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Abstract

Causal relationships are inherent in the world around us and are
intrinsic to our decision making process. Michotte’s Theory of Am-
pliation suggests that the perception of causality can be enhanced
under appropriate spatiotemporal conditions. We extended this the-
ory and proposed that simple static and animated designs, based
on structural and temporal rules, enable the perception of com-
plex causal semantics, such as additive, mediated, and bidirectional
causalities. Results of our experiment showed that participants were
∼5% more accurate and ∼8% faster with the animations, than with
the static representations. Overall our results show that animations
that are designed based on perceptual rules assist the comprehen-
sion of complex causal relations.
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1 Introduction

Causal relations are intrinsic to human reasoning and are used ha-
bitually as a critical component of our decision making process.
A causal relation describes a cause–effect phenomenon wherein an
event causes another event to occur. Causal relations can repre-
sent physical phenomena such as “the fire will cause the iron rod to
turn red hot”, or psychological phenomena such as “the minister’s
speech inspired me to vote for him”. Such relations are essential to
decision making in several areas of information science and are fun-
damental to determining natural occurrences (do dark clouds mean
rain?) or in resolving research questions (do video games increase
obesity rate in children?).

To better comprehend cause-and-effect relationships, several visual
representations typically in the form of diagrams have been devel-
oped. Causal graphs represent the most common representation of
cause-and-effect relationships. These are directed acyclic graphs,
comprised of vertices that denote the factors and targets and a di-
rected line that depicts a direct causal claim between them (Fig-
ure 1). These graphs have appeared in many forms: Fishbone di-
agrams to describe causes and effects in quality management pro-
cesses [Ishikawa 1991] and influence diagrams to represent the es-
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Figure 1: A simple causal graph showing (a) factor: pollen, (b)
target: allergic reaction, and (c) relation: directed line.

sential elements of a decision problem such as decisions and uncer-
tainties, and how they influence each other [Tweedie et al. 1995]. In
all these variations, visualization of the causal information replaced
verbose descriptions of the same.

A critical drawback of causal visualizations and traditional causal
graphs is the difficulty in distinguishing between different types of
causal semantics and the challenge of conveying additional impor-
tant information regarding these semantics, which form an intrinsic
part of causal judgements. For example, from Figure 1, a doctor
will be able to provide better treatment if, in addition to knowledge
about the allergens in the environment, he/she knew the quantity of
the factor and/or how much is required to cause serious concern.
We have addressed this problem in our study and have designed
simple, descriptive, and informative visualizations for six complex
causal semantics that are encountered in daily life. Results of our
study comparing static and animated causal visualizations show that
simple animations based on spatiotemporal rules enhance the per-
ception of causal information.

2 Related Work

Our research has been inspired by several related studies in the areas
of causal perception and causal visualization.

2.1 Causal Perception

The concept of causal perception has been of research interest for
many decades. Michotte and Thinés’s [1963] initial experiments
comprised of two solid objects L (the factor) and T (the target); L
moved towards T, hit it, and caused T to move. Based on their
observations, they suggested that causal perception can be best
achieved by adhering to a set of spatiotemporal rules [Michotte and
Thinés 1963]:

• Absolute speed of the factor and target must be less than 110
cm/sec in order to perceive a causal event. Objects moving at
larger speeds presented a tunnel effect, wherein the factor was
perceived to have passed through the target.

• Time delay between impact and movement should be kept be-
low 100 msecs, with an upper limit of 150 msecs, over which
the factor and target are perceived to be unrelated.

• Relative ratio of velocities is critical to create a causal
connection between the factor and target. Michotte and
Thinés [1963] suggested that targets should move slower than
their factors in order to communicate the transmission of
causal influence.

• Size and shape of the factors and targets are not critical to give
a causal impression. Michotte and Thinés [1963] suggested
that participant performance was not adversely affected when
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Figure 2: A Ishikawa fishbone representation of the causes of delay
in product delivery.
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Figure 3: Representing causal relations using VCV metaphors (a)
Pin-ball metaphor, (b) Prod metaphor, and (c) Wave metaphor.

physical objects were replaced with triangular patterns of
light.

