Available online at www.sciencedirect.com

ScienceDirect

International Journal of
Human-Computer
Studies

www.elsevier.com/locate/ijhcs

ELSEVIER Int. J. Human-Computer Studies 69 (2011) 769-785

Improving cascading menu selections with adaptive activation areas

Erum Tanvir®, Andrea Bunt®*, Andy Cockburn®, Pourang Irani®

&Department of Computer Science, University of Manitoba, Winnipeg, Canada
®Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand

Received 23 July 2010; received in revised form 22 June 2011; accepted 27 June 2011
Communicated by A. Sears
Available online 5 July 2011

Abstract

Cascading menus are the most commonly used hierarchical menus in graphical user interfaces (GUIs). These menus, however, tend to
have elongated paths with corner steering, which can result in navigation difficulties. To resolve the corner steering problem, most
current cascading menus implement an explicit time delay between the cursor entering or leaving a parent menu item and posting/
unposting the associated menu. In this paper, we present adaptive activation-area menus (AAMUs), a technique to improve cascading
menu performance by providing a localized triangular activation area between the menu and the child submenu. This triangular
activation area aims to overcome the corner steering problem by permitting quick diagonal navigation without imposing a time delay.

We describe four experiments designed to refine and validate the AAMU technique. Our first experiment shows that AAMUSs improve
item selection performance in comparison to traditional menus and a number of competing techniques, including gesture-based menus
and enlarged activation-area menus (EMUs). Our second and third experiments reveal, however, that in a searching task, where the user
has to look through multiple submenus to find the target, the basic AAMU design suffers from a “cursor trapping” problem, where the
user has to move the cursor out of the activation area prior to exploring another submenu. An evaluation of an improved AAMU design

shows that it is as fast as or faster than traditional menus and EMUs for both selection and searching tasks.
Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

Keywords.: Cascading pull-down menus; Menu navigation; Steering; Selection; Evaluation

1. Introduction

Menus, which appear ubiquitously in WIMP (window,
icon, menu, pointing device) interfaces, provide users with a
convenient means of interacting with and selecting from the
set of available functionality. Increasing complexity of
software systems, however, has resulted in larger and larger
menus, thus necessitating ways to improve menu categor-
ization and selection efficiency. A cascading or hierarchical
menu (see Fig. 1) addresses the issue of increasing menu
size by providing a submenu of choices that are related to
the item in the parent menu that invokes the submenu.

*Corresponding author. Fax: + 1 204 474 7609.

E-mail addresses: etanvir@cs.umanitoba.ca (E. Tanvir),
bunt@cs.umanitoba.ca (A. Bunt),
andy@cosc.canterbury.ac.nz (A. Cockburn),
irani@cs.umanitoba.ca (P. Irani).

Although cascading menus provide the advantage of
presenting a large number of selections within a small
amount of screen space, they have their limitations. In
particular, traditional cascading menus require the user to
steer the cursor along an elongated, narrow path when
traversing the parent item to select an item in a submenu,
which increases selection errors and decreases efficiency
(Accot and Zhai, 1999; Pastel, 2006). As shown in Fig. 2, an
elongated and narrow path can cause unexpected selections
and unintended submenu appearance or disappearance due
to straying mouse movements. To mitigate the steering
problem, traditional cascading menus include a time delay:
When the user’s cursor rests on a cascading item, the child
submenu is posted after a pre-determined period of time
(e.g., 200 ms). While the time delay reduces errors due to
straying mouse movement, it also slows down the naviga-
tion process and selecting the “right” time delay is difficult.
Users can pre-empt the delay by clicking on the cascading
item to open the child submenu, however, this additional

1071-5819/$ - see front matter Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijhcs.2011.06.005

dx.doi.org/10.1016/j.ijhcs.2011.06.005
www.elsevier.com/locate/ijhcs
dx.doi.org/10.1016/j.ijhcs.2011.06.005
mailto:etanvir@cs.umanitoba.ca
mailto:bunt@cs.umanitoba.ca
mailto:andy@cosc.canterbury.ac.nz
mailto:irani@cs.umanitoba.ca

770 E. Tanvir et al. / Int. J. Human-Computer Studies 69 (2011) 769-785

ln_sertl Format Tools Slide Show Window Help

i) NewSlide CtrleM | . | 4 [| & 33% - @
Cascading ltem —f— Ppicture v [1a] Clip Art...

A TextBox & From File...

