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ABSTRACT 
Many systems provide the user with a limited viewport of a 
larger graphical workspace. In these systems, the user often 
needs to find and select targets that are in the workspace, 
but not visible in the current view. Standard methods for 
navigating to the off-screen targets include scrolling, 
panning, and zooming; however, these are laborious when 
users cannot see a target’s direction or distance. Techniques 
such as halos can provide awareness of targets, but actually 
getting to the target is still slow with standard navigation. 
To improve off-screen target selection, we developed a new 
technique called hop, which combines halos with a 
teleportation mechanism that shows proxies of distant 
objects. Hop provides both awareness of off-screen targets 
and fast navigation to the target context. A study showed 
that users are significantly faster at selecting off-screen 
targets with hopping than with two-level zooming or grab-
and-drag panning, and it is clear that hop will be faster than 
either halos or proxy-based techniques (like drag-and-pop 
or vacuum filtering) by themselves. Hop both improves on 
halo-based navigation and extends the value of proxies to 
small-screen environments. 

Author Keywords 
Navigation, graphical workspaces, off-screen targets, halo, 
vacuum filtering, drag-and-pop, proxy targets. 

ACM Classification Keywords 
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INTRODUCTION 
Designers of visual applications are commonly challenged 
with the task of adequately displaying all the information 
required by users in the available viewing space. As a 
result, many applications – such as map browsers, graphical 
editing programs, or visualization systems – present a 
graphical workspace that is considerably larger than the 
screen. In these systems, only a small subset of the 
information is displayed in the viewport, and a large 
quantity of information resides outside the viewing region.  

This situation can exist for any size display, but it affects 
small-screen devices such as handhelds and PDAs more 
strongly (Figure 1). As display space is reduced, even small 
visual datasets will be partly located outside the view. For 
these devices, techniques are required for retrieving, 
inspecting, and manipulating off-screen content. 

 
Figure 1. Large visual workspace with several candidate 
targets (R=Restaurants; M=Metro Stations), with PDA 

viewport superimposed.  

On most platforms, zooming, panning, and scrolling are the 
most common navigation tools available for accessing off-
screen content. However, these techniques often require 
considerable navigational effort from the user [20]. 
Interactive focus+context and overview+detail views, such 
as fisheye or radar views, have also been considered as 
ways to facilitate the presentation of large content on small 
displays [22, 24]. While these techniques adjust the 
presentation and layout of large information spaces for 
limited viewports, they introduce additional interactive and 
cognitive costs (e.g., [10]). 

For the task of selecting off-screen targets, no current 
method is able to satisfy all of the following design goals: 
• off-screen object awareness: users should be able to 

stay aware of the presence and locations of potential 
targets that are off-screen; 
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• minimal navigation: users should be able to move to 
off-screen targets without much more effort than what 
is required for on-screen objects; 

• context visibility: users should be able to determine and 
make use of the environment surrounding a target;  

• full-scale view: users should be able to see potential 
targets in enough detail to determine if they are 
important. 

To better address the problem of selecting off-screen 
targets, we designed and evaluated a new technique, called 
hop (from ‘halo+proxy’). Hop uses object halos to provide 
awareness of off-screen targets [1], a proxy technique to 
bring targets close to the user’s cursor [2, 6], and a 
teleportation mechanism to transport the user to the location 
and context of the target. To test the effectiveness of hop, 
we carried out an experiment that compared the 
performance of hopping with zooming and panning in an 
off-screen targeting task. The study showed that hopping is 
significantly and substantially faster than either two-level 
zooming or grab-and-drag panning. Hop demonstrates 
again that halos are valuable, and also shows that proxy-
based selection techniques can be successfully used in 
small-screen environments. 

In the following sections we review related literature in 
visual workspaces and selection techniques, describe the 
design of hop in more detail, and report on the methods and 
results of the study. We then consider ways that hop can be 
used to improve current systems, and discuss the underlying 
reasons for hop’s success.  

RELATED WORK 
Several areas of previous work are relevant to the new 
technique: 2D navigation methods, visualization methods 
for off-screen objects, and proxy and portal methods for 
accessing distant objects. 

2D Navigation Methods 

Scrolling, Panning, Zooming 
Most mainstream applications allow users to scroll, pan or 
zoom to view off-screen content. To see off-screen content, 
scrolling interfaces provide widgets such as scroll bars or 
scroll-rings [19, 25]; however, scrolling still requires 
considerable effort to get to off-screen locations. Several 
improvements to basic scrolling have been studied, 
including integration of scrolling into physical devices such 
as keyboards and mice [12, 28], rate-based scrolling [28] 
that maps the displacement of an input device to the 
scrolling velocity [12], and speed-dependent automatic 
zooming (SDAZ) [14] to reduce the motion-blur 
encountered at high scroll speeds [14, 9]. All scrolling 
interfaces, however, require that the workspace can only be 
inspected linearly. As a result, users must spend more time 
when objects are further away. 