The innateness of causality can be seen through recent research,
which has suggested that causality can be perceived in children as
young as 9 months [Schlottmann and Surian 1999]. The study
showed that infants who were shown a causal event were more
effective in reorienting themselves to a reversed animation of the
same, than infants who were shown a non-causal event. Several
other studies have shown that causality can also be perceived in a
contextual environment. These studies state that the existence of
a causal event in the surrounding environment improves the per-
ception of causality in a non-causal event by ∼80% [Scholl and
Nakayama 2001].

2.2 Visualizing causal relations

Some of the oldest forms of causal representations are Hasse dia-
grams, which use parallel lines to depict processes and connecting
lines to depict interactions along a timeframe. Hasse diagrams have
been widely used to represent information configurations that com-
prise of causal events, such as distributed systems [Rehn 2004]. A
drawback of Hasse diagrams is that it does not distinguish between
different types of causal semantics such as multiple factors, me-
diated or bidirectional causalities. Another issue is that of clutter,
which increases significantly as the number of causal relations in
the scenario increase.

The Ishikawa or fish-bone diagrams [Ishikawa 1991] employ a
static method of representing causal semantics and have been used
for cause-effect analysis in project management scenarios. In
Ishikawa diagrams the effect is written at the right end of the “main
bone” of the diagram and causes are written as side bones off the
main bone (Figure 2). This diagram allows for categorization of
the factors and for describing indirect influences on the final target,
but it is spatially limited in the number of events it can represent.
It also does not incorporate multiple targets or shared factors (fac-
tors directly or indirectly connected to more than one bone in the
diagram).

Several recent studies have employed animations to visualize causal
semantics. Ware et al. [1999] defined a visual causal vector (VCV)
to describe a causal association between two objects. They tested

the VCV using pin-ball, prod, and wave metaphors (Figure 3). In
each of these metaphors, physical features of the factor (object,
rod or wave) provided additional information about it; for example,
speed of the factor described intensity of the influence or direction
of travel (wave metaphor only) showed positive or negative influ-
ences. Results of this study showed that spatiotemporal rules were
critical to causal perception.

Elmqvist and Tsigas designed two techniques, Growing
Squares [Elmqvist and Tsigas 2004] and Growing Poly-
gons [Elmqvist and Tsigas 2003] to visualize casual processes in a
system. Growing Squares used dynamic color flows and checkered
patterns to depict process interactions. On the other hand, Growing
Polygons utilized n-sided and n-sectioned polygons (n = number
of processes in the system) with color flows to show causal events
in the system. Both methods used concentric growth to depict
timelines. Although, on comparison, both techniques performed
better than Hasse representations of the same information, some
of their drawbacks include dependency on color, space wastage
issues, and inability to visualize additional information such as
amount/type of influence or effect.

Several studies have also included interaction techniques to enable
fast and selective processing of the causal information. Spence
and Tweedie [1998] designed the Attribute Explorer, which allowed
users to adjust attribute values of the objects in a scenario and in-
corporated responsive interaction to quickly provide the results of
user-queries (within 0.1 seconds). Similarly, Neufeld et al. [2005]
designed a system that dynamically varied the values of factors to
show the amount of influence on the outcome. Such systems can be
successfully used in situations that necessitate causal reasoning for
making decisions. However, neither method is equipped with the
ability to depict various forms of causal semantics.

2.3 Visual representations: Static or Animation?

There has been a long standing debate among designers concerning
the use of static and animated visualizations to represent informa-
tion. Static images such as icons, lines, and bars have been used
to represent geographical and scientific information [Tversky et al.
2000]. Animations on the other hand have become a popular mode
of representing dynamic information. Tversky et al. [2002] defined
two principles for effective visual representations. The Congru-
ence principle states that a visualization should directly relate to the
information being displayed and the Apprehension principle states
that the visualization should be simple and easy to comprehend.
Tversky et al. [2002] attributed the poor performance of anima-
tions to their complexity and thereby, inability in conforming to
both rules.

