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ABSTRACT
Computer Algebra Systems (CAS) provide sophisticated func-
tionality to assist with mathematical problem solving. De-
spite their widespread adoption, however, little work in the
HCI community has examined the extent to which these com-
putational tools support domain experts. In this paper, we re-
port findings from a qualitative study investigating the work
practices and tools of nine mathematicians in a research set-
ting. Counter to our expectations, our data suggests that
computational tools play only a minor role in their work-
flow, with the limited use of CAS owing primarily to four
factors: (1)the need for transparencyin CAS’s reasoning
to explain computed results; (2)the problem of rigidity and
formality in CAS’s input/output style dialogue; (3)the need
for 2D input to support a wide range of annotations, dia-
grams, and in-place manipulation of objects of interest; and
(4) the need for collaboration, particularly in early stages of
problem solving. While grounded in the study of mathemati-
cians, these findings (particularly the first) have implications
for the design of computational systems intended to support
complex problem solving.
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INTRODUCTION
Computer Algebra Systems (CAS) provide sophisticated func-
tionality to support symbolic manipulation of mathematical
expressions. CAS figure prominently in disciplines such
as computer science, physics, economics, and engineering,
where hundreds of thousands of users make use of them on
a day-to-day basis. For example, when Maple (a popular
CAS) released a new version of its software in 2006, 795,000
licenses were activated within a two-month period [1].
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Despite the popularity of these systems, little HCI research
has examined these tools inprofessionalcontexts. Instead,
existing research has typically studied this software in edu-
cational settings (e.g., [16], [3], [15], [14], [10]), or has fo-
cused on specific features in laboratory situations (e.g., the
usability of mechanisms to input mathematical expressions
[2], [7]). While this past research provides valuable perspec-
tives on this class of software, there is still a need to exam-
ine these systems in the context of professional use, where
the tools have the potential to impact cognitively demanding
tasks in a significant way. Designing tools that augment hu-
man intellect remains a challenging endeavor, but must be-
gin with a thorough understanding of the context of use. In
this case, there is a need to understand how mathematicians
work, as well as how current computational tools integrate
with practices, to understand the specific HCI challenges for
this class of software.

This paper reports the results of a qualitative study examin-
ing the practices, tools, and artifacts of nine expert mathe-
maticians from a research university. We performed semi--
structured interviews in the mathematicians’ places of work
and took photographs of their work environments and arti-
facts to help us better understand their overall goals, work-
flow, and use of tools and media. The participants repre-
sent various mathematical specialties, though all can be con-
sidered theoretical mathematicians. The interview data and
work artifacts provide insight into the work practices and
goals of this user group, as well as the roles computational
tools play in their problem-solving practices.

Contrary to our expectations, participants’ comments sug-
gest that computational tools play only a minor role in our
participants’ work, despite their functionality. For our par-
ticipants, the primary goal appears to be the creation ofnew
mathematical knowledgecommunicated via amathematical
narrative. Work artifacts reveal that this mathematical nar-
rative is composed of both text and mathematical constructs
(e.g., figures and mathematical expressions) and simultane-
ously contains andconstitutesthe result of their work. For
example, while the work may derive a new formula (what
one might consider the final “result” of the work), it is the
derivation of this formula and its proof of correctness that
constitute the primary contributions of our participants’work.
It seems that this need to both deriveand provenew mathe-
matical knowledge significantly affects our participants’per-
ceived utility of current CAS software. In particular, the fol-



lowing themes emerged with respect to these tools:

• The Need for Transparency: Given the goal of discovering
and proving new mathematical knowledge, there appears
to be a concomitant need to understand every step of the
process. However, the CAS software used by our partic-
ipants lacks sufficienttransparencyin communicating its
internal processes. Specifically, given input and a com-
mand, it produces an output, but without accompanying
information explaining how that result was derived. For
the purposes of proving the correctness of one’s work, it
is essential to understand this derivation, especially since
CAS can employ sophisticated algorithms when operat-
ing on mathematical expressions. Interview data suggests
that this lack of transparency has two consequences: It
limits researchers’ ability to deepen their understanding
of the problem, and it contributes to a lack of trust in the
system itself. For example, when an unexpected result
is returned, the mathematician must question whether the
system itself is correct, whether there was an input error,
or whether he, himself, is in error.

• The Problem of Rigidity and Formality: While CAS could
be used in various phases of the mathematical problem-
solving process, we found that the software’s imposed
levels of formality and rigid input/output format can also
deter its use, especially in earlier problem-solving phases
where mathematicians tend to move fluidly between in-
formal notes, sketches, formulae, and mathematical argu-
ments. For example, terms need to be explicitly defined
so the CAS knows how to manipulate them, introducing
an overhead compared to the use of physical media.

• The Need for Free-Form 2D Input: We found mathemati-
cians make liberal use of sketches, mathematical expres-
sions, and annotations to render abstract mathematical con-
cepts more concrete. In the context of performing math-
ematical work, all of these representational forms can be
viewed asdynamicobjects that change over time, for ex-
ample, as terms in an expression are crossed out, content
is added to sketches, and new insights lead to new annota-
tions. Despite its importance for performing work in this
domain, current mathematical tools provide limited sup-
port for this free-form use of 2D space.

