. In ACM Symposium on User Interface Software and Technology,

pages 13–14, 1994.

[14] A. Leuski and J. Allan. Lighthouse: Showing the way to relevant information.

In INFOVIS, pages 125–130, 2000.

[15] M. J. McGuffin, G. Davison, and R. Balakrishnan. Expand-ahead: A space-

filling strategy for browsing trees. INFOVIS, pages 119–126, 2004.

[16] T. Paek, S. Dumais, and R. Logan. Wavelens: a new view onto internet search

results. In CHI 2004, pages 727–734, Vienna, Austria, April 2004.

[17] R. Rao and S. K. Card. Table lens: Merging graphical and symbolic representa-

tions in an interactive focus plus context visualization for tabular information.

In Proceedings of CHI’94, pages 318–322, 1994.

BIBLIOGRAPHY 94

[18] G. G. Robertson, S. K. Card, and J. D. Mackinlay. Information visualization

using 3D interactive animation. Communications of the ACM, 36(4):56–71,

1993.

[19] G.G. Robertson, J.D. MacKinlay, and S.K. Card. Cone trees: Animated 3d

visualizations of hierarchical information. In Proceedings of CHI’91, pages

189–194, 1991.

[20] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, and

M. Roseman. Navigating hierarchically clustered networks through fisheye

and full-zoom methods. ACM Transactions on Computer.-Human Interaction,

3(2):162–188, 1996.

[21] B. Shneiderman. Tree visualization with treemaps: a 2d space-filling approach.

ACM Transactions on Graphics, 11(1):92–99, 1990.

[22] R. Spence. Information Visualization. ACM Press, Pearson Education Lim-

ited, 1st edition, 2001.

[23] J. T. Stasko and E. Zhang. Focus+context display and navigation techniques

for enhancing radial, space-filling hierarchy visualizations. In INFOVIS, 2000.

BIBLIOGRAPHY 95

[24] D. Turo and B. Johnson. Improving the visualization of hierarchies with

TreeMaps: design issues and experimentation. In Proceedings of the 3rd con-

ference on Visualization ’92, pages 124–131, 1992.

[25] J. J. van Wijk and H. van de Wetering. Cushion treemaps: Visualization of

hierarchical information. In INFOVIS, pages 73–78, San Francisco, 1999.

[26] C. Ware and R. Bobrow. Motion to support rapid interactive queries on node-

link diagrams. ACM Transactions on Applied Perception, 1(1):3–18, 2004.

Appendixes

Appendix I TreeMap Algorithm [12]

96

APPENDIXES 97

Appendix II Analysis Results of Experiments 1, 2,

and 3 in SPSS

Experiment 1 - Repated Measures Output

Within-Subjects Factors

Measure: MEASURE_1

distortion_
wide
distortion_
deep
drilldown_
wide
drilldown_
deep

struct
1

2

1

2

tech
1

2

Dependent
Variable

Descriptive Statistics

31.0657 12.67520 20
26.5104 13.02087 20
47.6323 20.96507 20
64.4811 29.68697 20

distortion_wide
distortion_deep
drilldown_wide
drilldown_deep

Mean Std. Deviation N

Tests of Within-Subjects Effects

Measure: MEASURE_1

14871.549 1 14871.549 50.697 .000
14871.549 1.000 14871.549 50.697 .000
14871.549 1.000 14871.549 50.697 .000
14871.549 1.000 14871.549 50.697 .000

5573.463 19 293.340
5573.463 19.000 293.340
5573.463 19.000 293.340
5573.463 19.000 293.340

755.646 1 755.646 1.740 .203
755.646 1.000 755.646 1.740 .203
755.646 1.000 755.646 1.740 .203
755.646 1.000 755.646 1.740 .203

8253.573 19 434.399
8253.573 19.000 434.399
8253.573 19.000 434.399
8253.573 19.000 434.399
2290.682 1 2290.682 5.096 .036
2290.682 1.000 2290.682 5.096 .036
2290.682 1.000 2290.682 5.096 .036
2290.682 1.000 2290.682 5.096 .036
8540.580 19 449.504
8540.580 19.000 449.504
8540.580 19.000 449.504
8540.580 19.000 449.504

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
tech

Error(tech)

struct

Error(struct)

tech * struct

Error(tech*struct)

Type III Sum
of Squares df Mean Square F Sig.