Bogacz and Trafton [2005] conducted a study to determine, which
of three representation types, a static image, a sequence of static im-
ages or an animation, was preferred by meteorologists when mak-
ing weather predictions. Results of the study showed that the par-
ticipants preferred looking at a sequence of images rather than the
corresponding animation. However, results also showed that the
forecasters used their expertise to convert these images into anima-
tions in their mind for the purpose of extracting dynamic informa-
tion. This study concluded that animations are only useful if they
provide more information than what is contained in the static im-
ages. However, this study was tested using experts and cannot be
generalized to users with low spatial ability.

Although there is no conclusive evidence on which of static or an-
imated representations are better, we believe that if animations are
simple and designed based on certain structural and temporal rules
then they can effectively convey the information being represented.
However, in order to be fair to the arguments posed by previous
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research in this area, we have also designed equivalent static rep-
resentations for each of our causal semantics and have compared
them to our animations.

3 Causal semantics

Michotte’s research suggests that visualizations based on spa-
tiotemporal rules are effective in describing causal events. These
spatiotemporal rules have formed the basis for creating the ani-
mated representations in our study. We reasoned that if we designed
our animations using these perceptual rules, we would create visu-
alizations that are descriptive, informative, and intuitive.

The focus of our research is two-fold; define and visualize. The def-
inition process involves segregating the different types of causal se-
mantics inherent in human reasoning. In order to simplify our tasks,
we defined two groups of semantics: simple and complex. In the
visualization process we developed static and animated representa-
tions to illustrate the causal information and conducted user-studies
to test our designs.

3.1 Simple causal semantics

Simple causal semantics comprise of the building blocks for causal
relations. In addition to describing the basic components of a causal
relation such as factors, targets, and connecting line, this category
also includes basic causal information:

Causal amplification occurs when a factor influences a target and
brings about an increase in the outcome. For example, low
immunity increases the chances of falling ill.

Causal dampening occurs when a factor causes a decrease in a
target’s effect. For example, medicine reduces infection in
the body.

Causal multiplicity is described when two or more factors com-
bine to produce the final effect. For example, stress and a
virus together cause fever.

Causal strength compares the influences of two or more factors
and determines which is stronger/weaker than the other. This
decision has implications on the final outcome. For example,
a virus has more influence (is stronger) than stress in causing
a fever.

Kadaba et al. [2007] tested static and animated representations of
the simple causal semantics. Results of a Memory Recall exper-
iment showed that participant’s performance improved when tex-
tual descriptions of the causal relations were enhanced using visu-
alizations. A second study evaluating the Intuitiveness of the rep-
resentations showed that participants were ∼9% quicker when the
causal information was visualized using animations. In this work,
we have extended the vocabulary of causal relationships by includ-
ing a novel set of more complex causal relations. Our purpose is to
assess which form of representation (static or animated) invokes in
the viewer, the complex relations defined below.

3.2 Complex causal semantics

Our complex causal semantics are intrinsic to the human decision
making process. These semantics are either (a) extensions or (b)
combinations of the simple semantics. In this study, we compare
static and animated representations of these semantics in order to
determine their intuitiveness in representing the causal information.

STUDYING

(a) (b)
(c)

(d) (e)

EXAM

PERFORMANCE

Figure 4: Simple causal relation showing (a) factor, (b) target, (c)
relation, (d) influence, and (e) effect.

(a)

(b)

(c)

(d)

Figure 5: Static glyphs depicting (a) small and large positive in-
fluence, (b) small and large negative influence, (c) small and large
increase in effect, and (d) small and large decrease in effect.

We first define several keywords that will be used to describe the
components of a causal relation:

Factor A factor is the initiator of a causal event. It is represented
as a labeled node in the causal graph. In Figure 4(a) the factor
is “Studying”.

Target The target is the outcome of the event. It is also represented
as a labeled node in the causal graph. In Figure 4(b) the target
is “Exam Performance”.