• The Need for Collaboration: Mathematics is often a highly
collaborative activity with individuals working around a
shared whiteboard or piece of paper. Collaboration with
these media is extremely fluid, whereas collaboration a-
round a shared computer console requires coordination
of physical input devices. These requirements reduce the
feasibility of using CAS for collocated, collaborative work.

The results in this paper are a first look at CAS use in a spe-
cific type of professional mathematics: theoretical research
in a university setting. While limited in scope to this partic-
ular user group, this work can form the basis for future study
of other types of professional mathematics. Our findings
also suggest implications for the design of tools intended for
cognitively complex tasks outside of the domain of mathe-
matics. For example, CAS are intended to perform manipu-
lations of mathematical entities to offload these cognitively

demanding tasks to the computer. As we found, however,
users do not wish to be completely independent of this pro-
cess. Instead, they seek tounderstandthe operations per-
formed by the system to help them better comprehend the
problem. Findings of this nature are likely to be equally ap-
plicable to the development of cognitive aids in other fields.
We further expand on these implications later in the paper,
particularly with respect to tools that assist with mathemati-
cal work.

The remainder of the paper is structured as followed. We
contextualize this research by first considering previous work
in the area of mathematical tools. We then describe our study
design and detail its findings. From these findings, we derive
a set of potential implications for the design of mathematical
software for professionals. We conclude by discussing our
study’s limitations and directions for future research.

RELATED WORK
A wide range of computational systems, both commercial
and experimental, have been developed to support mathe-
matical work. For the purposes of this paper, we are most
concerned with systems that emphasizesymbolic computa-
tion capabilities, as opposed to data processing. Thus, we
are most interested in Computer Algebra Systems such as
Maple and Mathematica, as opposed to systems such as Mat-
lab or S/R, which are most tuned to dealing with data. With
this focus in mind, there are two general thrusts to HCI re-
search studying the design of these systems: laboratory stud-
ies assessing these systems’ general feature sets (including
expression entry capabilities) and studies examining the im-
pact of these systems in educational contexts.

In a laboratory evaluation of mathematical problem solving
with high-school students as participants, Oviattet al. stud-
ied the impact of different media on problem-solving perfor-
mance. The experiment included four conditions: pen and
paper, an Annoto pen, a pen-based tabletPC, and a graph-
ical equation editor [13]. The authors found that problem-
solving performance was better with pen and paper or the
Annoto pen compared to the other two conditions. Drawing
on Cognitive Load Theory (e.g., [19]), the authors attribute
the results to the familiarity students have with entering and
manipulating expressions with physical media, leading to
comparatively higher cognitive loads when using digital me-
dia for these tasks.

A number of studies have focused on the problem of en-
tering mathematical expressions. Anthonyet al. compared
pen-based entry to keyboard-and-mouse, speech, and pen
plus speech. The authors found that expression entry with
keyboard-and-mouse was significantly slower than the other
three conditions and that pen-based entry was the most pre-
ferred [2]. A pair of studies have also considered expres-
sion entry in the context ofpen-mathsystems: systems use
a tablet PC as an interface to CAS software (or some type of
mathematical backend) with the goal of creating a more nat-
ural input interface. LaViola [8] and Labahnet al. [7] both
assessed the user’s ability to correctly enter expressionsand
solve a number of small problems. The evaluations showed



that while expression recognition can be challenging in such
systems, users were able to complete their tasks effectively
once their expressions had been recognized. These studies
again suggest that pen-based input has particular advantages,
but that digital systems do not offer clear-cut advantages
with current interfaces and recognition engines.

Moving outside of the laboratory setting, various research
efforts have investigated how CAS integrate with high-school
and undergraduateeducation (e.g., [3], [10], [14], [15], [16]).
These studies have uncovered a number of advantages to us-
ing CAS in the classroom. For example, one study found
that students are able to experiment with different expres-
sions more easily, which can promote a higher-level under-
standing of relevant concepts [3]. In addition, by delegating
some of the work to the CAS, students are more able to focus
on problem-solving processes as opposed to focusing solely
on calculation details [10]. This line of research, however,
has also shown that integrating CAS into the classroom re-
quires careful lesson planning [10] and teacher support [14],
and that some students have difficulty translating CAS out-
put into representations that they understand [3]. Finally,
some students feel that they learn more when solving prob-
lems by hand or that “real mathematics” is done by hand, not
by computers [15].

This initial set of studies, both in the laboratory and in educa-
tional settings, provides important insights into the potential
benefits and limitations of current CAS software. For exam-
ple, expression input can be singled out as one area in need
of further improvements. However, these studies character-
ize onlyshort-termuse of such software, typically in fairly
well-defined, well-directed ways (e.g., in an experimental
study or in the classroom with well-defined task). To the
best of our knowledge, no study has considered how these
tools are utilized by professional mathematicians in authen-
tic work situations where problems are ill-defined in nature.
An understanding of how these tools are adopted and ap-
plied in professional environments would be valuable, both
to guide future design and to identify open research prob-
lems. Given the cognitively demanding nature of mathemat-
ics [6], it is likely that the insights gained from studying the
role (and potential role) of computation in mathematics will
be applicable to other cognitively demanding tasks.

