The Need for an Interaction Cost Model in Adaptive Interfaces

Bowen Hui, Sean Gustafson, Pourang Irani, Craig Boutilier

Department of Computer Science
University of Toronto and University of Manitoba

Advances in Visual Interfaces (AVI’08)
Need for Software Customization

• Increasing complexity
 – Lost in interface/functionality
 – Repeated customization effort

• Most affected users
 – People with cognitive, sensory, motor impairments
 – Elderly people
 – Children
 – Novices
Intelligent Interfaces

• Design objectives
 – Minimize user effort
 – Maximize ease of interaction

• Existing implementations:
 – Auto-completion
 – Toolbar suggestions
 – Adaptive menus (add/hide/move)
 – Etc.
Research Objectives

• Account for existing interaction factors

• Predict costs/benefits of interaction

• Explain individual differences
Decision-Theoretic Framework

• Actions lead to outcomes probabilistically

• Impact of intelligent actions

• Tradeoffs between costs and benefits

• Maximizing (long-term) \textit{expected utility}
Utility of Customization Actions

- **Impact of actions:**

<table>
<thead>
<tr>
<th>Action</th>
<th>Savings</th>
<th>Processing</th>
<th>Occlusion</th>
<th>Bloat</th>
<th>Disruption</th>
<th>Interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TOOLBAR</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ADD</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HIDE</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MOVE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HINT</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ASK</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Utility of Customization Actions

• Compute utility of each interaction factor

• Overall Utility = $w_1 \text{utility}_{\text{factor}_1} + w_2 \text{utility}_{\text{factor}_2} + \ldots$

• Each component models:
 • Objective value
 • Subjective utility
Utility of Customization Actions

• Compute utility of each interaction factor

• Overall Utility = \(w_1 \text{utility}_{\text{factor1}} + w_2 \text{utility}_{\text{factor2}} + \ldots \)

• Each component models:
 - **Objective value**
 - **Subjective utility**

Models existing interaction factors
Predicts costs/benefits of interaction
Models individual differences
Interaction Cost Model

• Predictive model of interaction factors
 • Savings
 • Information processing
 • Occlusion
 • Bloat
 • Disruption
 • Interruption
Model of Savings

- Quality = GOMS(Steps, Mode)
Model of Processing

- ProcessTime = Hick-Hymann(Length) if expert
- = Visual_Search(Length) if naive
Model of Occlusion

Overlap

Cost of Occlusion

Frustration

Distractibility
Model of Bloat

Excess

Cost of Bloat

Feature Tolerance

Distractibility
Occlusion Experiment

- Direction, Size, Opacity, Proximity, Intersection
- Task completion time
- 12 participants
Analysis Techniques

• Factor analysis
 – Identifies most relevant variables

• ANOVA
 – Finds significance among means of different users

• F-test
 – Determines minimal model complexity required
Model of Occlusion

Opacity → Overlap → Cost of Occlusion

Blocked → Overlap → Cost of Occlusion

Overlap → Frustration

Cost of Occlusion
Objective Occlusion Function

• Overlap = f(Blocked, Opacity)
 • Blocked=0:
 • overlap = constant
 • Blocked=1:
 • Cubic in Opacity, for half of the users
 • Linear in Opacity, for remaining users
Bloat Experiment

• Shown, Used
• Task completion time
• 12 participants
Model of Bloat

- Used
- Shown
- Excess
- Feature Tolerance
- Distractibility

Cost of Bloat
Objective Bloat Function

• Unused = Shown - Used

• Excess = f(Unused)
 • Linear, for most users
 • Quadratic, for 1 user
 • Cubic, for 1 user
Simulations

• Markov decision process (MDP)
• Adaptive menu
• Actions: add/delete menu item or do nothing
• Utility = \(w_1 \text{Bloat} + w_2 \text{Savings} \)
• Bloat = \(f(\text{Excess}, \text{Feature Tolerance}, \text{Distractibility}) \)
• Savings = \(f(\text{Quality}, \text{Frustration}, \text{Neediness}, \text{Distractibility}, \text{Independence}) \)
MDP for Adaptive Menu

- Feature Tolerance
- Distractibility
- Frustration
- Independence
- Neediness
- Used
- Shown
- Quality
- Savings
- Bloat
MDP for Adaptive Menu

- Feature Tolerance
- Distractibility
- Frustration
- Independence
- Neediness
- Quality
- Used
- Shown
- Bloat
- Savings
MDP for Adaptive Menu

- Distractibility
- Feature Tolerance
- Quality
- Shown
- Used
- Savings
- Bloat
- Frustration
- Independence
- Neediness
<table>
<thead>
<tr>
<th>Distractibility</th>
<th>Tolerance</th>
<th>Shown</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low/medium</td>
<td>Feature-keen</td>
<td>Any</td>
<td>Add</td>
</tr>
<tr>
<td>High</td>
<td>Feature-keen</td>
<td>Few</td>
<td>Add</td>
</tr>
<tr>
<td>Low</td>
<td>Feature-shy</td>
<td>Many</td>
<td>Delete</td>
</tr>
<tr>
<td>other</td>
<td>other</td>
<td>other</td>
<td>No action</td>
</tr>
</tbody>
</table>
Results: Individual Adaptation

• Most receptive user:

<table>
<thead>
<tr>
<th>Distractibility</th>
<th>Tolerance</th>
<th>Shown</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Keen/shy</td>
<td>Any</td>
<td>Add</td>
</tr>
<tr>
<td>Medium/high</td>
<td>Feature-keen</td>
<td>Any</td>
<td>Add</td>
</tr>
</tbody>
</table>

• Least receptive user:

<table>
<thead>
<tr>
<th>Distractibility</th>
<th>Tolerance</th>
<th>Shown</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Feature-shy</td>
<td>Many</td>
<td>Delete</td>
</tr>
<tr>
<td>Medium</td>
<td>Feature-shy</td>
<td>Many</td>
<td>Delete</td>
</tr>
</tbody>
</table>

• Do nothing for all other cases
Summary and Future work

• Decision-theoretic framework for adaptive interfaces
• Formal model for interaction costs
• Systematic analysis
• Models individual differences
• Simulation as proof of concept

• Usability evaluation (next)