Relation The relation signifies a causal action occurring between
the factor and the target and is represented by a connecting
line. In Figure 4(c) the connecting line informs us of a causal
relationship between Studying and Exam Performance.

Influence A factor that causes a change in a target is said to have
an influence on the target. A factor can have a weak or strong
and positive or negative influence on the final outcome. In
Figure 4(d), Studying has a large positive influence on Exam
Performance.

Effect of a target is dependent upon the factors that influence it.
Effect can be weak or strong and can increase or decrease. In
Figure 4(e), Studying causes a large increase in Exam Perfor-
mance.

3.2.1 Visual representations

We built two types of representations to describe our causal seman-
tics:

Static representation

The static design is an extension of a traditional causal graph. Fac-
tors and targets are represented as nodes, and the relationship be-
tween them is represented by the connecting line. Influences are
described using glyphs; positive influences are drawn as glyphs
and negative influences are drawn as glyphs next to their respec-
tive factors. The effect is displayed as bars next to the target; up-
right bars depict an increase in the outcome and inverted bars depict
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(a)
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Figure 6: Animated glyphs depicting (a) small and large positive
influence, (b) small and large negative influence, (c) small and large
increase in effect, and (d) small and large decrease in effect.

FACTOR

TARGET

Bullet speed (influence) 

= 5 cm/sec

Time between impact and 

target transformation = 0 msec

Transformation speed 

(effect) = 1.17 cm/sec

Figure 7: Description of the spatiotemporal guidelines that were
employed to build our animated representation.

a decrease in the outcome. In addition to the type, the quantity of
an influence or effect is also represented by varying the size of the
glyphs and bars (Figure 5).

Animated representation

Our animated design is also a variation of a traditional causal graph
where the factors and targets are represented as nodes and the re-
lation is described by the connecting line. Influences are depicted
by animated bullets that move from the factor to the target. Type of
influence is denoted by a positive or negative sign within the bullet
while amount of influence is depicted by its size. Effect on a target
is illustrated by a change in target size; expansion denotes an in-
crease in effect and shrinking denotes a decrease in effect. Finally,
quantity of effect is described by the amount to which the target
expands or shrinks (Figure 6).

We applied Michotte’s structural and temporal rules to build our
animations [Michotte and Thinés 1963]. Michotte and Thinés’s
guidelines suggest that absolute speed of the factor should be less
than 110 cm/sec. In our designs, influences from the factor move
at an absolute speed of ∼5 cm/sec, which allows the eye to travel
smoothly from the origin to the destination. We also followed
the guideline that suggested that time between impact and move-
ment should be less than 100 msec. As we wanted to retain a
strong causal context in our visualizations, we did not incorporate
any delay (0 msec) between bullets hitting the target and the tar-
get transforming. However, in contrast to Michotte and Thinés’s
studies [1963], our targets do not move; instead they transform.
Nonetheless, as deformation is also a type of change in the target,
we applied Michotte and Thinés’s [1963] guidelines for relative ra-
tio of velocities and designed our target transformations at a speed
of ∼1.17 cm/sec, which is less than the factor’s speed (Figure 7).

3.2.2 Defining complex causal semantics

We now define the set of complex causal semantics as:

STUDYING

EXAM

PERFORMANCE

TAKING 

NOTES

STRESS HEADACHE

(a) Additive causality

Large Positive 

influence (1)

Small Positive 

Influence (1)

Large increase 

in effect (2)

(b) Contradictive causality
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MISSING 

CLASS

Large Positive 

influence (1)

Large Negative 

influence (1)

MALARIA 

INFECTION

MALARIA 

VIRUS

FEMALE 

MOSQUITO 

POPULATION

Small Positive 

influence (1)

Carried through 

(2)

Small Decrease 

in effect (2)

Small Increase 

in effect (3)

Small Positive 

influence (1)

Small Increase 

in effect (2)

PARENTCOLD 

VIRUS

PRE-

SCHOOLER

Small Positive 

influence (3)

Small Increase 

in effect (4)