STUDY

Method
To understand the current work practices of mathematicians
in a professional setting, we conducted a series of inter-
views with nine mathematics researchers (eight males, one
female) at a research university. All participants have ad-
vanced mathematics knowledge, with all but one participant
at the PhD level or higher. The title and research area of each
participant is listed in table 1.

Interviews took place at locations identified by participants
as their primary workspace (either offices or labs), enabling
us to photograph their work environments. Conducting the
interviews in their workplace also allowed us to view, dis-
cuss, and document samples of relevant work materials. The

ID Title Research Area
P1 Postdoc Theoretical Computer Science
P2 PhD student Quantum Computing
P3 Faculty Applied Math
P4 MSc student Pure Math
P5 Postdoc Symbolic Computation
P6 Postdoc Mechanical Engineering
P7 PhD student Pure Math
P8 Faculty Applied Math
P9 Faculty Theoretical Computer Science

Table 1. The backgrounds of our study participants.

interviews were semi-structured and lasted approximately
30-45 minutes each. During the interviews, we asked partic-
ipants to educate us about their research practices and how
they perform their work. To ground the interviews and assist
with recall, we asked participants to walk us through specific
instances of recent research work.

We collected data by audio taping the interviews and taking
digital photographs, with two exceptions. The audio record-
ing device failed during one interview; immediately follow-
ing this interview, the interviewer created detailed notesand
later had the participant review the notes for accuracy. A
second participant declined to have photographs of his/her
working materials taken for reasons of privacy.

Interview Questions and Data Analysis
In our interviews, we sought to answer the following ques-
tions:

• What is the goal of the mathematicians? What are they
seeking to accomplish? What is the “product” of their
work?

• What characterizes the mathematicians’ workflow? That
is, how do they accomplish their work?

• Which tools are used in mathematical problem solving
(e.g., paper, whiteboard, LaTeX, CAS), at which points
in the work process, and for what reasons?

• What types of tasks are best supported by the different
tools and why?

• What preferences do they have with respect to tools and
media?

Data were analyzed by creating two separate affinity dia-
grams of participants’ responses and their work artifacts.
These affinity diagrams revealed common themes in work
practices and goals, as well as common conventions within
the artifacts themselves. In analyzing the data, we also dis-
covered a strong temporal theme within the artifacts. In par-
ticular, we found that the samples collected served to docu-
ment the progression of mathematical solutions from early
problem-solving stages to final solution forms. Thus, in
addition to the affinity diagrams, we developed a timeline
composed of pictures of the artifacts. The timeline incorpo-
rated samples from all participants, which had the benefit of
providing multiple example artifacts from similar points in
the problem-solving process. From this timeline, we were



Figure 1. Example images illustrating a subset of the timeline present in mathematicians’ work. (A) is example of early work on one participant’s
whiteboard and (B) is another participant’s work on paper. In the early stages, expressions and diagrams are rough, withlittle attention paid to
alignment or formal prose. As the work progresses (C) shows that there is increased structure, with greater attention paid to alignment. In (C),
however, items are still being actively manipulated as the derivation unfolds. Finally in (D), we see an example where the narrative has reached a
more formal state – the writing is neat, the structure is clean, and rhetorical conventions are used in a more rigorous fashion.

able to identify general trends in how solutions are devel-
oped over time. Figure 1 shows a subset of this timeline.

FINDINGS
To understand the role of computational tools in the math-
ematical process, it is essential to first understand the de-
sired outcome of the mathematicians’ work. Accordingly,
we frame our findings by considering the primary goal of
mathematicians, how they achieve that goal, and the roles
computational tools play in the process.

Mathematicians’ Goal: Mathematical Narratives
Based on comments made during the interviews and analysis
of the work artifacts, the primary goal of our subjects’ work
appears to developnew mathematical knowledge, rather than
to apply mathematics to specific problems (such as comput-
ing a result given a set of data). This goal of constructing
new knowledge has important consequences for the role of
computation in the work process.

For our participants, the specific output of their work is a
formalizedmathematical narrative. The purpose of the nar-
rative is to describe thetransformationof mathematical enti-
ties from an initial form to another, more desirable form, and
to prove the correctness of this transformation. The narrative
itself is a mixture of prose, mathematical expressions, and
graphs and diagrams of the mathematical phenomena under
study (e.g., Figure 1(D)). It is a highly structured document
following established conventions in rhetorical style andthe
visual presentation of mathematical material.

The work artifacts indicate that the narrative serves two pur-
poses: It communicates the mathematical phenomena to oth-
ers, but just as importantly, it argues for the correctness of
the work. Thus, while the end result may be the derivation a
new mathematical formula, it is thedescriptionof the deriva-

tion and theargumentationfor its correctness that form the
primary contributions of the work.1 Consequently, the math-
ematical narrative simultaneouslycontainsand constitutes
the results of the mathematician’s work.

