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ABSTRACT

Effective mode-switching techniques provide users of tablet in-
terfaces with access to a rich set of behaviors. While many re-
searchers have studied the relative performance of mode-switching
techniques in these interfaces, these metrics tell us little about the
behavior of one technique in the absence of a competitor. Differing
from past comparison-based research, this paper describes a tem-
poral model of the behavior of a common mode switching tech-
nique, non-preferred hand mode switching. Using the Hick-Hyman
Law, we claim that the asymptotic cost of adding additional non-
preferred hand modes to an interface is a logarithmic function of the
number of modes. We validate the model experimentally, and show
a strong correlation between experimental data and values predicted
by the model. Implications of this research for the design of mode-
based interfaces are highlighted.

Index Terms: H5.2 [User Interfaces]: Interaction styles—

1 INTRODUCTION

Mathematical models of performance have been valuable in inform-
ing the implementation of interfaces, predicting their use, and de-
signing new interaction techniques. Fitts’ Law has been used to
predict time for pointing tasks [9], to alter control placement in in-
terfaces [6], and to compare different pointing devices [1]. Models
of character generation [4] and keystroke input [5] have been used
to predict the expected time to enter data. Finally, the design of
new widgets such as crossing-based widgets [2] is a direct result of
applying and enhancing models of performance [3].

Our research aims to validate a model for mode-switching time
in tablet applications – applications that receive the majority of in-
put through an electronic stylus or data tablet. Typical examples of
tablet applications are the Windows Journal and Microsoft OneNote
applications for Tablet PCs. In these applications, the input device,
typically an electronic stylus, is overloaded via a set of states or
interface modes. The Windows Journal and Microsoft OneNote ap-
plications include interface modes accessed using software buttons
at the top of the screen. These buttons allow the mapping of sty-
lus gestures to actions such as inking to create content and erasing,
highlighting, and lasso selection to edit content.

Research aimed at improving mode-based interaction is, in gen-
eral, motivated by the goal of advancing pen-tablet interfaces for the
Tablet PC. These improvements and investigations, however, have
implications that extend to the broader class of applications that
make use of interface mode and stylus interaction. For example,
applications such as computer-aided design software and character
rotoscoping software are geared toward expert users, and the goal
of these software applications is to allow the pointer to be mapped
to the drawing of tens or hundreds of highly precise image artifacts.
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As a result of the prevalence of modes in tablet applications, a
number of studies have contrasted techniques for accessing modes
(e.g., [18], [14], and [21]). Of the different techniques compared,
non-preferred hand mode switching has performed particularly well
in comparison to alternatives. With this mode-switching technique,
users are able to select the desired mode with their non-dominant
hand, while using the stylus to gesture with their dominant hand.
Despite the promise of this technique, understanding of how it im-
pacts user performance and, in particular, how it scales is limited.

The goal of this paper is to investigate if, for expert users, mode
selection using the non-preferred hand becomes a simple decision-
response task and, consequently, the technique’s scalability as the
number of available modes increases. To do so, we develop a math-
ematical model based on a novel application of the well-established
Hick-Hyman Law [6, 12, 15, 23]. We validate our model using
data from a controlled experiment in which users performed a se-
ries of moded gestures in a tablet interface, where up to eight inter-
face modes are supported using single and chorded keypresses of
the non-preferred hand. Experimental measures demonstrate that
the Hick-Hyman Law is an accurate predictor of the time taken to
switch modes for users accessing between two and eight modes.

This model of non-preferred hand mode switching has implica-
tions for the design of mode-based interfaces for tablet applications.
Our model shows that the asymptotic cost of adding modes is a
logarithmic function of the number of modes for interfaces that
use non-preferred hand mode switching. Since we show that the
marginal cost of additional modes is small, our work implies that
when using non-preferred hand mode-switching, providing a rich
set of interface modes is a valid design decision when creating in-
terfaces.

The paper is organized as follows. First, we explore related
work, with a focus on non-preferred hand mode switching in stylus
interfaces and the Hick-Hyman Law. We then describe a mathe-
matical model of non-preferred hand mode switching and an ex-
periment designed to test this model. This is followed by the pre-
sentation of the results. Finally, we discuss the implications of this
research to the design of tablet interfaces.

2 RELATED WORK

Many researchers have studied variations in interaction techniques
for stylus input systems that aim to allow both command and input
in a fluid manner [2, 8, 13, 18, 22, 14]. Past research can be sepa-
rated into research that seeks alternatives to modes, and research to
improve the accessibility of software modes. The goal of this paper
is to improve accessibility of modes in interfaces by developing an
enhanced understanding of the expected performance of a specific
mode-switching technique.