Panning allows the user to view off-screen content by 
moving the workspace under a fixed viewport [15]. A 

panning operation is defined by a click-drag-and-release to 
shift a subset of the workspace into view. This form of 
interaction limits the amount of displacement that takes 
place at each pan operation. Studies [15, 16] have compared 
different panning methods for a variety of tasks. One result 
[15] shows that for touch-based systems, panning the 
document into view was better than dragging the viewport 
around the workspace. Similar to scrolling, panning 
presents off-screen content linearly; as a result, users must 
perform multiple pan operations to locate distant items.  

Zooming is an effective navigation method that provides 
multiple perspectives of the workspace. Zoom techniques 
show that being ‘off-screen’ is only relative to a particular 
zoom level, and that any amount of the workspace can be 
brought into view, albeit at the cost of detail. Unlike 
scrolling or panning, zooming allows users to view off-
screen content in a non-linear fashion (far-away objects can 
be inspected before those that are close). Pad++ [5] 
facilitates zooming in and out of a workspace using 
multiple scaling factors. Overviews that result from 
zooming-out provide awareness of off-screen content to 
users. These overviews perform better than regular scrolling 
systems [16]. However, to find a particular off-screen 
object from a set of candidates, the user may have to 
perform multiple zoom operations.  

Overview+detail and Focus+context 
Methods like overview+detail views, fisheye views, and 
chunking are also designed to facilitate interaction with 
large workspaces on limited displays. Unlike traditional 
techniques, these techniques work by modifying the 
representation of the workspace.  

Overview+detail techniques [4, 18] present a condensed 
overview of the workspace. The user can expand subsets of 
the information space when required. In many 
implementations, multiple windows are used for presenting 
overviews separately from the details. In these systems 
additional interaction overhead is required to manage the 
windows. With overviews, the user has to initiate a series of 
inspections by first locating the off-screen content of 
interest in the overview and then examining the details to 
determine if this is the content of interest. Nevertheless, this 
strategy can be effective: for example, one study showed 
that users perform equally well with overview+detail 
presentation as with zooming and panning for spatial 
cognition tasks [3].  

Focus+context views such as fisheyes [22] present a 
distorted view of the workspace. The most relevant 
information is magnified while less important material is 
reduced so that the entire workspace can fit into the 
viewport. Results of one study [11] show that fisheye views 
can be as good as traditional interfaces for steering tasks. 
However, fisheye views present usability problems in 
targeting and memorability, and performance in reading 
large documents with fisheyes is worse than with 
overview+details [13]. Furthermore, the distortion caused 
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by fisheye views degrades tasks relying on spatial cognition 
or short-term recall. The distorted views can also make it 
difficult to inspect the details of target items.  

Recently, chunking methods have been developed to break 
large content space into manageable and viewable portions. 
Flipzoom [7] is a technique that segments the entire 
workspace into viewable units. At any given time only one 
segment of the workspace is visible. This technique has 
been used for viewing web pages [8] or for viewing large 
documents in limited viewing spaces. Zonezoom [21] is 
another technique that segments the workspace into regions. 
It uses smooth in/out transitions of the segments to allow 
the user to view details of off-screen content. As with the 
overview+detail methods, chunking requires that the user 
be able to interpret the overview representations and 
recreate the relationships between the details and the whole. 
Overall, the additional complexity in interacting with 
overview+details, fisheye and chunking techniques may in 
some cases outweigh the benefits they offer.  

The design of hop was influenced by two general classes of 
techniques: off-screen visualization and proxies. These are 
discussed in detail next.  

Off-Screen Object Visualization 
Halo [1] is a visualization technique that shows the distance 
and location of off-screen objects. Halo was built on a well-
known principle in cinematography referred to as the 
partially-out-of-the-frame technique. Based on this 
technique, viewers get a feeling for the presence of a prop 
outside the scene and can recreate its characteristics based 
on the portion in view.  

With halo, objects outside the viewport are surrounded by 
rings that are large enough that a portion of each ring is 
visible on the edge of the viewport. From the visible 
portion, users can infer the location of the object and the 
distance from the viewing space. Halos have been 
compared to the typical arrow visuals used in video games 
and maps to point to objects off-screen [1]. Halos improved 
performance by 16% to 33% for most tasks in comparison 
to simple arrows with numeric distance information [1].  

City lights [27] are built on the same principles as halos. 
City lights visualize off-screen objects by placing 
rectangular blocks on the edges of the viewport. 
Additionally, city lights use visual cues such as color, shape 
and size to provide information about the physical 
properties of the off-screen objects, or other abstract 
information such as the degree of interest.  

Halos and city lights are successful techniques for pointing 
users to the presence of off-screen objects. However, on 
their own they do not assist the user in navigating to the 
object for inspection or manipulation.  