Developing the Mathematical Narrative
We found that the mathematical narrative gradually evolves
through an iterative process that shares a number of similar-
ities with design practices, such as those described by Schon
in the Reflective Practitioner[17]. P6 provides a cursory
summarization of this process:

Okay, this is how I work. First of all, I think about the
problem. I draw some meaningless figures like this [ar-
tifact] and then I translate what I see to some equations.
Then I write my equations down [in a way] that is read-
able by someone else, like this [artifact]. [...] And then
I type it and then I submit it. (P6)

We expand on this process, noting the roles computation
plays along the way.

In the early stages, the problem is represented using rough
sketches, basic diagrams, and the informal use of text, math-
ematical formulae, and rudimentary mathematical argumen-
tation. Figure 1(A) shows one mathematician’s whiteboard
at an early stage, while Figure 1(B) shows early work on a
piece of paper. While one can observe some of the elements
and conventions eventually used in a final narrative (e.g., the
use of whitespace, indentation, and labels to visually struc-
ture the document), these initial representations are intended
for the mathematician himself, rather than a third party.

1Note that while we use “formula” here as an example, the role of
the narrative is the same for other types of mathematical work, such
as proving a mathematical relationship or concept.



Work progresses through continual manipulation of these
mathematical entities on the physical media. Figure 1(C)
and 2 show snapshots of this early work, embellished with
notes, content crossed out, and manipulation of expressions
into other forms. Gradually, these representations become
more formalized and structured, and the narrative begins to
form. This gradual formalization not only helps prepare the
document for eventual presentation to a third party, it also
serves as a problem-solving tool itself. More specifically,as
one moves to more formal representations and argumenta-
tion, the problem is subjected to increasing levels of math-
ematical rigor, which can uncover flaws not obvious with
earlier, rough, higher-level representational forms. Forex-
ample, Figure 1(D) shows a solution at an advanced stage
where the presentation has achieved a fairly high degree of
formalization. However, the “slash” through the page here
indicates that the solution was found to be incorrect at this
late stage.2

Summarizing the Phases of Mathematical Work
From this description of our subjects’ work practices, it ap-
pears as though there are a number of phases to mathemat-
ical problem solving in this type of professional setting. To
facilitate the discussion of computational tools in the upcom-
ing section, we label these phases as follows:

• Ideation: A brainstorming phase where ideas are gener-
ated.

• Execution:Ideas are carried out by solving, deriving, and
constructing mathematical proofs.

• Formalization: The results of the previous two phases
are refined such that the work becomes a more complete
mathematical narrative.

• Dissemination:The work is prepared such that it can be
presented to others, either via publication or a more for-
mal presentation to a supervisor.

Computational Tools for Mathematics
Contrary to our expectations, our participants reported only
limited use of computers during problem solving. Instead,
they indicated making heavy use of physical media, particu-
larly paper and whiteboards (or blackboards).3 As the work
becomes more formalized, it may be transferred to a com-
puter, particularly when the work is being prepared for pub-
lication, but prior to this latter stage, there do not appearto
be strong incentives for our subjects to switch to computer-
based representations. There seem to be two primary reasons
for this limited use: Physical media easily accommodate the
various mathematical representations (e.g., expressions, di-
agrams) and their manipulation; and collaboration is more
easily accomplished using physical media.

When they are used, computational tools are employed to
communicate results formally with typesetting software, and
2The slash could also represent the fact that the material is no
longer needed, but in this case, it represents a dead-end.
3Some participants use blackboards rather than whiteboards, but in
terms of the findings presented here, the two are equivalent.

Figure 2. Another example of early work using pen and paper. Of
note are the use of annotations at an angle to distinguish them from the
primary narrative and short-hand notation for matrix defini tion.

to support symbolic manipulation. We expand on these uses
then consider the shortcomings of current offerings.

Formatting and Formal Presentation of Results
Typesetting software, specifically LaTeX, is frequently used
by our subjects to formalize the work and communicate it
to others (i.e., theFormalizationandDisseminationphases).
Our participants are quite comfortable with LaTeX’s syntax,
feeling that it was well worth the time to learn given that
LaTeX is seen as the “Gold standard” for typesetting mathe-
matics because of the output that it produces.

LaTeX is also used by some participants to help organize
their work as it evolves over time. For example, P1 showed
us a LaTeX-based scheme for this type of project manage-
ment. The document resembled a draft of a paper, but also
contained notes on things that need further exploration, and
ideas and formulations that did not end up in the main nar-
rative (but were stored in an appendix).

The Use of Computer Algebra Systems (CAS)
The other major tool used by our participants are Computer
Algebra Systems, particularly Maple. In our study, we found
participants use CAS software to solve certain types of com-
plex expressions, to verify hand-derived work, and occasion-
ally in the Ideationphase to explore a range of possible so-
lutions. We describe each of these uses.