A significant amount of comparative research exists in mode
switching. Li et al. [18] studied five different existing mode-
switching techniques and concluded that, of the five techniques,
non-preferred hand performed best based upon the metrics of speed
(fastest), error rate (second lowest), and user preference (most pre-
ferred). Hinkley et al. [13] proposed a post-gesture delimiter tech-
nique called a “pig-tail” for determining gesture interpretation and
compared it to using a handle, a timeout, or a button to alter a ges-



ture’s “mode”. Grossman et al. [10] proposed “hover widgets”;
where the tracking state of a Tablet PC is used to access modes, and
compared it to using a software button to switch interface modes.
This type of comparative research is invaluable in determining the
relative merits of one technique over another.

While a significant amount of comparative research exists, we
are not alone in our desire to classify the scalability of techniques,
or to combine the specification of models of performance with the
study of mode switching. For example, when studying pressure
widgets, Ramos et al. [20] found that a maximum of six unique
states can be controlled using pressure, thus determining the limits
on scalability of pressure widgets. As well, Accot and Zhai [2] pro-
posed “crossing-based” interfaces, where instead of pointing, the
user moves the cursor beyond the boundary of the targeted item.
Accot and Zhai then extended Fitts’ Law to take into account the
bivariate pointing tasks (e.g., directional vs. amplitude constraints)
that underly goal crossing [3]. Hinkley et al. [14] developed and
used keystroke-level model (KLM) analysis for their Springboard
technique to demonstrate that the temporal efficiency of local mark-
ing menus is often minimized by other ancillary costs.

Despite the benefits of comparing mode-switching techniques,
it remains difficult to compare previous techniques with new ones.
It also remains difficult to predict changes in performance of tech-
niques as interfaces increase in complexity, i.e., as interfaces add
more modes. Our goal is to overcome these challenges by devel-
oping a model that characterizes the performance of non-preferred
hand mode switching. To do this, we first present some back-
ground in psychology research that underlies non-preferred hand
mode switching. We then introduce the Hick-Hyman Law and our
model of non-preferred hand mode switching.

2.1 Non-Preferred Hand Mode Switching

As we discussed briefly in the introduction, non-preferred hand
mode switching is an asymmetric bimanual task – a two-handed
task where each hand has a different role. The non-preferred or
non-dominant hand controls the state, or mode, of the interface,
while the preferred hand performs the moded action. For example,
given the task of drawing a coloured line on a Tablet PC, the non-
preferred hand would perform the colour selection (i.e., the mode
selection), while the preferred hand would draw the line (i.e., the
moded action). The rationale behind the design of asymmetric bi-
manual tasks is based upon a bimanual coordination model called
the kinematic chain model [11]. The kinematic chain model states
that the efficiency of bimanual interaction is achieved by allowing
the action of the non-preferred hand to both precede and set the
frame of reference for the action of the preferred hand.

As a result of these exceptions, recent work in non-preferred
hand mode switching has explored bimanual parallelism in mode
switching. First, Lank et al. [17] explored allowing bimanual par-
allelism in two-mode interfaces. They designed three variants of
non-preferred hand mode switching, one that followed the kine-
matic chain model and two others that violated it by allowing the
tasks of the two hands to overlap. They observed that, if the mode
selection could partially overlap the pen gesture, users performed
faster. Further, they observed that for the two-mode case, there was
no statistically significant difference in the time taken to draw a
moded or unmoded gesture, a phenomenon they dubbed ‘cost-free’
mode switching.

More recently, we [21] have compared two different techniques
for non-preferred hand mode switching to control three and four
modes in a pen-tablet interface: one that followed the kinematic
chain model and another that allowed parallelism. We examined
three time intervals in our study: the time until mode was acti-
vated, the time between mode activation and pen down, and the
time to draw a stroke. The main results of our previous work were
as follows. First, we demonstrated that the temporal benefits of

parallelism extends to three- and four-mode interfaces. Second, we
found the temporal benefits of parallelism are the result of a reduc-
tion in the time to activate a mode and the time between the mode
switch and pen down. Finally, the results showed that the temporal
cost of mode switching increases as the number of available modes
exceeds two.

The purpose of our previous work was to examine if the tem-
poral benefits of parallelism in non-preferred hand mode switching
could be extended to four-mode interaction and whether parallelism
would continue to result in a ‘cost-free’ mode switch. The purpose
of this study is to present and validate a temporal model for non-
preferred hand mode switching that describes the asymptotic cost
of increasing modes to an pen-tablet interface.

2.2 The Hick-Hyman Law

While the results in the above section further our understanding of
which variant of non-preferred hand mode switching is best, it is
not clear whether the technique can or should be scaled to more than
four modes. The goal of this paper is understand whether scalability
can be modeled by the Hick-Hyman Law.