Moyies and Sounds » @ From Scanner or Camera...
Ell Chart.. New Photo Album...
2| Table... @ AutoShapes
% 4l wordart..
[J |:=| Organization Chart

Parent Menu

Child Submenu

Fig. 1. An example of a two-level deep cascading pull-down menu.

wen... LAY, |
Elit with Notepad
Shve Crl+8
Sdhe As...
sl .
Page Setup...
Prir'lt.. Clri+P y
_gae by E-mail.
Import and Export... : Link by E-rail...
Properties "AY"s u Shorteutto Desklop
Work Offline

Fig. 2. An elongated path causing a movement error. The submenu
disappears unexpectedly as the cursor crosses the border of the lower item
(adapted from Kobayashi and Igarashi, 2003).

interface operation is not without a performance cost. Thus,
traditional cascading menus require either difficult steering
or performance penalties through time delays or additional
interface operations.

In this paper, we introduce a new technique, adaptive
activation-area menus or AAMUS, to improve selection and
navigation in linear cascading pull-down menus. This tech-
nique introduces a triangular adaptive activation area that
changes its size with respect to the size of the child cascading
menu, providing the user with a broad steering path that
permits diagonal movements (e.g., see Fig. 6 in Section 3).
We use the term “activation area” since the submenu remains
active as long as the cursor is within the area. This adaptive
activation area removes the need to steer through narrow
elongated paths, without introducing the cost of a click or a
time delay. Through a series of controlled empirical evalua-
tions, we validate and refine the AAMU technique. Our
evaluations show that AAMUSs are a robust choice for
cascading menu design as their performance is as good as
or better than other techniques across a number of tasks,
menu depths, devices and cascading densities (the percentage
of cascading items within a single level of the menu
hierarchy).

The primary contributions of this work are twofold.
First, we introduce AAMUSs, a novel technique to improve
cascading menu performance. Second, we report the results
of four controlled empirical evaluations that test the
advantages and limitations of the AAMU technique.
Whereas prior work in the area (e.g., Cockburn and Gin,
2006; Kobayashi and Igarashi, 2003; Ahlstrom, 2005) has
often compared their proposed techniques against only
traditional cascading menus, we compare AAMUs to both
traditional menus and a number of proposed improve-
ments. Thus, our evaluations provide a more complete
understanding of the design space for cascading menus
than what exists to date.

The rest of this paper is structured as follows: Section 2
describes background and related work. Section 3 introduces
the details of AAMUs. Section 4 summarizes the goal of
four evaluations that were performed to improve and
validate AAMUSs, whereas Sections 5-9 describe these
evaluations. Section 10 discusses implications of our evalua-
tions and presents potential directions for future research.

2. Background and related work

In this section we survey work related to improving
cascading menu interactions. We begin by reviewing two
predictive models that are useful in assessing menu perfor-
mance from a theoretical standpoint: Fitts’ law and the
Steering law. We then discuss prior work on improving the
performance of linear cascading menus, to which our work
most directly relates.

2.1. Theoretical models for predicting performance in menu
selection

Two theoretical models that relate to the design of
cascading menus are Fitts’ law and the Steering law.

Fitts’s (1954) law is a robust and widely adopted model
for human movement that predicts the time required to
move from a starting position to a final target as a function
of the distance to the target and the size of the target. The
Shannon formulation (MacKenzie, 1992a,b) of Fitts’ law is
as follows:

D
MT =a+b x 10g2<w+1>,

where D is the distance, W is the width of the object, and a
and b are empirically derived constants.

To extend Fitts’ law to 2D navigation within constrained
paths, Accot and Zhai (1997) developed the Steering law,
which predicts the average time necessary to navigate or
steer a pointing device (e.g., a mouse or stylus) through a
2D path, tunnel or trajectory. This model, which has been
applied to traditional hierarchical cascading menus (Accot
and Zhai, 1999), states that the time required to travel a
trajectory is directly proportional to the distance traveled
and inversely proportional to the width of the path. In its
general form, the Steering law expresses the time 7 required

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 771

to steer through a tunnel as
A
T=a+b—,
a+ W

where T is the average time to navigate through the path, W
is the width of the path, A is the length of the path and « and
b are empirically determined constants. A limitation of the
Steering law is that it has been verified for only a few path
shapes and widths. For instance, steering is difficult through
sharp corners and narrow paths (Pastel, 2006), which further
explains the navigation problems in traditional menus.

2.2. Improvements to cascading menus

While alternatives have been proposed and studied
(e.g., Kurtenbach and Buxton, 1994; Callahan et al., 1988),
linear menus remain the most common type of menu in use.
Cascading linear menus, where a parent cascaded item
contains the submenu, are the most commonly used technique
for handling hierarchical menus. Cascading menus, however,
demand a high level of steering accuracy as they require users
to navigate through elongated paths from the parent items to
the submenu items, which according to the Steering law,
increases movement time. Researchers have designed various
techniques to resolve these problems of cascading pull-down
menus. These techniques involve either decreasing the distance
to the menu items, or increasing the size of the menu item.