As we have noted, participants said that they tend to do the
majority of their work using physical media, such as pen
and paper or a whiteboard. When used, they feel that their
primary use of CAS is to deal with an expression that they
find either too long, or “tedious” to compute by hand:

Usually if it is a complicated expression that I can’t re-
solve myself. [...] the kind of tedious work that is sort
of boring and uninteresting but where it is easy to make
mistakes. (P1)

If I have some horrible expression that I don’t like,



Figure 3. A portion of a participant’s pen and paper work where s/he
has used Maple and noted so directly within the narrative under con-
struction.

some large amount of tedious computation, integrate
this or reduce this giant mess to something useful, then
sometimes I’ll stick it in Maple to see if it can solve the
problem for me. (P3)

When solving these types of expressions, participants said
that they use paper to formulate the expressions, use the CAS
to solve/simplify the expression, then transfer the resultback
to their paper work. Figure 3 illustrates an instance where a
participant has engaged in such a process and noted the use
of Maple directly in the work. Noting the use of Maple in the
narrative under construction can serve multiple purposes.It
could simply act as a reminder of the path taken to arrive at
the solution. It could also, however, relate to the trust issues
that we discuss in the next section. Since some users have
difficulty trusting the CAS, some may feel it important to
note any reliance on its results directly in the narrative.

Participants also move between physical media and the com-
puter for a second popular use case, namely to verify hand-
derived work. In these instances, participants work out the
details by hand and use the CAS to increase their confidence
in their solutions.

Some of our participants indicated using Maple in theIde-
ation phase to experiment with the output of a number of
similar expressions. This use case, however, was not fre-
quently reported among our participants. One participant
who was more willing to use a CAS than most, commented
on the tradeoff between doing this type of work by hand or
with a CAS. Altering the form of an expression is easy to do
by hand, but performing multiple evaluations without a CAS
takes a significant amount of time:

It is easy to do different things [in Maple] [...] If I had
to solve all of that by hand... I mean I can put a 1 over
2PI [on paper], but if I want to know what that solves
to... (P1)

Similarly, another participant showed us how he writes code
to have Maple generate multiple plots and then examines
these plots visually to see if he can detect patterns.

Finally, Maple occasionally is also used for sophisticated
searching. Rather than using Maple as a interactive problem
solver, these participants write code to have Maple search

through a space of solutions for a counterexample that vio-
lates one or more mathematical properties.

It’s a matter of just testing all possible solutions to see if
they are solutions or not. And the algorithms are really
the fastest way I can test that. (P2)

Reflecting on these uses of Maple, we note that participants
feel that they are most likely to delegate work that they find
uninteresting or inelegant to the computer. The rest of the
work they feel is best done by hand, even if the computer
could do that same work much faster.

The fact that, for the most part, CAS tools play such a minor
role in the problem-solving process is worthy of further con-
sideration, especially since one would assume that the ability
to manipulate complex mathematical expressions computa-
tionally would be of great use to the mathematicians. In the
next section, we describe open issues in the design of CAS.

OPEN ISSUES IN THE DESIGN OF MATHEMATICAL SOFT-

WARE
In analyzing current CAS, we found that they are applied to
only a small subset of problems encountered when perform-
ing mathematical work. Furthermore, we found that features
of their current design can work against the processes vital
to constructing this narrative. The specific issues discovered
can be summarized as:

• A need for transparency in the problem-solving process

• A need for free-form 2D representations

• A challenge in transcribing representations from physical
to digital representations

• A need for collaboration

We describe each of these issues in turn.

The Need for Insight and Transparency
Through our interviews, we discovered that even when per-
forming individual calculations, our participants seek more
than just an answer from the system; they also seek to further
their understanding of the problem under study. Our partici-
pants claimed that they are able to gain better insight and can
better detect patterns when solving problems by hand than
by using a CAS. Furthermore, some indicated that work-
ing out the details keeps their mathematics skills sharp. The
following quotes from participants illustrate these perceived
benefits of manually solving problems:

Sometimes [...] it is a good exercise for me to try to do
it as much by hand as possible because then I exercise
certain parts of my grade 12 calculus class and keep
those fresh. (P1)

Computers are great for running through large amounts
of examples, but you don’t get the same insights. Where-
as if you did something by hand, sometimes you just
get more insight and can figure out the general pattern.
(P2)



You can notice patterns better if you’ve done it yourself
rather than just the way Maple has grouped it. (P9)

Along these same lines, the interviews also reveal that trans-
parency is an issue with such systems and that many partici-
pants have difficulty trusting the computer-generated results:

Sometimes the software package comes back with some-
thing even more horrible than you expected and it is
hard to translate that back to something you understand.
(P2)

Sometimes the computer algebra, it skips steps, or you
can’t see, or in the end you have to go back... (P9)

I tend to not trust the results from the symbolic toolbox
[...] Although it is very infrequent that the results are
incorrect. (P6)

Whenever you do something in Maple, you’d like to be
able to re-produce it by hand. (P1)

I don’t have a good understanding of what kinds of
things [Maple] trips on. (P1)

It is important to keep in mind that these are quotes from ex-
perienced mathematicians, not those learning the basics of
the problem domain. Given these results, it appears that cur-
rent CAS technology is most suited to situations where an
individual seeks only an answer, not the process that created
that answer. Our participants feel that transparency is key;
without this transparency, they do not feel able to follow the
CAS’s reasoning in a way that gives them insight into why
and how a particular answer was achieved. For our partici-
pants, this leads to difficulty trusting CAS output, which in
turn creates a desire to reproduce the results by hand. Ulti-
mately, this increases the time spent solving the problem.