The Hick-Hyman Law [12, 15] describes the time to respond
to a set of alternative choices. In Hick’s [12] original experiment,
subjects were seated in front of a set of lights. Based on the location
of the light, subjects pressed a corresponding button with one of
their ten fingers. In Hyman’s [12] experiments, subjects responded
to lights with vocalizations. Hick found that response time was
a logarithmic function of the number of equally probable choices.
Hyman, allowing variation in the probability of any one choice,
found a linear correlation between response time and information
entropy. Information entropy, measured in bits, is calculated using
the formula:

H =

n
∑

i=1

pi log
2

(

1

pi

)

(1)

where n is the number of alternatives and pi is the probability of
the ith alternative. If the probability of the alternatives are equal,
equation 1 can be expressed as:

H = log2(n) (2)

The time taken to respond to n alternatives is therefore:

RT = a + b(H), (3)

where a and b are empirically determined constants. When a user
responds to n equiprobable alternatives, the response time can be
expressed as:

RT = a + blog2 (n) . (4)

We are unaware of any research using the Hick-Hyman Law to
describe the choice reaction time required to plan and activate mode
switches in tablet interfaces, however, the law has been used to pre-
dict performance in hierarchical menus and in the design of virtual
keyboards. Landauer and Nachbar[16] showed that decision times
for menu-item selection in hierarchical menus correlated with the
times predicted by the Hick-Hyman Law. Cockburn et al. [7] ex-
tended these results to accommodate the transition from novice to
expert behavior. In the evaluation and design of virtual keyboards,
Smith and Zhai [24] used the Hick-Hyman Law as a tool to inform
the placement of virtual keyboard keys to optimize performance.

3 A MODEL OF NON-PREFERRED HAND MODE SWITCHING

As in the menu-selection and typing tasks modeled in previous
work, mode switching can also be formulated as a decision prob-
lem: Given n possible modes for any gesture, the user must se-
lect the appropriate mode. In this section, we describe the indi-
vidual components of mode-selection tasks and how these different



components combine to produce a model of mode-switching per-
formance based on the Hick-Hyman Law.

A task requiring a mode switch can be broken down into four
time periods: perception and planning time, Tc; mode activation
time, Tm; the time interval between mode switch and start of the
gesture, Tint; and the time to complete the gesture, Ts. Since sep-
arating perception and planning time (Tc) from the beginning of
mode activation (Tm) is difficult, it is typical in prompted experi-
mental tasks to measure the interval to initial response [7, 12, 15,
17, 21]. As a result, our model describes three salient time inter-
vals: the time until mode switch occurs, Tc + Tm; the time interval
between mode switch and pen action, Tint; and the gesture time Ts.

Given these time intervals, we define the task time for non-
preferred hand mode switching as:

TTask = (Tc + Tm) + Tint + Ts (5)

We hypothesize that the perception, planning and mode activation
time, Tc +Tm, can be considered a response to a set of alternatives.
Thus, Tc + Tm is described by the Hick-Hyman Law. Substitut-
ing Tc + Tm with the Hick-Hyman Law results in the following
equation:

TTask = a + b

n
∑

i=1

pi log
2

(

1

pi

)

+ Tint + Ts (6)

where a and b are empirically determined constants. As we have
already noted in the previous section, n is the number of available
modes and pi is the probability of the ith alternative. If we assume
that all modes are equally probable, the model becomes:

TTask = a + blog2 (n) + Tint + Ts (7)

Note that the model claims that the time to initiate the gesture
after the mode switch (Tint) and the time to perform the gesture
(Ts) remain constant regardless of the number of modes in the in-
terface. Therefore, for the model to be an accurate predictor of task
efficiency as the number of modes increases, the following must
be valid: the number of modes must affect the time required to
complete a task; the time required for Tint and Ts should remain
constant; and the time required to complete the task must increase
logarithmically.

4 EXPERIMENT

The goal of our experiment was to validate our model of non-
preferred hand mode switching formulated in the previous section.
To do so, we measured performance of moded gestures in a tablet
interface with an application that supported between two and eight
modes.

4.1 Participants

Eight people, seven male and one female, all right-handed, partic-
ipated in the experiment. Participants ranged in age from 21 to 26
years and were recruited from the local university.

4.2 Task

The task given to our participants was similar to the simple line
cutting task described by Lank et al. [17]. Participants were shown
a line at the top of the screen to indicate which color and thickness
of line to draw. Their goal was to set the appropriate mode via
keypresses with their non-preferred hand and then to draw a line
bisecting two vertical bars. The experimental interface is shown in
Figure 1. Also shown are the desired output (the black bar at the
top of the screen) and a user’s gesture (the black line bisecting the
two vertical bars in the center of the screen).

Line bisection in our experimental task controls what is drawn
by requiring a minimum gesture length of 1000 pixels. We have

Figure 1: The experimental task. Subjects were asked to draw a line
bisecting two vertical bars in the mode indicated at the top of the
screen.

Figure 2: Modified keyboard used for input by the non-preferred
hand.

proposed a model of task time that includes mode-switching time,
Tc + Tm, the time interval between mode switching and drawing,
Tint, and the drawing time, Ts. Our model claims that Tc +Tm are
correlated with information entropy contained in the mode decision
and that Tint and Ts are independent of number of modes. The line
bisection ensures within-condition deviations in Ts are not a result
of drawing a shorter gesture.