2.2.1. Techniques for decreasing distance

A simple solution to make menu selection and navigation
faster is to reduce the Fitts’ law targeting requirement, i.e.,
reduce the distance to the target. The Steering law also predicts
that movement time increases with the length of the path to be
covered. Kobayashi and Igarashi (2003) presented an improve-
ment to cascading menus that reduces navigation distance and
avoids unintended menu postings/unpostings. This technique
has two components. The first uses the direction of the cursor
movement to determine the menu behavior. Vertical move-
ment of the cursor changes the Highlighted item within the
current menu and horizontal motion opens and closes the
child submenus, therefore, eliminating the unwanted submenu
activation during menu navigation. Second, when the
horizontal motion occurs, the submenu pops up near the
cursor position, reducing the length of the movement path (see
Fig. 3). A user must move the cursor to the right to open up a
submenu or to the left to close the submenu and return to the
parent menu. A study comparing this direction- or gesture-
based menu to traditional cascading menus found a 12%
decrease in menu selection times.

Although the user study showed that gesture-based
menus improved upon traditional menus, there are two
main limitations. The first limitation is the additional right
or left movement required to invoke or revoke submenus,
respectively. Second, as the child submenu opens closer to
the cursor position, submenus overlap their parent menus,
and hide the rest of the parent menu items. If the user
wishes to select a parent menu item while a submenu is

Holfﬂ'br"“-‘*‘% .

Rant

Number of Points »

Filled
Unfilled

Fig. 3. Gesture-based cascading menus. Horizontal motion towards the
right opens a submenu near the cursor position (adapted from Kobayashi
and Igarashi, 2003).

open, this overlapping forces the user to make a left
horizontal movement to close the submenu prior to
interacting with the parent menu.

Another approach to decreasing target distance can be
found with the force-fields introduced by Ahlstrom (2005).
Force-fields menus partially take control of the cursor
movement from the user. Two types of force-fields are
used. First, when moving from left to right within a
cascading item, the cursor is pushed towards the child
menu and moves faster, optimizing the navigation process.
Second, while moving within a non-cascading item, the
force-fields keep the cursor in the middle of the item,
preventing the cursor from falling outside the parent menu
(see Fig. 4). The most important benefit of force-fields
menus is that they keep the visual structure of the interface
and the interaction technique unchanged. A study compar-
ing force-enhanced menus to traditional cascading menus
showed that the force-fields decreased selection times, on
average, by 18% when a mouse, a track point, or touchpad
was used as an input device. Two disadvantages of this
technique, however, are the resistance felt when moving
backwards (from right to left), and a loss of user control.

As a variant of force-fields, Ahlstrom et al. (2006)
introduced jumping menus. In a jumping menu, the cursor
is warped to the first submenu item immediately after the
user clicks on the parent item. A study comparing jumping
menus, force-field menus and traditional menus showed
that both force-fields and jumping menus improved upon
the performance of the default technique. When using a
mouse, participants were, on average, 9% faster with
force-fields than they were with jumping menus. When
using touchpads, some participants benefited more from
the jumping menus and others benefited more from the
force-fields. Like with force-fields, a disadvantage of
jumping menus is a loss of user control.

2.2.2. Techniques for increasing width

The Steering law suggests a second solution for faster
steering by increasing the width of the path. A wider path
is easier to navigate and less prone to movement errors,
causing fewer unintended menu postings and unpostings.

772 E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785

I\ﬁnu B MenuC
|

gg‘_g(—- directional force fields
|

MenuA

e

parent items with .4 2 —_— —> 4 — T—
— — LJ

directional force fields = E — E 5 — 3 —

/* —_— —D ‘ & —

— — a — —

— — — — L) o

— === e

—_g) === =

— e— —||— —> g €©— €<—

== E=E=|== eEE

— 5 — | I=== =5

— 5 —5 — — —E—E i_g__

— e — — T

— :_E j—— =

t

force free area

Toolbars »
Status Bar
Explorer Bar Search Ctrl+E
. Favorites Ctrl+1I
Enlarged Thombnals History Chrl+H
Activation Thes Research
Area lcons Folders

V

List

Details

Tip of the Day

Discuss
Arrange Icons by » i

Choose Details. ..
Go To »
Refresh

Fig. 5. Enlarged activation-area menus (adapted from Cockburn and
Gin, 2006).

A technique developed by Cockburn and Gin (2006)
called enlarged activation-area menus (EMUs) improves
navigation by increasing the activation area of the parent
menu associated with each cascaded submenu, providing a
wider path for steering (see Fig. 5). The activation areas
for each cascading item are increased by extending them
up to the end of the menu or by including all the non-
cascading items before the next cascading item. An
evaluation showed that EMUs were up to 29% faster than
traditional menus.