The Need for Free-Form 2D Representational Forms
Throughout problem solving, our participants make use of
symbols, diagrams, prose, and physical space itself to repre-
sent and manipulate the problem. In some cases, it is pos-
sible to see the progression of the solution from one form
to another through the symbols and prose on paper, partic-
ularly when expressions are written sequentially in a top-
down fashion (e.g., Figure 1(C)). In other cases, the flow of
the work is less obvious, as in the cases of diagrams, which
may include many in-place modifications as the understand-
ing of the problem evolves. However, in all cases, it is im-
portant to note the ratherdirect interaction with the objects
of interest – items are annotated, embellished, edited, and
crossed-out in place. This in-place interaction is an impor-
tant feature of the problem-solving process, as it documents
not only the process of transforming the initial state into the
more desirable end state, but also the approaches thatdon’t
work. P7 comments on this work process:

And I don’t even necessarily work down the page. [...]
I just sort of have everything all in one spot. Obviously
it’s not very neat or easy to deal with, but just having

everything on one page kind of makes a big difference
[...] I think it’s easy having everything all in one spot.
It just stops me from forgetting anything. (P7)

Participant P2 also speaks to this iterative process, and the
benefits of using physical media to support the work:

So it is sort of an iterative process. [...] So at first you
figure out how you might approach a problem. You
try it and it either works or it doesn’t. [...] I think this
[paper artifact] went through a couple more refinements
before it turned into an actual argument. (P2)

Physical space is also used as a tool via the spatial arrange-
ments of content within a single document, by using large
surfaces such as tables to lay out multiple sheets of paper to
obtain an overview of the entire problem, and by grouping
related papers in folders and special notebooks.

In contrast to the free-form, unstructured nature of paper and
physical space, commonly available computational tools, in-
cluding CAS and LaTeX, enforce a highly linear, rigid struc-
ture. In fact, one participant commented that he tends to
avoid LaTeX until as late as possible (i.e., until theDissemi-
nationphase) due to this enforced linearity.

Current systems also have limited means by which one can
choose an appropriate level of formalism when represent-
ing content computationally. For example, using a CAS to
manipulate expressions requires all terms to be formally de-
fined and short-hand notation cannot be used (as is done for
the matrix in Figure 2). Tools such as CAS and LaTeX im-
part their own level of formalism which cannot readily be
adjusted to suit the current problem-solving context.

Transcription Problems
Transcribing information in physical media to computational
forms can also pose challenges. This problem is particularly
relevant to transcribing equations into a form that allows the
CAS to manipulate them. If done imperfectly, unexpected
results can be attributed to two causes: a transcription prob-
lem or a potential error in the system itself:

I’ll type in an expression, I’ll have spent an hour trying
to figure out what it means and what the results are, and
then I realize I’ve made an error typing. (P1)

The only concern is that sometimes you end up having
too many brackets. Although [Matlab] has [parentheses
matching] I still find it sometimes tricky and it is very
easy to make mistakes, stupid mistakes. (P6)

Part of the transcription problem is obviously owing to the
reduction in dimensionality, where one must reduce a two-
dimensional expression into one-dimensional representation
inputted via a keyboard. Another problem, however, is the
inability for the system to perform sophisticated error-check-
ing on the input. In contrast to natural language, where tools
such as spell checkers and grammar checkers can help de-
tect errors, error detection in mathematical input is primarily



Phase Tools
Ideation primarily paper/whiteboard, small amount of Maple
Execution primarily paper/whiteboard, some Maple
Formalization paper or latex
Dissemination latex

Table 2. Summarizing tool use according to phase of work.

limited to rudimentary syntax checking, such as checking for
missing parentheses. The mathematician himself may have
difficulty in performing error-checking, since he is still be-
coming familiar with the problem and thus less tuned to what
the expression “should” look like.

When considering transcription problems, one can ask wheth-
er these errors are due to the input system itself, or are sim-
ply the result of human error that would occur in other cir-
cumstances as well. In our interviews, there were comments
indicating that current systems’ expression syntax overhead
is prohibitive, or that expression entry can be error-proneor
unnatural when using a CAS. We were surprised, however,
at the rarity of these types of comments. For example, with
LaTeX, which has similar syntax requirements to a CAS,
most participants indicated that expression entry was not an
issue. They had, however, initially invested significant effort
to learn the syntax of the system. One participant also com-
mented that his/her work requires a fairly restricted sets of
symbols, lessening the need to learn a wide range of syntax:
“I hardly look anything up because I use similar symbols all
of the time so it’s pretty fast” (P9). They also make use of
macros to make expression input easier.

I do find that writing in long and complicated things
becomes very painful unless you start using macros [...]
You very quickly come up with a set of macros that you
are constantly using and including. (P4)

Thus, overall perceptions concerning equation inputting are
mixed. Some find the syntax to be problematic, while others
feel that they have either mastered their required syntax or
have developed other coping strategies. These results sug-
gest that with a high enough perceived benefit, expert users
are willing to invest the time to learn the syntax for expres-
sion entry or develop strategies to simplify the process.