Keypresses with a participant’s non-preferred hand were per-
formed on a modified USB keyboard, which is depicted in Figure
2. All keys except for the eight keys shown and the space bar were
removed. The space bar was disabled but not removed to give par-
ticipants a place to rest their palms. Participants positioned their
non-preferred hand’s index, middle, ring, and pinky fingers above
either the left four keys (for right-handed subjects) or the right four
keys (for left-handed subjects).1 Labels were placed on the keys to
indicate the mapping of keys to modes.

As is typical in tasks where performance is being measured (e.g.,
[7, 12, 15, 17]), participants were told to draw as quickly as possible
without errors in a verbal orientation to the experiment. This is
similar to directives in typical Fitts’ Law tasks.

4.2.1 Modes

In our experimental task, mode switching with the non-preferred
hand supported up to eight unique modes. In default mode, with

1While in the end we did not have any left-handed participants, we

had originally designed the experimental task to accommodate both right-

handed and left-handed participants.



no keys pressed, the line drawn with the stylus was a thin black
line. Pressing the index finger onto its button created a thick
line. Colours yellow, red, and green were mapped to the middle,
ring, and pinky finger respectively. Using the index finger and an-
other finger simultaneously, a chorded gesture, resulted in a thick
coloured line. For example, pressing the ring and index fingers
would allow the participant to draw a thick red line.

4.3 Apparatus

All experiments were conducted on two identically configured
Toshiba R15-S822 Tablet PC’s with an attached USB numeric key-
board. The tablets ran custom software written in C# using Mi-
crosoft’s Tablet SDK and Visual Studio .NET.

4.4 Procedure and Design

In our experiment, the independent variable is the number of modes.
Each participant performed the experimental task with two, four,
six, and eight-mode conditions. For the two-mode condition, the
participant chose between a default black line and a moded thick
black line. Each condition added one color. For example, the four-
mode condition added yellow and thick yellow line modes to the
two modes in the previous condition.

Within each condition, the participants performed two blocks.
They were informed that the first block was a practice block and
the second was an experimental block. We also informed them that
we were recording timing information for both practice and experi-
mental blocks. The goal of the experimental design was to measure
expert mode switching. Therefore, conditions were presented in in-
creasing order of available modes. Progressing from the two-mode
to eight-mode condition leveraged learning from earlier experimen-
tal conditions in later conditions. While counterbalancing would
have permitted a wider range of analysis, we were concerned that
introducing an eight-mode application immediately to some partici-
pants would create too high an experimental load and/or require too
much training to be feasible in a single-session experiment. By hav-
ing participants complete conditions in order of increasing modes,
we were able to manage the amount of new information presented
to the user in each condition.

A challenge of this experiment, and other similar experiments
that try to measure skilled performance, is balancing the need for
training against the need to control the length of the experiment.
To obtain expert performance, two options present themselves. The
first option is to assume that participants can learn a new technique
during a prescribed practice block. The second is to allow subjects
to continue practicing until their performance converges in some
way. To control the length of the experiment and create homogene-
ity across participants, we chose the first option. We split the num-
ber of gestures performed by a participant equally between practice
and experimental gestures.

The experiment still consumed a significant amount of time. The
average time for our participants to draw one gesture from the pre-
sentation of the desired mode to the pen up event was about one sec-
ond. There was a five-second interval between each pen-up event
and the presentation of the next gesture in order to provide the fol-
lowing feedback to the user: the current task time, their overall best
time, and if the last task was completed without errors. As a re-
sult, each gesture consumed six seconds. Furthermore, each user
drew 210 practice gestures and 210 experimental gestures, a total
420 gestures. We also allowed three minute rest breaks between
the practice and experimental block within each condition and be-
tween the conditions. The minimum total time for the experiment
was 3600 seconds, or one hour, and subjects typically took seventy
minutes.

The gestures were split between conditions as follows. In the
two-mode condition, the participant performed a practice block of
30 gestures and an experimental block of 30 gestures. Within each

Figure 3: Time intervals of interest in prompted mode switching.

block, the gestures were split equally between the two modes, black
and thick black. In the four-, six-, and eight-mode conditions, prac-
tice block gestures were weighted toward the new modes, while
experimental block gestures were split equally between all modes.
Therefore, while the participant would perform an identical num-
ber of practice and experimental gestures, there were 15 practice
gestures in each of the new modes and the remaining practice ges-
tures were distributed among the other modes. Following the prac-
tice block, the participant would complete the experimental block,
where he or she was asked to draw ten gestures in each mode. For
example, in the four-mode condition the participant would draw 80
gestures: 15 yellow, 15 thick yellow, 5 black, and 5 thick black lines
in the practice block; and 10 gestures in each of the four modes in
the experimental block. Within each block the order of the gestures
was randomized.