Proxies and Portals 
The development of large screens and multi-display 
systems has produced a new series of interaction methods 

that bring distant objects closer to the user’s interaction 
space. These techniques rely on proxies – temporary 
duplicates of the object that allow actions on the original – 
or on a portal that gives the user a window into a remote 
area of the workspace. 

Drag-and-pop [2] is a proxy-based technique that creates 
local copies of objects that are located far away on a large 
display. The user makes a simple gesture and any distant 
object located within a +/- 30 degree arc are brought toward 
the user’s cursor in the form of a proxy. The user can then 
interact with the proxies as they would with the original 
object. This significantly reduces the physical movement 
required for a user to interact with remote objects. Drag-
and-pop showed significant savings in the time to select 
distant objects in comparison to conventional dragging. 
However, drag-and-pop is limited in the number of proxies 
it can provide to the user, in its ability to allow multiple 
operations, and in allowing the user to control which 
objects are rendered as proxies. 

Vacuum filtering [6] was designed to overcome some of the 
limitations of the drag-and-pop approach. As in drag-and-
pop, the underlying principle behind the vacuum is to bring 
distant objects closer to the user. In the vacuum, the user 
triggers the proxies by initiating a mouse down and drag 
operation. This creates an arc of influence (or vacuum) that 
‘pulls’ proxies of distant objects towards the cursor. The 
vacuum shrinks the size of the proxies to maintain the 
relative layout of objects.  

Both techniques have several shortcomings with respect to 
off-screen targeting: 
• size and number of proxies: in drag-and-pop, the 

number of proxies are limited so there is no overlap. 
Although vacuum does not have a limit on the number 
of proxies, it must shrink the proxies in order to 
maintain the relative distances between the original 
objects. As a result, it can become difficult to view 
object details when many objects are ‘vacuumed.’ 

• off-screen object awareness: both techniques are 
designed for large screen displays. As a result, they do 
not currently include any means for showing the 
presence of off-screen objects.  

• arc of influence: the arc of influence created by the 
vacuum attracts objects in a larger radius as the 
vacuum gets closer to the edge of the workspace. This 
approach could ‘vacuum in’ large numbers of off-
screen objects that may not be of interest to the user.  

• context visibility: in the proxy approach, the details 
surrounding the original object are not available. While 
the vacuum maintains the relative distance between 
objects, elements around the original objects are not 
visible (such as the underlying map in Figure 1). The 
user still has to move to the distant location to inspect 
the surroundings of the objects.  

Portals into remote spaces are an alternative to proxies. 
Portals behave like windows that facilitate content viewing 
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in the original workspace. Frisbees [17] was designed as a 
telescope into the remote viewing space. The technique 
provides controls to move objects between various 
workspaces and manipulate them locally. Similarly, 
WinCuts [26] allows users to remotely interact with defined 
regions of existing windows. Unlike proxy-based methods, 
portals facilitate the viewing of the context around remote 
objects. However, additional operations such as zooming in 
and out of the portal are necessary to view the context. 
Significant overhead results from inspecting objects that are 
off-screen, which makes portal-based tools less suitable for 
lightweight tasks that involve inspecting remote objects and 
then returning to work on nearby content.  

THE HOP (HALO+PROXY) TECHNIQUE 
Hop is an interaction technique that enables quick access to 
off-screen objects. Hop works by providing awareness of 
off-screen targets, by bringing target proxies close to the 
user, and by transporting the user to the context of the 
target. The design of hop was driven by, and satisfies, the 
design principles outlined in the introduction. We describe 
the design of hop below in terms of its three components. 

Halos: Awareness of off-screen objects 
Hop adapts and enhances the halo [1] representation to 
satisfy the off-screen object awareness requirement. Halos 
are drawn using elliptical and circular lines from each off-
screen object (see Figure 2); the result in the viewport is 
that an arc segment is visible on the edge of the screen for 
each off-screen item.  

Our initial implementation of the halo showed a problem 
with the technique: when the number and distance of off-
screen targets increases, halos overlap and become cluttered 
at the edge of the screen. This problem led to a slight 
improvement to save space along the edges of the screen. 
Objects that are directly north, east, south, and west of the 
viewport are represented using ellipses, which reduces the 
amount of overlapping along the edges when compared to 
circular rings. The idea of using ellipses is from Baudisch 
and Rozenholtz, who speculate in [1] that ovals could better 
convey off-screen distances than circles. Off-screen objects 
in the corner regions are indicated by circular halos.  

Laser Beam: Invoking proxies 
The second component of the hop technique is the laser 
beam. Hop uses a moveable ‘beam’ line to trigger the 
creation of proxies from the off-screen objects. Our version 
of the laser beam is a small improvement over other 
mechanisms (such as that used in the vacuum) that have a 
wider invocation range. Hop’s laser beam interacts only 
with halos on the screen’s edge. Our modification allows 
the user to more precisely select objects they would like to 
inspect.  