Page 1

Pourang Irani
19

Pourang Irani
50.697

Pourang Irani
1.740

Pourang Irani
1

Pourang Irani
1

Pourang Irani
.000

Pourang Irani
.203

Pourang Irani
19

Pourang Irani
1

Pourang Irani
19

Pourang Irani
5.096

Pourang Irani
.036

General Linear Model

Within-Subjects Factors

Measure: MEASURE_1

dist_small
dist_large
high_small
high_large

size
1
2
1
2

tech
1

2

Dependent
Variable

Descriptive Statistics

5.0099 1.46884 12
7.0649 2.83065 12
2.4342 .65572 12
3.3009 1.10656 12

dist_small
dist_large
high_small
high_large

Mean Std. Deviation N

Tests of Within-Subjects Effects

Measure: MEASURE_1

120.577 1 120.577 44.610 .000
120.577 1.000 120.577 44.610 .000
120.577 1.000 120.577 44.610 .000
120.577 1.000 120.577 44.610 .000

29.732 11 2.703
29.732 11.000 2.703
29.732 11.000 2.703
29.732 11.000 2.703
25.609 1 25.609 11.682 .006
25.609 1.000 25.609 11.682 .006
25.609 1.000 25.609 11.682 .006
25.609 1.000 25.609 11.682 .006
24.114 11 2.192
24.114 11.000 2.192
24.114 11.000 2.192
24.114 11.000 2.192

4.236 1 4.236 3.531 .087
4.236 1.000 4.236 3.531 .087
4.236 1.000 4.236 3.531 .087
4.236 1.000 4.236 3.531 .087

13.196 11 1.200
13.196 11.000 1.200
13.196 11.000 1.200
13.196 11.000 1.200

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
tech

Error(tech)

size

Error(size)

tech * size

Error(tech*size)

Type III Sum
of Squares df Mean Square F Sig.

Page 2

Pourang Irani
1

Pourang Irani
44.610

Pourang Irani
.000

Pourang Irani
11

Pourang Irani
1

Pourang Irani
11

Pourang Irani
11.682

Pourang Irani
.006

Pourang Irani
1

Pourang Irani
11

Pourang Irani
3.531

Pourang Irani
.087

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

120.577 1 120.577 44.610 .000
29.732 11 2.703
25.609 1 25.609 11.682 .006
24.114 11 2.192

4.236 1 4.236 3.531 .087
13.196 11 1.200

size

Linear
Linear
Linear
Linear

tech
Linear
Linear

Linear
Linear

Source
tech
Error(tech)
size
Error(size)
tech * size
Error(tech*size)

Type III Sum
of Squares df Mean Square F Sig.

Profile Plots

21

size

8

7

6

5

4

3

2

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

2
1

tech

Estimated Marginal Means of MEASURE_1

Page 3

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

14871.549 1 14871.549 50.697 .000
5573.463 19 293.340

755.646 1 755.646 1.740 .203
8253.573 19 434.399
2290.682 1 2290.682 5.096 .036
8540.580 19 449.504

struct

Linear
Linear
Linear
Linear

tech
Linear
Linear

Linear
Linear

Source
tech
Error(tech)
struct
Error(struct)
tech * struct
Error(tech*struct)

Type III Sum
of Squares df Mean Square F Sig.