Over 8 participants, timing information for 3360 gestures was
collected, as follows:

8 participants
X (30 + 40 + 60 + 80) gestures during the four conditions
X 2 blocks per condition
= 3360 gestures

Of the 3360 total gestures, 1680 were experimental gestures (from
the experimental blocks), and 1344 of the experimental gestures
required mode switching.

4.5 Measurements

The interface measured the time taken for each line cutting task and
recorded errors made by the user. Timing started after presentation
of the desired mode and concluded when the participant lifted the
pen from the tablet surface after drawing. Subjects were given five
seconds to reposition in preparation for the next line cutting task.

Timing information was calculated by obtaining the current
value of the hardware’s high-resolution performance counter.
While the use of the performance counter on the Toshiba R15-S822
Tablet PC allowed 100 nanosecond precision in the timing informa-
tion, timing values reported here are rounded to the nearest 10ms
interval. Given within- and between- participant variances in tim-
ing, rounding to 10ms intervals preserves all significant information
contained in our measurements.

Recall from our model that the total time required to complete
the line crossing task can be divided into three measurable compo-
nents: the temporal cost associated with perception, planning, and
mode activation (Tc + Tm); the time between the mode switch and
the initiation of the pen gesture (Tint); and the time to perform the
gesture (Ts). Figure 3 summarizes the timing intervals and the cor-
responding interface events.

Errors were grouped into two classes: mode errors and drawing
errors. Mode errors occurred when participants were not in the de-
sired mode. Drawing errors occurred when the drawn line did not
bisect the two lines, as required by the task.

4.6 Hypotheses

Our primary experimental hypothesis is that our model of mode
switching holds. In other words:

• There exists a linear correlation between information entropy,
H , and Tc + Tm.



Figure 4: Total time to complete the task by log2 (numberofmodes)
(H).

Prior to testing this hypothesis, we first examine the impact of
modes on: (1) total task time (TTask); (2) Tc + Tm; and (3) Tint

and Ts. Recall our model of task time, specifically:

TTask = a + b log
2
(n) + Tint + Ts (8)

We analyze (TTask) to determine whether increasing modes does
affect task time in tablet interfaces. The remaining two analyses al-
low us to understand whether the effect of increasing the number of
modes is restricted to Tc + Tm, the perception, planning and acti-
vation component of task time. If Tint and/or Ts are also affected
by the number of modes, our model of task in pen interfaces needs
refinement.

5 RESULTS

The results section is organized as follows. First, we discuss the
correlation between our model and our experimental data. Next, we
perform some exploratory data analysis, where we use our training
data to examine situations where modes are not equiprobable.

5.1 Analyzing Experimental Data

Data were analyzed using repeated-measures ANOVA with the
number of modes as the within-subjects factor. In all post-hoc pair-
wise comparisons, we used the Bonferroni adjustment to protect
against Type I error.

Table 1 displays the means of the planning and activation time
(Tc + Tm), the time between mode switch and start of the pen ges-
ture (Tint), the time to complete the gesture (Ts), and the average
total time to complete a gesture for each condition. Means are cal-
culated by averaging the times for each individual participant and
then averaging across participants. As anticipated, we observe an
increase in Tc + Tm as the number of modes increases.

In our experimental data, all modes have equal probability. Re-
call that the information entropy in bits for equiprobable choices is
defined as:

H = log2(n) (9)

Figure 4 shows a graph of total time, TTask, as a function of infor-
mation entropy.

Prior to testing model fit, we examined whether or not the num-
ber of modes available impacts total task time. Analysis of variance
shows that there is a significant main effect of the number of modes
on this dependent variable (F3,5 = 12.593, p < .001). Post-hoc
pairwise comparisons revealed that the two-mode condition is sig-
nificantly different from both the six-mode (t7 = −5.225, p =

.001) and eight-mode conditions (t7 = −6.860, p < .001). The
remaining comparisons did not reach significance.2

We then verified that the number of modes impacts only the
perception, planning, and motor activation time, and not the time
to initiate and complete the gesture. Analysis of variance for
condition on Tc + Tm shows a significant effect of condition
(F3,5 = 22.826, p < .001). Pairwise comparisons indicate that
the two-mode condition is significantly different from all other
conditions, while the remaining comparisons did not reach signif-
icance. There was no significant effect of condition on either Tint

(F3,5 = 1.460, p = 0.269) or Ts (F3,5 = 2.360, p = 0.101).
Qualitatively we do note a slight jump in Tint from the two-mode
to the four-mode condition. We address this point in our discussion
of these results.

We now focus on the fit between our model and the experimental
data. Figure 5 plots Tc + Tm against information entropy. We see
a strong linear correlation between the observed Tc + Tm and the
Hick-Hyman Law (R2 = 0.908). With one exception we also see
strong correlations for each individual participant. Figure 6 shows
each participant’s curve, while Table 2 indicates the correlations
between each participant’s data and the model. The only partici-
pant who does not correlate strongly with the model is User 2, who
appears to be an outlier with respect to the remaining participants,
particularly in the four-mode case.