The problem with EMUs is that the activation area is
enlarged depending on the density of the cascading items in
the parent menu. As a result, in case of adjacent cascading
items, the size of the activation area will be equal to that of the
traditional cascading menu, offering no performance benefits.
Users might also be distracted when a child cascading menu
appears while they are targeting a non-cascading item that lies
within the enlarged activation area.

Fitts’ law also predicts that target acquisition can be
improved by increasing the size of the target. Fisheye menus

Fig. 4. Cascading menus with force-fields (adapted from Ahlstrém, 2005).

(Bederson, 2000), for example, dynamically increase the size
of the target as the cursor approaches it. They allow many
items to be listed on one screen and are a good solution for
viewing on small devices like personal digital assistants
(PDAs). An evaluation of fisheye menus, however, showed
them to be slower than traditional cascading menus.

3. Adaptive activation area menus (AAMUSs)

In this section we introduce the adaptive activation-area
menus (AAMUSs), which improve upon existing techniques
for cascading menus by providing users with broader paths
to reach the submenus efficiently, even in situations with
multiple adjacent cascading items.

AAMUs, shown in Fig. 6, provide users with a broad
steering path by means of adaptive activation areas. The size of
the activation area is dynamically determined based on the size
of the child cascading menu and position of the cursor. The
activation area is triangular in shape and overlaps some area of
the adjacent menu items; however, the activation area is
semitransparent, allowing users to see all items in the parent
menu. The broader activation area provides a means to remove
the time delay before a cascading submenu is posted, since the
activation area removes the ambiguity of the user’s intentions.

As an AAMU adapts to the size of the child submenu
and initial cursor position, two different submenu
alignments are possible:

Center-aligned: If the size of the child menu permits, i.e., if
there is enough space available at the top
of the cascading item, then the child sub-
menu is placed such that half of its height
is above and half is below the cascading
item (see Fig. 7(a)).

If the child submenu is too long to be placed
centrally, then following the standard MS

Top-aligned:

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 773

File Edit [Document Tools Window
GeTo |
Zoom » Analysis
Page Display ﬂ. Edit
Rotate View S v e
B - Fid
Reading Mode HrieH o
/ v PageDisplay
Full Screen Mode e cnyﬂ 5

Page
Menu Bar) B
v Select 8 Zoom

 Toolbars
L Navigation Panet® Eeeteiag S
G W Reget Toolbars AltF8
Tracker... s "
ok — = Hide Toclbars 8
Automatically Scroll ShiftsCtikH Lock Toolbars
Read Qut Loud s Button Labels

More Tools...

Edit View Document m
Steqctrom | &'f Object Data Tool
Analysis " | [# Geospatial Location Tool

Customize Toolbars... Show Analysis Toolbar

Fig. 6. Examples of adaptive activation areas: (a) a long cascading and (b) a short cascading menu, with expected cursor movements toward

submenu items.

File Edit 50 Document Tools Window
GeoTo |
Zoom » Analysis
Page Display » Edit
Rotate View b v File
Reading Mode Culen ¥ Find
Full Screen Mode GRS v PogeDisplay
< v PageNayigation
Menu Bar B bt
v Select&Zoom
Toolbars
1| Navigatian Panel® » Properties Bar CtrisE
v LineWeights Ctrls5 Reget Toolbars Alt-F8
Tracker... b e
i =] Hide Toolbars F8
Automatically Scroll Shift+Ctri+H Lock Tookbars
Read Out Loud v

Button Labels

More Tooks...

File Edit I Document Tools Window

GoTo » |

Zoom 3

Page Display L

Rotate View I3

Reading Mode Ctri+H

Eull Screen Mode CtrlsL

Menu Bar R

Toclbargy Analysis

1 Navigation Panels v Edit

v Line Weights Ctrle5 Eile

Find

v

v
Tracker... ¥ Page Display
Automatically Scroll Shift=CirlsH - v page Nayigation
v

Read Out Loud v Select & Zoom
Properties Bar Ctrl+E
Reget Toolbars Alt-F8
=] Hide Toolbars F8
Lock Toolbars
Button Labels r

Mote Tools...

Fig. 7. Examples of different alignments for AAMUs: (a) a centrally aligned child cascading menu and (b) a top-aligned child cascading menu.

Windows layout, its top is aligned with the
top of cascading item (see Fig. 7(b)).

The AAMU technique works as follows. When the user
places their cursor on a cascading item, a transparent
adaptively sized activation area is invoked next to the
cursor along with the child submenu. To choose a submenu
item, the user can move diagonally towards the child
cascading menu. The activation area and child submenu
remain posted as long as the cursor remains inside the
triangular activation area. To activate another item in the
parent menu, the user has to move the cursor outside the
boundaries of the current activation area, which will cause
the activation area and child submenu to disappear.