Profile Plots

21

struct

60

50

40

30

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

2
1

tech

Estimated Marginal Means of MEASURE_1

T-Test

Page 4

Paired Samples Statistics

31.6107 20 13.34529 2.98410
26.6458 20 12.94921 2.89553

distortion_wide
distortion_deep

Pair
1

Mean N Std. Deviation
Std. Error

Mean

Paired Samples Correlations

20 .285 .223distortion_wide &
distortion_deep

Pair
1

N Correlation Sig.

Paired Samples Test

4.96483 15.72102 3.51533 -2.39283 12.32250 1.412distortion_wide -
distortion_deep

Pair
1

Mean Std. Deviation
Std. Error

Mean Lower Upper

95% Confidence Interval
of the Difference

Paired Differences

t

Paired Samples Test

19 .174distortion_wide -
distortion_deep

Pair
1

df Sig. (2-tailed)

Page 5

Pourang Irani
1.412

Pourang Irani
.174

Pourang Irani
19

Experiment 2 - Repeated Measures Output

Within-Subjects Factors

Measure: MEASURE_1

dist_wide
dist_deep
dd_wide
dd_deep

struct
1
2
1
2

tech
1

2

Dependent
Variable

Descriptive Statistics

34.7348 8.38170 12
40.6642 11.15545 12
53.0511 16.55274 12
59.6018 23.08924 12

dist_wide
dist_deep
dd_wide
dd_deep

Mean Std. Deviation N

Tests of Within-Subjects Effects

Measure: MEASURE_1

4163.568 1 4163.568 22.689 .001
4163.568 1.000 4163.568 22.689 .001
4163.568 1.000 4163.568 22.689 .001
4163.568 1.000 4163.568 22.689 .001
2018.560 11 183.505
2018.560 11.000 183.505
2018.560 11.000 183.505
2018.560 11.000 183.505

467.263 1 467.263 1.062 .325
467.263 1.000 467.263 1.062 .325
467.263 1.000 467.263 1.062 .325
467.263 1.000 467.263 1.062 .325

4838.107 11 439.828
4838.107 11.000 439.828
4838.107 11.000 439.828
4838.107 11.000 439.828

1.158 1 1.158 .007 .935
1.158 1.000 1.158 .007 .935
1.158 1.000 1.158 .007 .935
1.158 1.000 1.158 .007 .935

1830.850 11 166.441
1830.850 11.000 166.441
1830.850 11.000 166.441
1830.850 11.000 166.441

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
tech

Error(tech)

struct

Error(struct)

tech * struct

Error(tech*struct)

Type III Sum
of Squares df Mean Square F Sig.

Page 6

Pourang Irani
1

Pourang Irani
11

Pourang Irani
1

Pourang Irani
11

Pourang Irani
1

Pourang Irani
11

Pourang Irani
22.689

Pourang Irani
1.062

Pourang Irani
.007

Pourang Irani
.001

Pourang Irani
.325

Pourang Irani
.935

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

4163.568 1 4163.568 22.689 .001
2018.560 11 183.505

467.263 1 467.263 1.062 .325
4838.107 11 439.828

1.158 1 1.158 .007 .935
1830.850 11 166.441

struct

Linear
Linear
Linear
Linear

tech
Linear
Linear

Linear
Linear

Source
tech
Error(tech)
struct
Error(struct)
tech * struct
Error(tech*struct)

Type III Sum
of Squares df Mean Square F Sig.