Figure 5: Mean times of Tc + Tm by information entropy.

User R2

User 1 0.968
User 2 0.543
User 3 0.902
User 4 0.856
User 5 0.972
User 6 0.832
User 7 0.986
User 8 0.973

Table 2: Model fit for each individual participant.

Finally, we analyzed the number of errors, means and standard
deviations for which are displayed in Table 3. There was no signif-
icant effect of the number of modes on the percentage of trials with
mode errors (F3,5 = 1.446, p = 0.258) or on the percentage of
trials with drawing errors (F3,5 = 2.408, p = 0.096). We do note
from the Table 3, however, that participants tended to make fewer

2With the Bonferroni adjustment, the acceptance threshold was p = 0.008



Modes
Tc + Tm (s) Tint (s) Ts (s) Total Time (s)
Mean SD Mean SD Mean SD Mean SD

2 0.40 0.04 0.10 0.05 0.25 0.03 0.74 0.07
4 0.63 0.15 0.15 0.08 0.26 0.06 1.03 0.21
6 0.66 0.11 0.13 0.07 0.24 0.05 1.01 0.15
8 0.69 0.10 0.13 0.07 0.24 0.04 1.05 0.14

Table 1: Means and standard deviations for the temporal cost of Tc + Tm, Tint), Ts, and total time, TTask, to complete the task by number of
available modes.

Figure 6: Mean times of Tc + Tm for each participant by information
entropy.

Modes
Drawing Errors (%) Mode Errors (%
Mean SD Mean SD

2 7.1 8.3 3.3 4.4
4 12.8 10.0 5.6 5.9
6 14.6 8.9 5.8 4.5
8 13.1 9.1 7.5 6.9

Table 3: Means and standard deviations for the % of trials that con-
tained drawing errors and the % trials that contained mode errors.

errors, particularly drawing errors, in the two-mode condition as
compared to the four-, six- and eight-mode conditions.

5.2 Exploratory Data Analysis: Varying Mode Probabili-
ties

In past work on menu selection [7, 16], the model of menu item
access assumed equiprobable choices, as did we in our analysis of
experimental gestures. However, as noted in our description of ex-
perimental procedure, we recorded times for both the practice and
experimental blocks in our experiment. While all modes had equal
probabilities in the experimental block, in the practice block we
weighted the modes in favour of new modes to encourage practice.
Given this unequal weighting of modes, one question that arises is
whether our model continues to hold as the probabilities of different
modes change. This point is particularly salient in tablet interfaces,
where one mode might be more common. For example, in a sketch
application such as Windows Journal, the drawing mode might be
used more frequently than other modes, and in AutoCAD, the line
tool might be used more often than the trimmed corner tool.

To reformulate our model, we replace the logarithmic term by
the sum of the inverse of probabilities as described by Equation 1,

Figure 7: Mean times of Tc +Tm in the training blocks by information
entropy. Modes are not equiprobable.

specifically:

TTask = a + b

n
∑

i=1

pi log
2

(

1

pi

)

+ Tint + Ts (10)

Figure 7 shows the plot of condition against entropy. Despite the
unequal probabilities, the weighted entropy model correlates very
highly with Tc + Tm (R2 = 0.966).

6 DISCUSSION

In this paper we present a model that describes the temporal cost
associated with non-preferred hand mode switching. Using the
Hick-Hyman Law, our model defines task time as a logarithmic
function of the number of modes available, or information entropy.
Our experimental data shows that non-preferred hand mode switch-
ing response time does, in fact, correlate strongly with this model
(R2 = 0.908). We also found that the mode effects are primarily
localized to Tc + Tm. Despite the increase in interface complexity,
the need to control additional modes appears not to have a signif-
icant effect on the cost associated with coordinating hands or with
the time taken to draw a gesture.

Based on our training data, we have evidence that the full for-
mulation of the Hick-Hyman Law, which accounts for decision-
response tasks where the options are not equiprobable, also holds
for non-preferred hand mode switching. While participants’ were
told that their gestures would be timed in both the training and ex-
perimental trials, an additional experiment would be required to
verify the strong correlation observed here.

There are three concerns with our data that deserve further in-
vestigation, all of which are related, to some extent, to the intro-
duction of chording. First, qualitatively we note a potential order
effect with Tint. In the four-mode case, when chording was intro-



duced, Tint rose and then decreased slightly in the six- and eight-
mode conditions. The introduction of chording might have had an
adverse effect on a user’s ability to coordinate the two hands. How-
ever, as users became more familiar with the chording technique,
these effects appear to have been reduced. Second, we note that
User 2, our participant whose data does not correlate well with our
model (R2 = 0.543) seemed to have particular difficulty with the
four-mode condition. Finally, error rates in the two-mode condi-
tion (without chording) appeared to be lower than in the remaining
conditions. While we again did not see a statistically significant
difference at the 0.05 level, it might be that chording causes partic-
ipants to make a larger number of errors.