AAMUs offer three potential advantages. First, the
broader activation area permits diagonal movements, which
avoids the problem of steering through elongated narrow
paths and sharp corner steering. Second, as opposed to
EMUSs, users can benefit from a wide activation area even in
cases of adjacent parent items. Finally, there is no time
delay involved in posting a submenu.

4. User studies to evaluate AAMUSs

To validate and refine our AAMU design, we conducted
a series of four experiments whose goals were as follows:

® Experiment 1': We compared AAMUS to other cascad-
ing menu techniques in a selection task representative of
a scenario where the user knows the location of the
target. In this experiment, we compared the techniques
using the mouse as the input device.

® Experiment 2: We compared AAMUs to other cascad-
ing menu techniques using a search task representative
of a scenario where the user does not know the location
of the target item within the set of cascading menus. In
Experiment 2, we also looked at the effect of input
device.

"Experiment 1 is based on an earlier work: AAMU: Adaptive activation
area menus for improving selection in cascading pull-down menus, in CHI
2008 © ACM, 2008. http://doi.acm.org/10.1145/1357054.1357270. Experi-
ments 2-4 have not yet been published.

http://doi.acm.org/10.1145/1357054.1357270

774 E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785

® Experiment 3: Based on a limitation of the AAMU
technique uncovered in Experiment 2, we collected further
data on users’ movement paths to understand situations
where users experience difficulty with the AAMU techni-
que. We then used our observations to design a number of
improvements to the original AAMU design.

® Experiment 4. We validated our improved AAMU
design, by comparing it against the original AAMU
design, EMUs and traditional menus for both selection
and search tasks.

We describe Experiments 1, 2 and 4 in detail. For the
sake of brevity, we provide only an overview of the key
findings from Experiment 3, referring the reader to Tanvir
(2009) for the remainder of the details. The techniques in
all experiments were implemented in Microsoft Visual
Studio .NET, using C#.

5. Experiment 1

In our initial validation of AAMUs, we compared
AAMU:s to the following existing techniques: gesture-based
menus (Kobayashi and Igarashi, 2003), enlarged activation
area menus (EMUs) (Cockburn and Gin, 2006), force-fields
(Ahlstrom, 2005) and default (i.e., traditional) menus. We
also tested an AAMU variant called force-AAMU, which
combines force-fields and AAMUSs. Force-AAMUS provide
the benefit of reduced navigation distance in addition to
wide steering paths. Force-fields are implemented only
within the adaptive activation area: once the cursor enters
the activation area, it is pushed towards the right side. As
there are no force-fields in the menu items, no resistance is
experienced while entering back into a parent menu, unlike
in a force-fields menu. Given that AAMUSs do not include a
time delay, all menu types were implemented without any
time delay to level out the playing field. This decision was
made after a pilot study showed that time-delay based
techniques were being unfairly penalized in terms of
efficiency. Experiment 1 and its results originally appeared
at CHI 2008 (Tanvir et al., 2008).

5.1. Method

5.1.1. Participants

Eleven university undergraduate students participated in
Experiment 1 in exchange for course credit. All had used
the MS Windows default menu and were familiar with
operating a mouse. None were color blind.

5.1.2. Conditions

The following menu types were tested in this study:
default, AAMU, force-AAMU, EMU, force-fields and
gesture-based. We also tested each of the techniques at
cascading depths (i.e., number of levels in the hierarchy) 2—4.

5.1.3. Task and stimuli

Participants were required to perform 30 menu selection
tasks with each technique, with 10 trials at each of three
cascading menu depths (2-—4). The experimental task simu-
lates a scenario where the user knows the location of the
target item. Specifically, the path to the target menu item was
Highlighted in green to provide users with a visual cue (see
Fig. 8), while the target menu item is displayed in red. A trial
began when the participant clicked on the top-level menu
heading (the File icon in Fig. 8) and ended when the
participant successfully acquired the target.

Menu length was varied randomly (between 4 and 9
items) in each level of depth in every trial with a constant
cascading density of 50%, where cascading density is the
percentage of menu items that are parent items. The target
menu item always appeared in the last menu depth level.
For each trial, a different path and target position was
randomly generated to prevent users from learning the trial
path and positioning of the target item. At the start of the
experiment, participants were given 5 min of training with
each menu type. Participants were instructed to complete
tasks as quickly and as accurately as possible.

The order of technique presentation was counterbalanced
using a Latin square, while depth was randomized. With six
menu types, three depths, and 10 trials per condition, the
system recorded a total of 180 trials for each participant. A
post-study questionnaire was also administered to obtain
data on participants’ preferred techniques. The experiment
took approximately 25 min.