The laser beam is invoked by clicking the mouse on the 
background and dragging the cursor toward an edge. The 
distance traveled by the cursor is indicated by the circle of 
movement, the center of which is located at the mouse-

down position. The circle of movement is later used for 
laying out the proxies (explained below). The laser beam is 
drawn from the center of the circle of movement up to the 
edge of the screen (see Figure 2).  

The user then moves the cursor in a radial fashion, and the 
laser beam travels until it intersects a halo. For each beam-
halo intersection, a proxy is created and placed near the 
circle of movement (details on layout are given below). 
Proxies remain opaque for one second, and then begin 
fading away. In the current hop system, proxies disappear 
completely after five seconds. Locations occupied by 
previous proxies are made available for any new proxy in 
that region.  

At any point after creating the proxies, the user can release 
the mouse button and select a proxy, which teleports the 
user to the off-screen object.  

Halo

Laser Beam Beam+Halo
Intersection

Proxy

Off-Screen
Object

Viewport
Edge

(a) (b)

(c)

Circle of Movement

Halo

Laser Beam Beam+Halo
Intersection

Proxy

Off-Screen
Object

Viewport
Edge

(a) (b)

(c)

Circle of Movement

 
Figure 2. Invoking proxies with the laser beam: a) beam is 
created; b) beam intersects halo; c) proxy created. 

Teleporting: Moving to the off-screen object 
The final operation in hop is to move the viewport to the 
off-screen object. Clicking on a proxy invokes a 400ms-
long animated transition from the current location to the 
location of the off-screen item. We added the animation 
after noticing that users would lose their orientation in a 
rapid movement toward the object.  

Moving the viewport to the location of the off-screen target  
ensures that the local environment of the item can be 
inspected (satisfying the context visibility requirement 
introduced earlier). The local environment is critical in 
applications such as the mapping system shown in Figure 1. 
Moving the viewport also ensures that items are displayed 
in their original size so that details can be inspected 
(satisfying the full-scale view requirement).  

The sequence of actions for a complete hop is depicted in 
Figure 3. 

Layout of Proxies 
As with similar interaction tools that invoke proxies (such 
as the vacuum, drag-and-pick, and tractor beam), a common 
design challenge is the layout of proxies for rapid 
interaction. The initial design of hop laid out the proxies in 
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a linear order, but this layout caused the user to reach over 
further distances if the desired proxy was invoked later in 
the movement. To reduce the distance between the cursor 
and any proxy, we use a radial layout for the proxies.  

 
(a) Original View 

 
(b) Laser Beam moving counter-clockwise 

 
(c) Proxies are invoked once the laser beam intersects the 

halos; user clicks on a proxy 

 
(d) Selecting a proxy teleports the user; final view after 

teleporting. 
Figure 3. Sequence of actions in a hop. 

The algorithm initially segments off-screen objects into 
four regions, based on the mouse-down location. Each 
region in the viewport will host proxies from the same off-
screen region. Proxies are placed on the circle of movement 
created by dragging away from the original mouse-down 
location. The layout algorithm avoids overlaps by placing 
proxies either to the left or right of any existing objects. 
When the circle of movement becomes full, additional 
proxies are laid out on the next-larger concentric circle. 
This process continues until all proxies are drawn. The 
space from faded proxies is reused for new ones. The 
algorithm did not preserve the remote layout of the objects 
since that would require shrinking the proxies (as in [6]).  

STUDY METHODS 
We carried out a user study to evaluate whether hopping 
assists people in selecting off-screen targets, by comparing 
it to zooming and panning techniques. 

Participants and apparatus 
Thirteen paid volunteers (10 male, 3 female) were recruited 
from a local university. All users were frequent users of 
mouse-and-windows based systems (at least 12 hours per 
week). Participants had a variety of experience with 
zooming and panning techniques: five had more than three 
years’ experience with both, two were experienced with 
zooming but not panning, and six were not experienced 
with either technique. Participants stated they had used 
zooming and panning in map systems and image editors. 
None were familiar with halos, proxy techniques, or 
hopping.  

Participants performed the experiment on a P4 Windows 
XP PC running a custom .NET application. The display was 
a 17” monitor set to 1280×1024 resolution.  

Tasks  
The system presented two-dimensional target selection 
tasks in several different distance and density conditions 
(see Figure 4). The task involved consecutive selection of 
10 targets in the presence of distracters. Participants were 
required to click a sequence of off-screen objects which 
were designated as targets.  

Targets were rendered as 32×32 pixel squares. A target was 
differentiated from a distracter by the presence of a red 
square in the upper right corner of the object (Figure 5). 
The targets appeared sequentially; after clicking on one 
target, the next target appeared somewhere in the 
workspace, and the participant began to look for it.  