A follow-up study targeted specifically at understanding what
difficulties, if any, users might have in learning and mastering
chording is an area of potential future work. Such an experiment
would require testing different numbers of modes both with and
without chording, and ideally counterbalancing the conditions to
rule out any potential order effects. With a counterbalanced exper-
iment, participants could not leverage training from previous con-
ditions. As a result, training would have to be carefully designed
so that participants are not overwhelmed when introduced to appli-
cations with large numbers of modes. Given concerns with session
length, such an experiment might require a between-subjects de-
sign.

7 IMPLICATIONS FOR THE DESIGN OF MODE-BASED AP-
PLICATIONS

The implications of research in non-preferred hand mode switching
are not limited to Tablet PC applications with a small set of modes.
Pausch and Leatherby [19] studied the use of keyboard accelera-
tors in mouse-based drawing interfaces. They found that it was
common for both novice and experienced users to use their non-
preferred hand to switch modes while leaving their preferred hand
on the mouse.

More generally, domain-specific drafting software applications
such as computer-aided design and character rotoscoping software
include a large set of interface modes. In these domains, many users
become expert and define their own keyboard shortcuts to access
common commands with their non-preferred hand while drawing.
As an example of this phenomenon, the AutoDesk knowledge base
demonstrates creating a shortcut for the ‘line’ command.3

These examples illustrate the broad applicability of non-prefer-
red hand mode switching research. Specialized hardware, such as
our modified keyboard or Tablet PC buttons on the edge of the
screen, are one option for accessing modes. However, even in do-
mains where this specialized hardware does not exist, we see the
use of the non-preferred hand to control program state. While it
was apparent that the use of non-preferred hand speeds the manip-
ulation of interface mode by avoiding homing costs associated with
moving between keyboard and mouse, we have also demonstrated
in this research the low marginal cost of these non-preferred hand
modes.

Alongside efficiency associated with the elimination of homing
costs, our implementation of non-preferred hand mode switching
makes use of both single keypresses and chording to allow control
of up to eight modes with four keys. Our initial assumption was
that chording had advantages and disadvantages. One advantage
of chording in our experimental design was the ability to provide a
one to one mapping of finger to key. This mapping eliminated the
cost associated with targeting individual keys, and allowed subjects
to rest each finger on its mode key. The disadvantage associated
with chording was a hypothesized increase in the complexity of
keystroking in the non-preferred hand. We were concerned that

3See http://usa.autodesk.com/adsk/servlet/ps/item?siteID=123112&id

=2862800&linkID=9240617

chording might introduce additional motor control cost in the action
of the non-preferred hand.

While it seems likely that chording is more complex than single
keypresses, we observed no significant deviation from our model.
In both practice and experimental blocks for four-, six- and eight-
mode conditions, a number of chorded operations occurred. It is
difficult to make strong inferences about the specific costs associ-
ated with chording without a follow-up experiment. However, if
chording does not come at a significantly higher cost than single
keypresses, the parity of chording might allow its use in form fac-
tors with a limited number of hardware buttons, such as the buttons
located on the frame of a Tablet PC.

8 SUMMARY

In this paper we provide a model describing the temporal cost of
non-preferred hand mode switching. Our model is based on the
Hick-Hyman Law, a law derived from information theory that de-
scribes response time as a linear function of the information en-
tropy. Experiments indicate that this model is an accurate predictor
of the time taken to perform a non-preferred hand mode switch for
interfaces containing between two and eight modes when modes
are equiprobable. Our data indicates that our model is also accurate
when modes are not equiprobable. Finally, we discuss implications
of this research for expert use of tablet interfaces.

9 FUTURE WORK

In section 6 we discussed short-term directions for future work,
specifically, additional experiments to better understand the advan-
tages and disadvantages associated with chording, and model fit
when modes are not equiprobable. Our longer-term goals are to
investigate asymmetric bimanual interactions in different types of
tasks, to understand how such techniques generalize to more com-
plex interactions. In particular, we are interested in exploring tasks
that allow for more continuous bimanual interaction than mode
switching, such as manipulating sliders in a data-set exploration
task or controlling pressure in a drawing application.

10 ACKNOWLEDGMENTS

The authors would like to thank everyone who participated in our
user trials and the anonymous reiewers for their insightful com-
ments. Funding for this research was provided by the Natural Sci-
ence and Engineering Research Council or Canada, NSERC.

REFERENCES

[1] J. Accot and S. Zhai. Performance evaluation of input devices in

trajectory-based tasks: an application of the steering law. In Proceed-

ings of the Conference on Human Factors in Computing Systems, CHI

1999, pages 466–472, 1999.