The Need to Collaborate
Our participants revealed that mathematical problem solv-
ing, particularly duringIdeation, is often a highly collabora-
tive activity. While one participant indicated using paperto
collaborate, a whiteboard’s large surface and opportunityfor
multiple input make it the primary medium for such tasks.
Despite the importance of this activity, current CAS soft-
ware offers no real support for collaborative work.

Summarizing the Current Role of Computational Tools
The final product of our mathematicians’ work is not a sin-
gle number nor a single, derived formula. Instead, it is the
demonstration and proof of a new mathematical concept,
contained within a mathematical narrative that evolves over
time. As summarized in Table 2, participants comments sug-
gest that the majority of this work is performed using physi-

cal media, which affords direct interaction with multiple rep-
resentation forms. Certain types of work can be performed
with a CAS that would be difficult, if not impossible to do
by hand, such as an exhaustive search through a large solu-
tion space for a solution that violates certain mathematical
properties. Overall, however, current CAS appear to sup-
port only a small segment of type mathematics. As a conse-
quence, there seems to be a high cost to using CAS software
for our participants: They must transfer their work to this
other medium, which can unintentionally introduce errors,
and there is an inherent distrust in the results it produces be-
cause of a lack of transparency. Thus, there are numerous
costs to using CAS software for this user group, with few
clear-cut advantages.

DISCUSSION
Prior to discussing the implications for design that arise from
our findings, we first compare our findings to those from
educational research. We end the section with discussion
of limitations of our study.

Comparison to CAS Use in Educational Settings
As we mentioned earlier, prior human-centered CAS research
has focused mainly on educational settings. One of the pri-
mary differences that we observed in our study pertains to a
CAS’s ability handle routine calculations, allowing the user
to focus on higher-level principles. Unlike in educational
settings (e.g., [3]), this sentiment was not expressed by our
participants, who instead feel that they use CAS primarily
for work that they are unable to do by hand. Educational re-
search has also found that experimenting with different con-
cepts promotes a higher-level understanding. This type of
usage was not frequently mentioned by our participants, who
feel that they use CAS for more targeted purposes, such as
simplifying an individual expression, than for exploration.

Despite the differing levels of mathematical experience, we
did observe some similarities to students’ perceptions of CAS
in educational settings. First, some students feel they are
able to learn more by doing the work by hand [15]. We were
surprised to such intellectual advantages expressed by our
expert mathematicians, since these users have mastered the
basic concepts. Despite their high levels of expertise, our
participants still feel that they gain more new insight intothe
problem domain by solving expressions by hand or that they
are able to keep their existing skill sharp. Second, when de-
scribing the type of work that they do using a CAS, our par-
ticipants often used negative adjectives – adjectives thatwere
not used to describe their pen and paper work. The notion
that “real mathematics” is done by hand not by computers
was expressed by some students in educational settings [15].
The negative language used to describe the type of work best
delegated to a CAS suggests that our expert mathematicians
might share this perception.

Implications for Design
In the section “Open Issues in the Design of Mathematical
Software”, we highlighted ways in which current computa-
tional tools fail to support our expert mathematicians’ work
practices. In this section we discuss potential avenues for



improvement focusing on three main areas: 1) narrative con-
struction, 2) reasoning transparency, and 3) collaboration.
We also discuss ways in which existing systems, including
research prototypes, have begun to address these concerns.

Support for Narrative Construction
To better support narrative construction, there is a need tode-
crease the amount of enforced structure imposed by the en-
vironment and a corresponding need to increase the range of
annotations that are possible. As we saw from the work arti-
facts, desirable annotations include freehand diagramming,
crossing out items while keeping the original content, mul-
tiple colours, and aligning, tagging and cross-referencing
parts of the document.

Existing commercial CAS provide only very limited sup-
port for this type of narrative creation. Mathematica does
have the ability to combine prose, diagrams and input/output
to/from the CAS backend. The interaction, however, is still
highly structured, and likely would not be suitable for the
early stages of problem solving. Certain pen-based research
prototypes, in addition to allowing more natural input, have
begun to address some of the features necessary. For in-
stance, the designers of MathPad2 have investigated inte-
grating free-form diagrams with text [9], while the designers
of MathBrush have begun to address the issue of short-hand
notation in early problem solving [18]. Also of note is Math-
Journal, whose flexible environment supports a wide range
of annotations (e.g., free-form diagrams, different colours,
alignment) [12]. MathJournal’s backend, however, is not as
powerful as a CAS and, therefore, would not likely be so-
phisticated enough for our participants.

In general, pen-based input appears to be a promising direc-
tion for narrative construction, particularly given its ability
to support free-hand diagraming and other free-form anno-
tations, and to alleviate the need for transcription. With pen-
based input, one could use either an Annoto pen and paper
or a tablet PC. Given some participants’ desire to use phys-
ical space as a tool, such as grouping related documents or
arranging them on a large surface, the tablet PC might not
suit all users’ needs. Instead, something similar to Paper
Augmented Digital Documents (PADD) [5], might be more
appropriate. With PADD, users could continue to use paper,
but also have access to computational power by docking the
pen when CAS functionality is needed. At this point, the
user could enter into a dialogue with the system to define
terms more formally, if necessary, and select the appropriate
manipulations. Such a dialogue would allow users to inter-
act with expressions in a free-form fashion, formalizing this
content only when the services of the CAS are required.