(c)  Fully Mediated causality

(d) Partially Mediated causality

Large Positive 

influence needed

Small Positive 

influence (1)

No change in 

effect (2)

STRESS HEADACHE
Large Positive 

influence needed

Large Positive 

influence (1)

Small Increase 

in effect (2)

(e) Threshold causality

Small Negative 

influence (1)

Large Decrease 

in effect (4)

Small Decrease 

in effect (2)

Small Negative 

influence (3)

(f) Bidirectional causality

MEDICATION INFECTION

Figure 8: Static representations using causal graphs, nodes, con-
necting lines, and glyphs. Numbers denote the order of occurrence
of the causal event. Arrows were not displayed during the experi-
ment.
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Figure 9: Animated designs using causal graphs, nodes, connect-
ing lines, animated bullets, and target transformations. Numbers
denote the order of occurrence of the causal event. Arrows were
not displayed during the experiment.

Additive causality In additive causality all influences are of the
same type and “add up” to produce the final effect. For ex-
ample, in Figure 8(a) and Figure 9(a), Studying and Taking
Notes both have a positive influence on Exam Performance.

Contradictive causality In contradictive causality causal influ-
ences can contradict each other and the final outcome will de-
pend upon the strongest influence. In Figure 8(b) and Figure
9(b), Missing Class has a negative influence and contradicts
the positive influence of Studying on Exam Performance.

Fully mediated causality Meditated causality introduces the con-
cept of mediators which carry influences from the factors to
the targets. In fully mediated causality, the mediator acts only
as a carrier and is itself not affected by this causal transfer. In
Figure 8(c) and Figure 9(c)), the Malaria virus is carried by
the mediator (Female Mosquito Population) to cause Malaria
Infection in human beings.

Partially mediated causality In partially mediated causality the
mediator becomes an intermediate target as it passes the in-
fluence from the factor to the target. In Figure 8(d) and Figure
9(d), Cold Virus affects a Preschooler as he/she transfers the
influence to his/her Parent.

Threshold causality Threshold causality allows users to define a
minimum value or threshold for the factor to have an influence
on the target. In Figure 8(e) and Figure 9(e), at least a large
amount of Stress is required to cause a Headache.

Bidirectional causality Bidirectional causality describes a dual-
state relationship between the factor and target, where the fac-
tor and target exchange roles after the first pass. In Figure 8(f)
and Figure 9(f), Medication reduces Infection and in turn as
Infection decreases Medication intake is also reduced.

4 Experiment: Comparing static and ani-

mated representations of complex causal

semantics

Our causal designs were based on Michotte’s spatiotemporal rules
that have been effective in perceiving causality. Also, in an effort to
conform to Tversky’s [2002] Congruence and Apprehension princi-
ples for good visual design, our static and animated representations
are simple and show only critical causal information, with minimal
redundancy.

The goal of this experiment was to compare the intuitiveness of our
static and animated representations in describing complex causal
relations. In this study, we endeavor to assess the accuracy and
speed at which participants can perceptually extract causal infor-
mation using our visualizations. The hypotheses for this experiment
are as follows:

• Hypothesis 1: Participants will perform more accurately
when the causal relations are described using animations.

• Hypothesis 2: Participants will be able to respond faster
when the causal relations are depicted as animations.

4.0.3 Subjects

49 undergraduate psychology students of a local university, be-
tween the ages of 20 – 30 years, participated in this experiment.
None of the students had any formal training with perceptual visu-
alizations or causal relations. The participants also confirmed that
they had good English language skills, normal to corrected vision,
and did not suffer from a history of color blindness.
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4.0.4 Materials

The experiment was executed as a .NET program with embedded
static and animated Macromedia FlashTMfiles. Individual copies of
the program were executed on a Windows XP computer and dis-
played on a 17′′ Dell monitor with a 1024× 768 pixel screen reso-
lution.

4.0.5 Design

The experiment comprised of a 2 × 6 within subject design. The
two independent variables were: Representation Type and Semantic
Type.

Representation type

Two types of representations were shown to the participants: Static
and Animation.