To simulate the importance of contextual information that is 
an important part of real-world systems, we added a 
decision to the task that could only be made correctly by 
observing local information. In addition to the presence of a 
red square, participants were required to correctly identify 
‘true’ and ‘false’ targets. A ‘true target’ was accompanied 
by a triangle and circle landmark (Figure 5) which 
consisted of the two shapes drawn below the target. ‘False 
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targets’ were targets that contained the red square but 
showed a different landmark (see Figure 5). Upon locating 
a target, the participant was asked to click on the label (‘Y’ 
or ‘N’) to indicate whether the target was true or false. Half 
of the targets in each block were ‘true targets.’ 

 
15 objects, 600 pixels 15 objects, 1200 pixels 

 
60 objects, 600 pixels 60 objects, 1200 pixels 

Figure 4. Example workspaces from study for two different 
distance and density conditions; each dot is either a target 
or a distracter. Starting viewport rectangle is shown in grey. 

Targets were randomly distributed to eight relative compass 
directions (E, NE, N, NW, W, SW, S, SE) outside the 
boundaries of the screen. To ensure that participants 
performed a minimal amount of navigation, the next target 
in the list of targets did not appear in the regions adjacent to 
the region containing the previous target. This ensured that 
two sequential targets were not on the same screen so that 
the participant would have to perform at least one 
navigation operation to locate the next target. 

  
Figure 5. Targets, showing red square at top right. True 
target (with triangle and circle landmark) is shown at left; 
false target is shown at right. 

Experimental conditions  
The study involved three factors: navigation technique, off-
screen distance, and density.  

Navigation Techniques 
The main focus of our research was based on evaluating the 
performance of hopping against different techniques for 
off-screen targeting tasks. We chose a two-level zoom and a 
grab-and-drag panning as comparison techniques; these two 
were chosen because they represent the most common 
techniques seen in current applications (other possibilities 
are considered in the discussion). A pilot study also 
included scrolling as a comparison technique, but initial 

data showed that scrolling was consistently and 
significantly outperformed by the other three techniques.  

• Zooming. A two-level zoom was used in the study. Two-
level zoom provides users with either an overview of the 
entire information space, or a fully-zoomed-in view. 
Users can switch between the views by clicking the right 
mouse button. In the zoomed-out view, all objects were 
visible, but details of the targets could not be seen. To 
examine an object and determine whether it is a target, 
users had to zoom in by moving their mouse near the 
object and clicking the right mouse button.  

• Panning. This technique implemented the typical panning 
technique with a small improvement. The viewer moves 
the viewport by a mouse down-slide-and-release 
operation. The improvement takes into account the 
momentum of the pan operation to slide the viewport 
additional pixels in the direction of movement. The 
system shows the objects in actual size at all times. 

• Hopping. Hop was implemented as described above: 
users click the mouse on the background and drag to 
create a circle of movement. They then sweep the laser 
beam across one or more halos to create proxies on the 
circle, and may at any time select one of the proxies to 
teleport to that object’s real location. Participants had to 
navigate to the distant location in order to see landmarks 
and click the ‘Y’ or ‘N’ buttons on the target.  

Off-Screen Distance 
To determine whether performance varies with the distance 
of objects beyond the edge of the screen, we tested two 
distances. The short range positioned the objects at 600 
pixels beyond the edge of the screen. The long range 
positioned objects randomly between 600 pixels and 1200 
pixels beyond the edge of the screen.  

Density 
In most targeting tasks, the time to locate a target typically 
increases with the number of objects or the density of the 
information space. To determine whether density affected 
performance, three density values were used: few (15 
objects), some (30 objects) and many (60 objects). Ten of 
the off-screen objects were used as targets; in addition to 
the off-screen objects, eight distracter objects were always 
displayed within the starting viewport.   

Experimental Design 
The study used a 3×2×3 within-participants factorial 
design. The factors were:  
• Navigation technique: zoom, pan, hop 
• Off-Screen Distance: 600, 1200 pixels. 
• Density: 15, 30, 60 objects. 
Interaction technique was fully counterbalanced using a 
Latin square; the other two factors were always presented in 
increasing order (i.e., from smaller to larger distance, and 
from smaller to larger densities). Within each condition, 
participants carried out 2 blocks of 10 off-screen targeting 
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trials. Each block consisted of trials for all combinations of 
Technique × Off-Screen Distance × Density.   

With 12 participants, 3 navigation techniques, 2 distances, 3 
densities, and 20 trials per condition, the system recorded a 
total of 4320 trials. The study system collected completion 
times and error information for each target. An error 
consisted of clicking ‘N’ on ‘true target’ and ‘Y’ on a ‘false 
target’. Participants filled out a brief questionnaire asking 
them about their preferences at the end of the experiment. 