5.1.4. Apparatus

The experiment was conducted on Windows XP using a
Pentium 4 machine with 1 GB of RAM. A monitor with a
1024 x 768 resolution was used. The experiment was
performed using an optical mouse.

5.1.5. Design
The experiment employed a 6 x 3 repeated-measures
design for factors menu type (default, AAMU, EMU,

F:a‘th to Target

: I\ 2.2.0

e ! \a20 P 221

:0 T 275 220

1 iy _[PFE _—
I 2.2.4 ol
:3 2.4 12.2.5

4 725 225916

:5 2.6 Pl- Level3 -]

6 |- Level2 -]

=7
|- Levell -]

Fig. 8. An example of a three-level deep selection task in Experiment 1.
The red item (item 2.2.4) is the target and the green items (items 2 and 2.2)
indicate the path. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 775

force-fields, Force-AAMU, and gesture-based) and menu
depth (targets at cascading depth 2, 3, or 4). The depen-
dent variable was task completion time.

5.2. Results

The overall results for completion time are shown in
Fig. 9. There was a significant main effect of menu type
(Fs50=28.5, p<0.001) on completion time. As expected,
there was also a significant main effect of depth on
completion time (Fr20=172.4, p <0.001). In addition to
the main effects, there was a significant menu type x depth
interaction effect (Fio,100 = 8.9, p <0.001). As illustrated in
Fig. 10, performance degraded more rapidly across depth
with default and gesture-based menus than with the other
techniques.

4,000

w
E
- 3.000
E
=
: T £
B 2,000 - T T il
: T sy [P
B
E 3,134
2,52
s — 0271
1,000 1931 200
Y T T T T T T
AAMUs ForceAAMU Force EMUs Default Gesture
Menu Type

Fig. 9. Mean completion times for each menu type in Experiment 1. Error
bars represent the 95% confidence interval (N=11).

Menu Type
00 — AAMUS
Force AAMU

—.; ---Force
13 _ — EMUs
o 4.000 Default
E — Gesture
[
§ 3.000 -
=
L
=
£
S 2,000 -
=
[
U
=

1,000

0 T T T
2 3 4
Depth

Fig. 10. An interaction graph showing the increase in completion time
with increase in depth, for the different menu types in Experiment 1
(N=11).

Post-hoc pairwise comparisons, using a Bonferroni
adjustment, revealed that, using a p=0.05 confidence level,
AAMU (mean 1.93s, sd 0.55s) and force-AAMU (mean
1.95s, sd 0.57 s) were significantly faster than EMUs (mean
2.28s, sd 0.75s), default (mean 2.53s, sd 0.91s) and
gesture-based (mean 3.13 s, sd 1.36s). Force-fields (mean
2.04s, sd 0.62s) were significantly better than default.
There were no significant differences, however, between
AAMUs, force-AAMU and force-fields. Gesture-based was
significantly slower than all other menu types.

5.2.1. Subjective rankings

When asked about their preferences for the different
menu types of a post-questionnaire, seven participants
stated that AAMUSs were their most preferred technique,
while three preferred the force AAMUSs. Only one parti-
cipant stated that EMUs was his/her most preferred
technique. Gesture-based menus were unpopular with
our participants, with 10 stating it was their least preferred
method. Users gave lower preference to EMUSs due to the
non-uniform activation area, which they found distracting
and confusing. Those who did not prefer force-fields
menus commented that they were more familiar with the
standard speed of the mouse. The increased cursor accel-
eration, due to force-fields, made it feel as if the control
was taken away. The majority of the users disliked the
gesture-based menu on the basis that it interfered with the
pace of interaction by forcing the user to change their
direction of motion during posting/unposting.

5.3. Discussion

When the user knows the location of the target, our results
show that AAMUs outperform traditional menus and
EMU s, the latter of which also aims to improve performance
by increasing the size of the activation area. Furthermore,
AAMUs was the most preferred technique among the five
techniques studied. The gesture-based menus performed the
worst, both in terms of performance and users’ subjective
impressions. There were no performance differences between
techniques involving force-fields and AAMUSs; however,
feedback obtained during the questionnaire revealed that
force-fields were generally not well received. Furthermore,
force-fields do not extend to all common input devices, such
as the stylus. In our next study, we examine performance on
a task more representative of a worst-case scenario, where
the user is not familiar with the menu layout, and we look at
the impact of different input devices on the efficiency of the
AAMU technique.

6. Experiment 2: search and multiple devices

In many real-world scenarios, users will not know the
location of the target item, often having to search through
multiple cascading menus. In Experiment 2, we evaluate
the performance benefits of AAMU s in this type of search

776 E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785

task and examine the impact of three different input
devices (mouse, touchpad and stylus).