• Static: In this representation type, the participants were
shown a static visualization of the causal semantics with 1
– 2 causal relations. In the case where 2 causal relations
were shown, both the relations were shown simultaneously
and colors were used to differentiate between the relations. A
scenario with 1 causal relation was displayed for 27 seconds,
while a scenario with 2 causal relations was displayed for 54
seconds, in order to equalize the viewing times of the two vi-
sualizations.

• Animation: In this representation type, the participants were
shown an animation which also contained 1 – 2 causal rela-
tions. Each relation was isolated and shown separately. In
addition, the animations were repeated three times to enable
comprehension and memorization. Scenarios with 1 causal
relation were viewed for 27 seconds (9 seconds/relation × 3
repetitions) and scenarios with 2 causal relations were viewed
for 54 seconds (18 seconds/relation × 3 repetitions).

Semantic type

At the completion of each trial, the participants were presented with
a statement describing one of the six semantics and were asked to
determine if this description matched the relation that was visual-
ized.

Through this design, each of the six semantics were labeled and
tested in isolation: Additive causality (S1), Contradictive causality
(S2), Fully mediated causality (S3), Partially mediated causality
(S4), Threshold causality (S5), and Bidirectional causality (S6).

4.0.6 Tasks

Participants were given two tasks per trial:

• Memorize: In this task the participants were asked to view a
static graph or animated graph for 9 – 18 seconds and memo-
rize the causal relation(s) being depicted.

• Respond: In this task the participants were provided with a
semantic description, in the form of a statement, and were
asked to match it to the relation in the memorization task.
For example, after displaying a video on “Book Sales”, we
would present the statement, “A LARGE POSITIVE amount
of Audience Feedback causes a LARGE INCREASE in Book
Sales”. The participant will now have to determine if the influ-
ence and effects (quantity and type) matched the information
displayed in the visualization (factor and target names were
not altered when the statement was presented). Two types of
statements were displayed; Correct, where all the components
of the statement exactly matched the relation, and Incorrect,
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Figure 10: Mean accuracies for static and animated representa-
tions, separated by semantic type.

where only some of the components of the given statement
matched the relation viewed in the memorization task. Par-
ticipants were required to respond “Yes” (‘B’ key on the key-
board) for a Correct statement or “No” (‘N’ key on the key-
board) for an Incorrect statement, in order to score a point.

4.0.7 Procedure

The experiment was divided into two phases. In the training phase,
the participants were asked to run a pilot version of the program
until they were comfortable with the experimental tasks. In the ex-
periment phase, the trials in the experiment were divided into 6 ses-
sions. Each session comprised of 24 trials, with 12 trials displaying
static graphs and 12 trials displaying animations. At the end of each
session, the timers were paused and the participants was allowed to
take a break if required.

4.0.8 Results

Accuracy points

Two values were recorded for each answer provided by the partic-
ipant; accuracy points and response time. These data were then
submitted to a 2 × 6 × 2 repeated-measures Analysis of Variance
(ANOVA) treating representation type (static vs. animation), se-
mantic type (additive vs. contradictive vs. fully mediated vs. par-
tially mediated vs. threshold vs. bidirectional), and response type
(yes vs. no) as within-subject factors. The analysis showed a main
effect of representation type F (1, 48) = 20.339, MSe = .025,
p < 0.001. A comparison of the means showed that participants
were ∼5% more accurate when causal relations were represented
using animations. The results suggested that participants were able
to understand the animations better and were able to make better
comparisons with the given statements. The analysis also showed
a main effect of semantic type F (5, 240) = 4.267, MSe = .028,
p < 0.005 and a comparison of the means showed that participants
were least accurate in recognizing bidirectional causality statements
(mean accuracy = 0.745). Compared to bidirectional causality, par-
ticipants were ∼1% more accurate in recognizing threshold causal-
ity (mean accuracy = 0.752), ∼4% more accurate in recognizing
contradictive causality (mean accuracy = 0.770) and partially me-
diated causality (mean accuracy = 0.775), and ∼7% more accurate
in recognizing additive (mean accuracy = 0.804) and fully mediated
causality (mean accuracy = 0.801) statements. In addition, the anal-
ysis showed interaction effects between semantic type and response
type F (5, 240) = 2.656, MSe = 0.032, p < 0.05, which sug-
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Figure 11: Mean response times for static and animated represen-
tations, separated by semantic type.

gests that participant performance with a particular semantic was
dependent upon whether a correct or an incorrect statement was
presented to them.