Procedure 
Participants were randomly assigned to one of the six order 
groups. Prior to starting the experiment, participants were 
given a short warm-up session (10 trials per technique) to 
practice off-screen target selection with the different 
interaction styles. Upon completing the 10 practice trials, 
all participants indicated they were comfortable with all 
three systems. Participants then completed the off-screen 
targeting tasks and were allowed to take breaks between the 
two blocks and between techniques. After all conditions for 
a session were complete, participants were asked to indicate 
the technique that was easiest and the technique for which 
they felt they performed the fastest.  

RESULTS 

Completion time 

Effects of Navigation Technique 
A repeated measures ANOVA showed a significant main 
effect of navigation technique (F2,36=45.46, p<0.001). As 
shown in Figure 6, overall mean times for hop were fastest 
(5.83 secs) followed by zoom (12.52 secs) and pan (14.38 
secs). Post-hoc pairwise t-tests showed that hop was 
significantly faster than zoom and pan (both p<0.05) but did 
not show any significant difference between zoom and pan. 
The performance of each navigation technique in each of 
the distance and density conditions is analyzed below. 

Hop vs Zoom vs Pan

0

5

10

15

20

25

Density/Distance Conditions

Ti
m

e 
(s

ec
s)

Hop
Zoom
Pan

15 Objects 30 Objects 60 Objects

Short Range – 600 pixels Long Range – 1200 pixels
15 Objects 30 Objects 60 Objects

Figure 6. Mean completion time for all conditions. Error 
bars show one standard error from the mean.  

Effects of Distance 
As expected, off-screen distance of objects also had a 
significant main effect on completion time (F1,24=12.42, 
p<0.01). A significant Technique × Distance interaction 
(F2,24=25.65, p<0.001) was also present. Post-hoc pairwise 
comparisons showed that hop was significantly faster than 
zoom and pan (p<0.001 for both) for both distances. The 
results also show that zoom is significantly faster than pan 
(p<0.05) at off-screen distance of 600 pixels. At the off-
screen distance of 1200 pixels, average zoom performance 
is slower than pan, but this difference is not significant.  

We also analyzed the effect of distance for each technique. 
Interestingly, at the off-screen distance of 1200 pixels, 
average performance time with hop is 5.48 secs compared 
to 6.18 secs at the 600 pixel level. This difference is not 
significant. The results show that users were significantly 
faster (F1,12=30.091, p<0.001) with zooming at a distance of 
600 pixels (10.213 secs) than at a distance of 1200 pixels 
(14.836 secs). As expected, users were also significantly 
faster (F1,12=39.498, p<0.001) with panning at the 600 pixel 
distance (12.11 secs) than at the 1200 distance (16.65 secs).  

Effects of Density 
Surprisingly, the results do not reveal main significant 
effect of density on performance time (F2,24=3.24, p=0.057). 
However, a significant Technique × Density interaction was 
present (F4,48=10.068, p<0.001). Post-hoc pairwise 
comparisons showed that hop was significantly faster than 
zoom and pan (p<0.001 for both) for all densities. However, 
zoom is only significantly better than pan at the 15-object 
density but not the others.  

We also analyzed separately the effect of density on each 
technique. With the hop technique, participants are 
significantly faster at levels of 15 and 30 objects compared 
to 60 objects (p<0.001 for both). With the zoom technique 
we also observe significant main effects of density. Post-
hoc pairwise comparisons show that participants are 
significantly faster with 15 objects than with 60 objects 
(p<0.001), but there is no significant difference between 15 
and 30 objects or 30 and 60 objects. Interestingly, 
participants performed equally well on all three densities at 
the 600 pixel off-screen distance but were significantly 
slower between densities at the 1200 pixel level. 

With the pan technique, the results show significant main 
effect of density (F2,24=7.564, p=0.003). Pairwise 
comparisons show significant difference between 15 and 30 
objects (p=0.039) and between 15 and 60 objects (p=0.020) 
but not between 30 and 60 objects. Surprisingly, 
participants were faster with panning as the number of 
objects increased. As discussed below, one explanation is 
that participants became disoriented in sparse workspaces. 

Errors 
An error was recorded if the user selected the incorrect type 
of target. The results showed that users were 99.99% 
accurate with panning and zooming and 99.98% accurate 
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with hop. The difference is not significant and a statistical 
test was not performed. One explanation for slightly lesser 
accuracy with hop was that on certain trials a few users 
aimed at the target during the teleportation. This resulted in 
recording incorrect clicks because the scene was animated.  

User Preferences 
Twelve out of thirteen participants indicated that they felt 
they were fastest with hop; one felt that zoom was fastest. 
All thirteen participants found hop to be the easiest to use. 