6.1. Method

6.1.1. Participants

Twenty university undergraduate students participated in
Experiment 2 in exchange for course credit. All had used the
MS Windows default menu and were familiar with operating
a mouse. Ten of the participants had prior experience using
a touchpad and had used a stylus. None were color blind.

6.1.2. Conditions

To keep our experiment manageable for our partici-
pants, we tested three cascading menu techniques: default,
AAMU, and EMU. We chose to focus our comparison on
AAMUs and EMUs because they both involve area
enhancements. Gesture-based menus were dropped from
this study based on poor performance and lower subjective
rankings in Experiment 1. While the force-fields had some
support, we chose not to focus on force-based techniques
in this study for two reasons. First, they can be used in
combination with area-based techniques. Second, force-
fields do not generalize to stylus-based input. We also
tested three device types: mouse, touchpad and stylus.

6.1.3. Task and stimuli

Participants were required to perform 20 menu search
tasks with each technique, at a fixed menu depth (level 3).
Since it was a search task, no visual cue was provided for
the path. The target menu item was displayed in red. Like
in Experiment 1, a trial began when the participant clicked
on the top-level menu heading and ended when the
participant successfully acquired the target. Menu length
was varied randomly (between four and nine items) in each
level of depth in every trial with a constant cascading
density of 50%. The positioning of the target item was
determined randomly, but always appeared in the last
menu depth level. For each trial, a different path and
target were generated to prevent users from learning the
trial path and positioning of the target item. At the start of
the experiment, the participants were given 5 min of
training with each menu type. Participants were instructed
to complete tasks as quickly and as accurately as possible.

The order of technique presentation was counterba-
lanced using a Latin square, while device was randomized.
With three menu types, one depth level, three devices and
20 trials per condition, the system recorded a total of 180
trials for each participant. The experiment took approxi-
mately 25 min per participant.

6.1.4. Apparatus

The experiment was conducted on Windows XP using a
Pentium 4 machine with 1 GB of RAM and a 1024 x 768
monitor. The experiment was performed using an optical
mouse, a touchpad and a stylus.

6.1.5. Design

The experiment employed a 3 x 3 repeated-measures
design with factors menu type (default, AAMU and EMU)
and input device (mouse, touchpad and stylus). The depen-
dent variable was task completion time. We also measured
the number of times the user clicked on a non-parent item
other than the target, which we refer to as the number of
extra “clicks”.

6.2. Results

The mean completion times with respect to menu type and
device type are summarized in Fig. 11. There was a significant
main effect of menu type (F23=11.668, p=0.001) on
completion time. Post-hoc pairwise comparisons, using the
Bonferroni adjustment, showed EMUs (mean 4.87s, sd
2.30s) performing significantly faster than default (mean
5.30s, sd 2.50s, p <0.001) and AAMUs (mean 5.26s, sd
2.75s, p=0.006), whereas there was no difference among
default and AAMUs (p=1.00). There was also a significant
main effect of device type (F236=063.02, p<0.001) on
completion time, but no interaction effect between menu type
and device type (Fi72 =1.510, p=0.208).

In terms of the number of extra clicks, the effect of menu
type was not significant (F236=0.216, p=0.807). On
average participants performed 0.13 extra clicks per trial
with AAMUSs (sd 0.38), 0.13 with EMUs (sd 0.38) and 0.15
with the default menu (sd 0.47). Thus, participants were
not more error prone with any one technique. The effect of
device type on the number of extra clicks was significant
(Fr36=5412, p=0.009), with trends suggesting that
participants made more extra clicks with the stylus (mean
0.35, sd 0.65) than with the touchpad (mean 0.03, sd 0.04,
p=0.098) or the mouse (mean 0.02, sd 0.04, p=0.093). The

Device

M mouse
M stylus
[TouchPad

®

E

@

E

=

c

S

o

=

£

S

(4]

£

s

o

=

AAMUs Default EMUs
Menu Type
Fig. 11. Mean completion times for each menu type with respect to device

type in Experiment 2. Error bars represent the 95% confidence interval
(N=20).

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 771

interaction effect between menu type and device type,
however, was not significant (£472 =0.007, p=0.903).