Response times

An analysis of the response times showed a main effect of repre-
sentation type F (1, 43) = 12.118, MSe = 9.906, p < 0.005.
The basis for this main effect was that participants responded faster
when the causal relations were visualized using animations than
static representations. Specifically, participants were ∼8% faster
with animations than static graphs (7.441 seconds vs. 8.115 sec-
onds) as the animations were more intuitive and could be under-
stood faster. The analysis also showed a main effect of semantic
type F (5, 215) = 15.266, MSe = 7.705, p < 0.001. The ba-
sis for the main effect suggests that participant performance was
dependent upon the type of semantic that was displayed. Specifi-
cally, participants took the longest to respond to partially mediated
causality statements (mean = 8.847 seconds) while, on an aver-
age, they were 0.59 seconds (∼6%) faster in responding to thresh-
old causality statements, 0.63 seconds (∼7%) faster in responding
to bidirectional causality statements, 1.22 seconds (∼14%) faster
in responding to contradictive causality statements, 1.8 seconds
(∼20%) faster in responding to additive causality statements, and
2.2 seconds (∼25%) faster in responding to fully mediated causal-
ity statements. The analysis also showed a main effect of response
type F (1, 43) = 10.564, MSe = 10.500, p < 0.005. Inter-
estingly, a comparison of the means showed that participants were
∼8% faster in recognizing a mismatch between the displayed re-
lation and the given statement than in recognizing a match. This
suggests that participants were able to comprehend the causal in-
formation presented to them and were quickly able to recognize
differences between the visualization and given statement. In cases
where the relation and statement matched, the participant might
have taken longer to double-check and ensure that they were pro-
viding a correct response.

The analysis also showed significant interaction between represen-
tation type and semantic type F (5, 215) = 5.495, MSe = 4.850,
p < 0.001. The results suggest that participants took less time to
recognize a match when the semantics were represented using an-
imations, except in the case of partially mediated causality where
participants were ∼9% faster with the static than the animated rep-
resentations (9.43 seconds (static) vs. 10.38 seconds (animation))
and with threshold causality statements where participants took the
same amount of time with both static and animated representations.
The reason animations did not perform better than static when rep-

resenting partially mediated causality could be attributed to the
complexity of the relation, which necessitated replaying before a
response could be provided. With threshold causality statements,
both representations were equally descriptive and obvious and that
is why we deduce that the participants performed equally fast with
both representations. With respect to recognizing a mismatch, par-
ticipants performed with generally better response times when the
relations were represented using animations than static graphs, ex-
cept with threshold and bidirectional causality statements, where
they responded slightly faster with static representations. The larger
response times for these two semantics could again be related to
the time taken to replay the relation in the mind before provid-
ing a response. The main analysis also showed significant interac-
tion between semantic type and response type F (5, 215) = 9.182,
MSe = 5.159 , p < 0.001 which suggests that the time taken
to recognize a match between the given statement and displayed
relations was dependent upon the semantic being tested. Finally
the analysis showed significant interaction between all three vari-
able groups; representation type, semantic type, and response type
F (5, 215) = 2.469, MSe = 4.363, p < 0.05, which suggests
that participant response times were significantly influenced by the
condition (representation type vs. semantic type vs. response type)
that was presented.