A downside of pen-base input is the recognition process,
which becomes increasingly error prone as expression length
and complexity increases [9]. Unfortunately, this character-
izes the type of expressions that our expert mathematicians
are most likely to turn to a CAS for help in solving. An
encouraging finding from this study, however, concerns the
high acceptance and heavy use of LaTeX, despite the rel-
atively large amount of syntax that users must cope with.

This finding indicates that expert users might be willing to
use syntax and/or macros to clarify their intentions in a pen-
based environment to ease the recognition burden. How to
combine pen-based input with some syntax for expert users
is a promising avenue of future work.

Increasing Transparency
When users enter an expression into a CAS, currently the re-
sponse they receive consists only of the answer. We found in
our study that this amount of information is not always suf-
ficient to provide insight into the problem space and often
leads to issues with trust and predictability. Consequently,
a promising area of future work in designing such systems
is increasing the level of transparency in the system’s un-
derlying reasoning. It may be that such information is al-
ready present in the system’s reasoning process and the chal-
lenge then becomes determining how to present the user with
the information in a comprehensible and meaningful format.
The problem becomes more difficult if the underlying algo-
rithms have to be revisited to enable this type of feedback.
At the same time, there is a question as to how much com-
mercial software companies wish to reveal their underlying
algorithms, given that they may be considered intellectual
property and a part of their competitive advantage.

While no support for transparency is included within Maple
(the CAS used by our participants), this is not the case for
all commercially available CAS. Mathematica, for instance,
does provide some transparency within their student edition,
showing the steps of certain derivations [11]. Similarly, De-
rive can display the steps of a simplification along with the
rules used in the transformation [4]. Our findings motivate
continued efforts towards the design of such mechanisms for
both learning basic mathematical principles and developing
new mathematical insight.

Support for Collaboration
We note that many of our participants collaborate with oth-
ers, particularly during early phases of the work. For this
collaboration to be possible with computational tools, there
is a need for large surfaces that allow multiple, simultane-
ous input. Existing commercially available systems such as
SmartBoards, already go a long way towards providing this
hardware interface. However, there is still the need to trans-
form the CAS software into a form that allows for the possi-
bility of simultaneous interaction by users.

Study Limitations
There are two aspects of our study design that could impact
the generalizability and validity of our findings. First, we
interviewed only a certain type of professional mathemati-
cian: one conducting theoretical mathematics research in a
university setting. It is possible that the work practices and
attitudes of our participants are not representative of allex-
pert mathematicians. For example, in more applied fields or
in industrial settings, users might be less focused on narra-
tive construction and more interested in obtaining answers
to individual questions. As such, the need for free-form 2D
input with in place manipulation might be lessened for these
users and as a result, there might be less overhead associated



with using a CAS. Those in disciplines outside of theoretical
mathematics might also be less confident in their own math-
ematical skills and/or less interested in keeping these skills
sharp, also providing greater incentive for CAS use.

A second limitation of our study is the self-reported nature
of the interview data. We note that in many cases our find-
ings are based on both interview data and work artifacts,
where the work artifacts provide evidence that our partic-
ipants’ statements are reflective of their actual work prac-
tices. In particular, the artifacts serve to support the exis-
tence of different phases of mathematical work and illustrate
the extent to which participants rely on free-form 2D rep-
resentations with physical media. Other findings, however,
rely solely on these self-reports, such as frequency of and
reasons for CAS use. In-situ observations and/or experience
sampling would be required to validate our findings, espe-
cially those based solely on the interview data.

SUMMARY AND FUTURE WORK
Whereas most prior work on computational support for math-
ematics has focused on novice users still learning basic math-
ematics techniques, this research examined the work prac-
tices of mathematical researchers whose contributions liein
mathematics and closely related disciplines. Through inter-
views and an analysis of work artifacts, we found that the
goal of these individuals is to build a complete mathematical
narrative that communicates and proves a new mathematical
concept. Computational tools are used to varying extents at
isolated points throughout the work process, however, they
are failing to support the process as a whole. Key areas that
are problematic for these users include the inability to create
rich annotations, the inability to support multiple levelsof
formality, and a lack of sufficient transparency to allow the
researcher to develop insight into the nature of the problem.

In addition to exploring the design recommendations dis-
cussed in the previous section, there are a number of avenues
to explore in the future in terms of when and why computa-
tional tools are best suited for mathematical problem solv-
ing. As discussed in the previous section, studying users in
other disciplines and in industry is necessary to understand
whether the themes uncovered through our work are present
in other professional settings. It would also be interesting to
deploy some of the pen-math systems, such as MathBrush or
MathPad2, to see whether the increased flexibility they pro-
vide is better able to support user needs than the tools that
are in widespread use.
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