The Need for an Interaction Cost Model in Adaptive Interfaces

Bowen Hui, Sean Gustafson, Pourang Irani, Craig Boutilier

Department of Computer Science University of Toronto and University of Manitoba

Advances in Visual Interfaces (AVI'08)

Need for Software Customization

- Increasing complexity
 - Lost in interface/functionality
 - Repeated customization effort
- Most affected users
 - People with cognitive, sensory, motor impairments
 - Elderly people
 - Children
 - Novices

Intelligent Interfaces

- Design objectives
 - Minimize user effort
 - Maximize ease of interaction
- Existing implementations:
 - Auto-completion
 - Toolbar suggestions
 - Adaptive menus (add/hide/move)
 - Etc.

Research Objectives

Account for existing interaction factors

• Predict costs/benefits of interaction

• Explain individual differences

Decision-Theoretic Framework

• Actions lead to outcomes probabilistically

• Impact of intelligent actions

• Tradeoffs between costs and benefits

• Maximizing (long-term) expected utility

Utility of Customization Actions

• Impact of actions:

Action	Savings	Processing	Occlusion	Bloat	Disruption	Interruption
AUTO	Х					Х
TOOLBAR	Х	Х	Х			Х
ADD	Х			Х	Х	Х
HIDE	Х			Х	Х	Х
MOVE	Х				Х	Х
HINT	Х	Х	Х			Х
ASK	Х	Х	Х			Х

Utility of Customization Actions

• Compute utility of each interaction factor

• Overall Utility = w_1 utility_{factor1} + w_2 utility_{factor2} + ...

- Each component models:
 - Objective value
 - Subjective utility

Utility of Customization Actions

• Compute utility of each interaction factor

- Overall Utility = w_1 utility_{factor1} + w_2 utility_{factor2} + ... Models existing interaction factors
- Each component models:
 - Objective value
 - Subjective utility

Predicts costs/benefits of interaction

Models individual differences

Interaction Cost Model

- Predictive model of interaction factors
 - Savings
 - Information processing
 - Occlusion
 - Bloat
 - Disruption
 - Interruption

• Quality = GOMS(Steps, Mode)

Model of Processing

ProcessTime = Hick-Hymann(Length) *if* expert
= Visual_Search(Length) *if* naive

Model of Bloat

Occlusion Experiment

- every Saturday afternoon and to stop over till Mond this particular January Mondayessesting would not h t on San Francisco Bay. It that I was afloat in a safe frank, for the Marti y-steamer, making her fourth or fifth trip on the r b and San Francisco. The danger by in the beavy f d the bay, and of which, as a landsman, I had bittl sion. It quite amused at his unwarranted choler and whil lass house above my head. member thinking how comfortable it was, this divisi
- Direction, Size, Opacity, Proximity, Intersection
- Task completion time
- 12 participants

Analysis Techniques

• Factor analysis

Identifies most relevant variables

- ANOVA
 - Finds significance among means of different users
- F-test

- Determines minimal model complexity required

Objective Occlusion Function

Opacity

Overlap

- Overlap = f(Blocked, Opacity)
 - Blocked=0:
 - overlap = constant
 - Blocked=1:
 - Cubic in Opacity, for half of the users
 - Linear in Opacity, for remaining users

Blocked

Bloat Experiment

- Shown, Used
- Task completion time
- 12 participants

Model of Bloat

Objective Bloat Function

• Unused = Shown - Used

- Excess = f(Unused)
 - Linear, for most users
 - Quadratic, for 1 user
 - Cubic, for 1 user

Simulations

- Markov decision process (MDP)
- Adaptive menu
- Actions: add/delete menu item or do nothing
- Utility = w₁Bloat + w₂Savings
- Bloat = f(*Excess*, Feature Tolerance, Distractibility)
- Savings = f(*Quality*, Frustration, Neediness,

Distractibility, Independence)

MDP for Adaptive Menu **Frustration** Distractibility Independence Feature **Neediness** Used Tolerance Quality Shown Bloat Savings

MDP for Adaptive Menu

MDP for Adaptive Menu

Results: Effect of Bloat

Distractibility	Tolerance	Shown	Policy
Low/medium	Feature-keen	Any	Add
High	Feature-keen	Few	Add
Low	Feature-shy	Many	Delete
other	other	other	No action

Results: Individual Adaptation

• Most receptive user:

Distractibility	Tolerance	Shown	Policy
Low	Keen/shy	Any	Add
Medium/high	Feature-keen	Any	Add

• Least receptive user:

Tolerance	Shown	Policy
Feature-keen	Any	Add
Feature-shy	Many	Delete
Feature-shy	Many	Delete
	ToleranceFeature-keenFeature-shyFeature-shy	ToleranceShownFeature-keenAnyFeature-shyManyFeature-shyMany

Do nothing for all other cases

Summary and Future work

- Decision-theoretic framework for adaptive interfaces
- Formal model for interaction costs
- Systematic analysis
- Models individual differences
- Simulation as proof of concept
- Usability evaluation (next)