Profile Plots

21

struct

60

55

50

45

40

35

30

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

2
1

tech

Estimated Marginal Means of MEASURE_1

Page 7

Experiment 3 - General Linear Model

Within-Subjects Factors

Measure: MEASURE_1

dist_small_
error
dist_large_
error
high_small_
error
high_large_
error

size
1

2

1

2

tech
1

2

Dependent
Variable

Descriptive Statistics

.0448 .02403 12

.0742 .01548 12

.0349 .02476 12

.0265 .01846 12

dist_small_error
dist_large_error
high_small_error
high_large_error

Mean Std. Deviation N

Tests of Within-Subjects Effects

Measure: MEASURE_1

.010 1 .010 19.250 .001

.010 1.000 .010 19.250 .001

.010 1.000 .010 19.250 .001

.010 1.000 .010 19.250 .001

.006 11 .001

.006 11.000 .001

.006 11.000 .001

.006 11.000 .001

.001 1 .001 3.628 .083

.001 1.000 .001 3.628 .083

.001 1.000 .001 3.628 .083

.001 1.000 .001 3.628 .083

.004 11 .000

.004 11.000 .000

.004 11.000 .000

.004 11.000 .000

.004 1 .004 21.932 .001

.004 1.000 .004 21.932 .001

.004 1.000 .004 21.932 .001

.004 1.000 .004 21.932 .001

.002 11 .000

.002 11.000 .000

.002 11.000 .000

.002 11.000 .000

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
tech

Error(tech)

size

Error(size)

tech * size

Error(tech*size)

Type III Sum
of Squares df Mean Square F Sig.

Page 8

Pourang Irani
1

Pourang Irani
11

Pourang Irani
1

Pourang Irani
11

Pourang Irani
1

Pourang Irani
11

Pourang Irani
19.250

Pourang Irani
3.628

Pourang Irani
21.932

Pourang Irani
.001

Pourang Irani
.083

Pourang Irani
.001

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.010 1 .010 19.250 .001

.006 11 .001

.001 1 .001 3.628 .083

.004 11 .000

.004 1 .004 21.932 .001

.002 11 .000

size

Linear
Linear
Linear
Linear

tech
Linear
Linear

Linear
Linear

Source
tech
Error(tech)
size
Error(size)
tech * size
Error(tech*size)

Type III Sum
of Squares df Mean Square F Sig.

Profile Plots

21

size

0.08

0.07

0.06

0.05

0.04

0.03

0.02

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

2
1

tech

Estimated Marginal Means of MEASURE_1

Page 9

T-Test

Paired Samples Statistics

5.0099 12 1.46884 .42402
2.4342 12 .65572 .18929
7.0649 12 2.83065 .81714
3.3009 12 1.10656 .31944

.0448 12 .02403 .00694

.0349 12 .02476 .00715

.0742 12 .01548 .00447

.0265 12 .01846 .00533

dist_small_time
high_small_time

Pair
1

dist_large_time
high_large_time

Pair
2

dist_small_err
high_small_err

Pair
3

dist_large_err
high_large_err

Pair
4

Mean N Std. Deviation
Std. Error

Mean

Paired Samples Correlations

12 .469 .124

12 .497 .100

12 .260 .414

12 .055 .864

dist_small_time &
high_small_time

Pair
1

dist_large_time &
high_large_time

Pair
2

dist_small_err &
high_small_err

Pair
3

dist_large_err &
high_large_err

Pair
4

N Correlation Sig.

Paired Samples Test

2.57572 1.29759 .37458 1.75127 3.40016 6.876

3.76403 2.47415 .71423 2.19203 5.33603 5.270

.00995 .02968 .00857 -.00890 .02881 1.162

.04776 .02342 .00676 .03288 .06265 7.064

dist_small_time -
high_small_time

Pair
1

dist_large_time -
high_large_time

Pair
2

dist_small_err -
high_small_err

Pair
3

dist_large_err -
high_large_err

Pair
4

Mean Std. Deviation
Std. Error

Mean Lower Upper

95% Confidence Interval
of the Difference

Paired Differences

t

Page 10

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

Paired Samples Test

11 .000

11 .000

11 .270

11 .000

dist_small_time -
high_small_time

Pair
1

dist_large_time -
high_large_time

Pair
2

dist_small_err -
high_small_err

Pair
3

dist_large_err -
high_large_err

Pair
4

df Sig. (2-tailed)

Page 11

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

Shi Kang
Highlight