Observations of Navigation Patterns 
Watching users carry out the task showed clear navigation 
patterns for the different techniques. With zooming 
interfaces, participants started each trial by a zoom-out 
operation, followed by a zoom-in operation on the largest 
cluster in the scene. From this initial inspection, users 
performed clockwise or counter-clockwise zoom-out/zoom-
in operations until the target was located. With panning, 
participants panned vertically or horizontally to initially 
bring the off-screen targets into view. Subsequent panning 
operations were performed, either clockwise or counter-
clockwise, until the target was located. 

Participants applied two distinct navigation patterns with 
hop; one pattern was used at the beginning of the 
experiment and the second pattern was used in subsequent 
trials until the end of the experiment. In the early trials, a 
participant would invoke the laser beam and aim it toward 
individual halos. All users would begin and complete a 
sweeping movement of the laser in proximity of a halo. If 
the resulting proxy represented a target of interest, the user 
performed the teleportation; otherwise the user continued in 
small steps to invoke individual proxies. However further 
into the experiment, we noticed that participants performed 
wider sweep operations with the laser beam. This action 
invoked many proxies simultaneously. The user scanned the 
proxies on the screen and then initiated the teleportation. In 
these later trials, the center of the laser beam sweep was 
usually closer to the edge of the screen than in earlier trials.  

DISCUSSION 
The user study provides evidence that a combination of 
halos and proxies is an efficient way to find and select off-
screen targets. The main findings were: 
• Selection times with hop were approximately half of what 

they were with either zoom or pan; 
• Performance with hop remained constant regardless of 

changes in the distance of off-screen objects; 
• Selection time with the zooming interface increased both 

with the number of objects and with object distance; 
• Performance with panning improved as the number of 

objects increased. 
In the following sections we consider reasons for these 
results, we discuss how hop will generalize in real-world 
systems, and summarize the main lessons for designers. 

Reasons for our findings 
The main reason for the performance of hop is the reduction 
in the number of navigation actions that users need for 
completing the task. Since the first part of the task is to find 
and evaluate targets, bringing all desired targets towards the 
user greatly reduces the amount of navigation work 
required. A hop involves one set of actions – a click-and-
drag to create the circle of movement, another drag to bring 
proxies into range, and a visual search and selection to 
choose a proxy. In contrast, searching for a target in both 
zoom and pan requires multiple actions. We recorded the 
number of actions of these types: each trial with hop 
required about 1.3 operations as described above, each trial 
with zoom required about 16 operations, and each trial with 
pan required about 21. The high correlation between the 
number of navigations and performance times shows that 
the amount of navigation is a significant factor in off-screen 
targeting. This result confirms the minimal navigation 
design principle defined earlier.  

A second result that requires explanation is that panning 
was faster in higher-density conditions. One reason is that 
larger densities helped participants stay oriented and aware 
of screen boundaries. Participants became disoriented when 
locating an off-screen target with panning, a problem that 
was more acute when several panning operations did not 
reveal any objects. The lower concentration of distracters in 
small densities typically resulted in users panning multiple 
times to locate clusters. With larger densities, these 
distracters themselves gave information about direction of 
travel and of the boundary of the workspace. With a denser 
scene, the chances of the user going astray during a pan 
operation was less likely than in a sparse scene.  

Limitations to the hop technique 
Although hop was by far the most effective technique in our 
study, there are certain limits to the technique. 
• Clutter. Halos add visual information to the screen, and 

even with our modifications to the original halo 
presentation, large numbers of objects will occlude the 
screen edges, reducing usable space. Hop can still work 
in cluttered situations, although the user has reduced 
control over which proxies are created. The clutter can be 
reduced by replacing halos with glyphs. The radius of the 
glyph could indicate the distance of the off-screen object. 
When two or more off-screen objects are in proximity, 
concentric circles could be inserted in the glyph, as in [1]. 

• The nature of the inspection task. In our study, the hop 
proxies provided the right amount of detail to determine 
whether objects were legitimate targets. However, other 
tasks may require information that is not provided by our 
current proxies. For example, if contextual information is 
important in deciding on targets, a hop user may need 
several teleportations before finding the target. 

• Large-scale context. Hop, like all proxy techniques, takes 
targets out of context in order to bring them closer. 
Techniques that preserve awareness of the overall 
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context, such as zooming, may allow users to better 
decide on which targets are most likely to be legitimate. 

• Getting lost. The teleportation that is inherent to hop may 
cause some users to lose track of where they are in the 
overall space. We believe that this problem could easily 
be remedied by the addition of an inset overview that 
shows the user’s current location in the workspace. 

Using hop in real-world applications 
The major strength of hop is that it allows the user to 
navigate quickly to an interest area off-screen to inspect 
whether information in that region is important. However, 
there are several issues that must be considered if it is to 
work in real-world tasks.  

Filtering. Hop depends on a filter applied by the user that 
specifies which objects will be inspected. Once the filter is 
applied, hop can display the halos for all the objects off-
screen. The remainder of the interaction technique would 
behave similarly as in the experimental setup.  