[2] J. Accot and S. Zhai. More than dotting the i’s – foundations for

crossing-based interfaces. In Proceedings of the Conference on Hu-

man Factors in Computing Systems, CHI 2002, pages 73 – 80, 2002.

[3] J. Accot and S. Zhai. Refining Fitts’ law models for bivariate pointing.

In Proceedings of the Conference on Human Factors in Computing

Systems, CHI 2003, pages 193–200, 2003.

[4] X. Cao and S. Zhai. Modeling human performance of pen stroke ges-

tures. In Proceedings of the Conference on Human Factors in Com-

puting Systems, CHI 2007, pages 1495–1504, 2007.

[5] S. Card, T. Moran, and A. Newell. The keystroke-level model for user

performance time with interactive systems. Communications of the

ACM, 23(7):396–410, 1980.

[6] S. Card, A. Newell, and T. Moran. The Psychology of Human-

Computer Interaction. Lawrence Erlbaum Associates, Inc, 1983.

[7] A. Cockburn, C. Gutwin, and S. Greenberg. A predictive model of

menu performance. In Proceedings of the Conference on Human Fac-

tors in Computing Systems, CHI 2007, pages 627–636, 2007.



[8] R. Davis. Sketch understanding in design: Overview of work at the

MIT AI lab. In Proceedings of the AAAI Spring Symposium on Sketch

Understanding, pages 24 – 31, 2002.

[9] P. M. Fitts. The information capacity of the human motor system

in controlling the amplitude of movement. Journal of Experimental

Psychology, 47:381–391, 1954.

[10] T. Grossman, K. Hinckley, P. Baudisch, M. Agrawala, and R. Bal-

akrishnan. Hover widgets: using the tracking state to extend the ca-

pabilities of pen-operated devices. In Proceedings of the Conference

on Human Factors in Computing Systems, CHI 2006, pages 861–870,

2006.

[11] Y. Guiard. Asymmetric division of labor in human skilled bimanual

action: The kinematic chain as a model. Journal of Motor Behaviour,

19(4):486 – 517, 1987.

[12] W. Hick. On the rate of gain of information. Journal of Experimental

Psychology, 4:11 – 36, 1952.

[13] K. Hinckley, P. Baudisch, G. Ramos, and F. Guimbretiere. Design

and analysis of delimiters for selection-action pen gesture phrases in

scriboli. In Proceedings of the Conference on Human Factors in Com-

puting Systems, CHI 2005, pages 451 – 460, 2005.

[14] K. Hinckley, F. Guimbretiere, P. Baudisch, R. Sarin, M. Agrawala,

and E. Cutrell. The springboard: multiple modes in one spring-loaded

control. In Proceedings of the Conference on Human Factors in Com-

puting Systems, CHI 2006, pages 181–190, 2006.

[15] R. Hyman. Stimulus information as a determinant of reaction time.

Journal of Experimental Psychology, 45:188–196, 1953.

[16] T. Landauer and D. Nachbar. Selection from alphabetic and numeric

menu trees using a touch screen: breadth, depth, and width. In Pro-

ceedings of the Conference on Human Factors in Computing Systems,

CHI 1985, pages 73–78, 1985.

[17] E. Lank, J. Ruiz, and W. Cowan. Concurrent bimanual stylus interac-

tion: a study of non-preferred hand mode manipulation. In Proceed-

ings of the Conference on Graphics interface, pages 17–24, 2006.

[18] Y. Li, K. Hinckley, Z. Guan, and J. Landay. Experimental analysis of

mode switching techniques in pen-base user interfaces. In Proceed-

ings of the Conference on Human Factors in Computing Systems, CHI

2005, pages 461 – 470, 2005.

[19] R. Pausch and J. H. Leatherby. Voice input vs. keyboard accelerators:

A user study. In Proceedings of AVIOS ‘91 - Tenth Annual Conference

of the American Voice Input/Output Society, pages 9–14, 1991.

[20] G. Ramos, M. Boulos, and R. Balakrishnan. Pressure widgets. In Pro-

ceedings of the Conference on Human Factors in Computing Systems,

CHI 2004, pages 33–40, 2004.

[21] J. Ruiz and E. Lank. A study of the scalability of non-preferred hand

mode switching. In Proceedings of International Conference On Mul-

timodal Interfaces, ICMI 2007, 2007.

[22] E. Saund and E. Lank. Stylus input and editing without prior selection

of mode. In Proceedings of the Symposium on User Interface Systems

and Technology, UIST 2003, pages 213–216, 2003.

[23] S. Seow. Information theoretic models of HCI: A comparison of

the Hick-Hyman law and Fitts’ law. Human-Computer Interaction,

20:315–352, 2005.

[24] B. Smith and S. Zhai. Optimised virtual keyboards with and without

alphabetical ordering - a novice user study. In Proceedings of INTER-

ACT 2001: Eight IFIP Conference On Human-Computer Interaction,

pages 92–99, 2001.