5 Discussion

The results of our study show that participants were ∼5% more
accurate and ∼8% faster when the causal relations were repre-
sented using animations. Also, participants were ∼8% faster in
recognizing a mismatch between a relation and a statement as they
took longer to verify that they were providing the correct answer
when they recognized a match. Finally, participant performance
depended upon the combination of representation type, semantic
type, and response type that was presented during each trial of the
experiment. The analysis of our results concurs with both our Hy-
pothesis 1 and Hypothesis 2 that animations are more efficient than
static-graphs in visualizing complex causal relations. The analysis
also shows that as the complexity of the semantics increases, anima-
tions are more effective in elucidating the complex causal concepts.

5.1 Comparison to existing techniques

A main advantage of our visual representations is the additional
features they provide when compared to existing techniques. Some
of these features are listed below:

• Our animated visualizations use animations to effectively de-
pict dynamic information, in contrast to Hasse and Ishikawa
diagrams which only show static relationships and do not dis-
play changes to the causal connections.

• Our representations have the ability to provide additional in-
formation such as type (positive or negative) and amount of
influence or effect. VCV’s wave metaphor displays some of
this information such as amount and type of effect and amount
of influence, but it does not show type of influence.

• Our research has defined the various types of causal seman-
tics that are encountered in the universe and categorized them
based on the number of agents in the relation and their collec-
tive behaviors. Ishikawa, VCV, growing polygons, and grow-
ing squares provide some features such as mediated causality
and additive causality. However, these features are not explic-
itly defined and have to be inferred from the visualizations.
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Figure 12: Our causal graphs can be redrawn using simple glyphs
to aid education in students and young children.

5.2 Applications of our visualizations

A main concern with any research is it applicability in practice and
in the area of information science. We have identified and addressed
these issues as part of the future work. A major concern in our re-
search is scalability. Our study only focussed on defining the causal
semantics and designing simple visualizations using small graphs.
However, we recognize the potential issues with our designs as the
number of nodes and/or causal relations increase. Therefore, future
work will focus on interaction techniques that allow users to iso-
late and view only parts of the graph at a time. These techniques
will also allow users to create what-if scenarios and execute them
to discover new results.

Several application areas such as medicine, business, and educa-
tion will benefit form the usage of our designs. Our designs can
be used to visualize patient and environmental data in hospitals that
will be useful to doctors in determining medications and to patients
for self-monitoring purposes. In small and large businesses our
causal graphs can be used for project management, workload di-
vision, and timelines. In education, our visualizations can be used
in class rooms and will encourage student-teacher interaction. One
idea could be to augment our representations with simple glyphs to
provide realistic descriptions of causal events, as shown in Figure
12.

In general, causal semantics are applicable to numerous daily activ-
ities. Our visualizations are simple but powerful enough to capture
some of the complex causal semantics that are encountered in daily
life.

6 Conclusion

Our study has focused on the problem of visualizing complex causal
information that are observable in the world around us and are fun-
damental to the decisions we make everyday. Several forms of
causal representations have been designed [Ishikawa 1991], and
while they describe the occurrence of a causal claim between two
objects, they are inadequate in providing additional information
about the event, which is crucial when making judgements. Re-
cent causal visualizations have also incorporated the dynamic na-
ture of a causal event through smooth animations [Ware et al. 1999;
Elmqvist and Tsigas 2004], however they also do not enable identi-
fication of the various forms of causal semantics that are available
in the environment. Our study therefore aimed at defining these
causal semantics and designing simple visualizations that can be
used to identify them.

As part of this study, we defined six complex causal semantics that
we encounter in daily life; additive causality, contradictive causal-
ity, fully mediated causality, partially mediated causality, thresh-
old causality, and bidirectional causality. We also designed simple
static and animated representations to depict these semantics. Our
animations were built using perceptual guidelines and spatiotempo-
ral rules [Michotte and Thinés 1963]. We conducted a user-study in
order to compare the intuitiveness of our representations and to de-
termine the better type of design. Results of our study favored ani-

mations as participant accuracy and response times improved when
the causal information was visualized using our animations. The
purpose of this study was only to define various form of causal se-
mantics and to determine if perceptual rules can be applied to depict
them. In future work we will explore interactive techniques that en-
able manipulation and discovery of causal relations, and will test
the visualizations in applications that have day-to-day relevance.
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