Drag-and-drop to off-screen locations. Many applications 
will require that users be able to take objects to the off-
screen location. Hop can be adapted for this task; since the 
proxies stay on the screen for a short time after they appear, 
the user could drag an object to the proxy to initiate the 
action. If the visible lifespan of the proxy is too short, users 
could also drag the proxy onto the real object; the proxy 
would ‘capture’ the object to be moved, and the 
teleportation would begin.  

Small-screen devices. The hop technique can be adapted for 
small viewports such as those available on PDAs or larger 
mobile phones. However, as with other proxy-based 
techniques, the number of proxies that can be displayed 
simultaneously is limited. One approach would be to reduce 
the time span for which a proxy is visible, allowing other 
proxies to be shown. Another strategy would be to resize 
the proxies as has been done with other systems (e.g., [6]). 

Alternative Designs for Hop 
Several alternative designs can improve various aspects of 
hop. Augmenting halos (as in [27]) to show information 
about the object is one possible extension to hop. This 
design would require that users learn a new mapping from 
information to visual dimension and does not allow for the 
amount of detail possible with a proxy. However, enhanced 
halos could help the user decide which proxies to invoke. 

An alternative to the laser beam would be to allow the user 
to select or cross halos with a pointing device. This 
technique could work in many situations; however, crossing 
several halos could be difficult, and dragging a stylus 
around a screen edge is difficult on devices that do not have 
a raised frame around the screen. Crossing also requires that 
the user move away from the original area of interest. 
Additionally, interacting with a laser beam has benefits 
over crossing for devices with jog-dial controls. In these 
cases the user can press the jog-dial to invoke the laser, then 
spin the jog-dial to rotate the laser and press the dial to 

select a target. However, for a wider range of flexibility, 
crossing can be used as an adjunct to the laser.   

Comparing hop to other navigation techniques 
As stated above, we compared hop to zoom and pan 
because these are the most common techniques in current 
applications. There are, however, a number of 
modifications that could be made to zooming or panning to 
improve their performance, and there are other navigation 
techniques that could be tested.  

Panning with halos. As shown by Baudisch and Rosenholtz 
[1], halos improve performance over ordinary panning. 
However, halos alone do not reduce the time required to 
pan the view to the target, and therefore we believe that the 
addition of proxy teleportation in hopping would still 
outperform this technique. 

Focus+context views. Fisheye displays or moveable-
magnifier views could allow users to inspect potential 
targets more quickly than was possible with our 
implementation of zooming. We plan to test hopping 
against these techniques in the future; however, both 
fisheyes and magnifiers introduce additional problems that 
may reduce their efficacy. For example, fisheye views can 
make targeting more difficult, and moveable magnifiers can 
occlude much of the context, particularly on small screens. 

Lessons for Practitioners 
We believe there are several lessons designers of large 
visual workspaces might find valuable from our findings: 
• In large workspaces that necessitate off-screen targeting, 

designers should consider hopping as an alternative to 
zooming or panning. 

• Bringing potential targets towards the user (i.e. proxies) 
assists navigation on small screens as much as it does on 
large displays, but should be coupled on the small screen 
with awareness of off-screen content. 

• Off-screen targeting techniques should be designed using 
the minimal navigation principle to reduce overall 
navigation time.  

• For short off-screen distances and sparse datasets, zoom-
based interfaces should outperform panning.  

CONCLUSION 
Many applications provide large visual workspaces with 
small viewports, resulting in off-screen content. No current 
navigation technique is able to meet all of the design goals 
for selecting off-screen targets. We introduced a new 
technique – hop – to address this problem. Hop allows users 
to quickly and easily navigate to a region outside the 
viewport; it uses halos to provide an awareness of objects 
outside the view, a ‘laser beam’ to create proxies of specific 
off-screen objects, and a teleportation mechanism that takes 
the user to the remote location. 

We carried out a user study to compare hop to two 
mainstream navigation techniques, grab-and-move pan and 
two-level zoom. Users were able to select off-screen targets 
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in half the time that was needed by either of the other two 
techniques. In addition, all users preferred using hop. Our 
results underscore the value of both halos and proxies, and 
show that these techniques can be successfully combined.  

In future work, we are planning to continue studying hop in 
a variety of settings. First, we plan to test the technique in a 
more realistic task, in which the background data (e.g., the 
map) is important for deciding on targets. Second, we plan 
to investigate hopping with mobile devices and dynamic 
(e.g., moving) off-screen objects. We also want to test hop 
in tasks that involve other types of off-screen navigation, 
such as spatial comparisons between elements in different 
locations. Last, we plan to investigate extensions to hop, 
such as adding read wear [23] to halos, to assist the user in 
keeping track of areas that have already been inspected. 
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