6.3. Discussion

In Experiment 1, an item selection task showed the
promise of the AAMU technique. Experiment 2, however,
which involved a searching task, revealed some potential
design problems with the AAMU technique as it no longer
outperformed default and EMUs. The lack of difference
between AAMU and default suggests that some of the
benefit of the wider activation area is lost when the user is
exploring menus. In particular, when the wider activation
area is fully expanded, it covers adjacent items in the parent
menu and the user cannot activate the adjacent menu item
immediately. We refer to this limitation as the “‘cursor
trapping” problem since the user needs to “‘get out” of the
activation area before entering the next menu item. A
second potential problem, which could impact both select
and search tasks, but might be more pronounced in a search
task (because more menu navigation is required), is that
users might not be taking full advantage of the diagonal
movement path because of their prior experience with
traditional cascading menus. We investigate both of these
potential concerns in Experiment 3.

7. Experiment 3: investigating movement trajectories

To investigate the existence of the aforementioned
problems, we next collected a number of movement paths
from nine participants to examine how users interact with
AAMUs both with and without the possibility of trapping.
To observe “trapped cases” we manipulated cascading
density, which is the percentage of cascading items within
a single level of the menu hierarchy. We included trials with
menus of minimal density, with only one cascading item
present. Since in our experiment no trapping can occur in
these cases, we refer to these trials as “‘clear”. We also
included trials where every item in the first level of the
menu hierarchy was cascading (i.e., 100% cascading

a b
_. Item 1 Item 1
ltem 2 ltem 2
Parent 1 > Parent 1

Item3 Item 3
Item 4 Item 4
Item 5 Item 5

Trapped

Backtrackin

density), to ensure that trapping would occur. Full descrip-
tions of Experiment 3’s method and analysis can be found
in Tanvir (2009). Here we summarize the types of move-
ment patterns we observed.

7.1. Movement patterns in “clear” trials

Inspections of users’ movement patterns revealed that,
in general, users did begin to use the diagonal movement
path offered by AAMUs after reminders during initial
training. Despite the prevalence of traditional cascading
menus, almost all users showed identical navigation pat-
terns in case of clear trials, making use of the broader
activation area and performing diagonal steering.

7.2. Movement patterns in trapped trials

In case of trials designed for trapping, we found that, as
expected, the majority of these trials actually caused cursor
trapping and users had to manoeuver the cursor out of the
AAMU triangle to select the correct item. Our examina-
tion of navigation patterns revealed how disruptive cursor
trapping can be. There were many patterns visible, from
back tracking to extreme vertical (upward or downward)
cursor movements.

Fig. 12 shows an example of the disruption. In this trial,
there are two adjacent parent items (Parents 1 and 2), with
the target located at position 5 in Parent 2’s submenu. As
seen in Fig. 12, the user started moving downwards in
the parent menu and as soon as the cursor entered
the boundaries of Parent 1, the respective AAMU was
activated. Since the user’s motion was diagonal, the cursor
moved much inside the triangle before the user realized
that it was the wrong item and now the only option left
was to move the cursor outside the triangle to deactivate it.
So the user backtracked all the way out of the AAMU
triangle and as soon as the cursor entered the boundaries
of Parent 2, the other AAMU activated and it lead to the
target item.

c

Item 1 Target item

Item3

ltem4

Item 5

Fig. 12. Sample user data showing trapping and backtracking to get out of the “trap’: (a) the initial cursor position, with the target within Parent 2; (b)
when the cursor hovers over Parent 1, its corresponding AAMU gets activated. The user continues moving the cursor and gets trapped into Parent 1; (c)
to get to Parent 2, the cursor moves out of the “trap” and then the Parent 2 AAMU is activated to complete the task.

778 E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785

a b

. Parent 1 ! \Parentl z

Parent 2 !
ltem1 Iten\l / 5

Item 2 ltem 2 }
Iltem 3 Item 3 /
ltem4 Ite 4[
Iltem 5 Item 3"

Parent 1

WE\

Item1

ltem 2

Item 3

ltem4 Targetitem

Item 5

Fig. 13. Sample data where the user makes an exaggerated movement to avoid getting trapped: (a) the initial cursor position; (b) the user skips several
items to avoid trapping; upon realizing that the cursor overshot considerably, the user moves back to Parent item 2, but the AAMU for Parent item 2
opens up; (c) finally the cursor is back at Parent item 1 and the user then moves to the final target item.

7.3. Trap avoidance

In addition to the difficulties users experienced when
trapped in an AAMU, we also observed the development
of coping strategies which negatively impacted future
selections. In particular, after getting trapped a few times,
almost all users would try to avoid trapping by making
extreme vertical (downward or upward) movements.
Fig. 13 shows a navigation pattern of trap avoidance even
before any trapping occurred. In this trial, there are two
adjacent parent items at the top of the parent menu
(Parents 1 and 2). Since Parent 1 contained the target
item, technically the user was never trapped while moving
downwards into the item, but having experienced getting
trapped in previous trials, the user quickly leaped down-
wards vertically, traversing six items before stopping and
moving up again. On the way up, the user activated Parent
2’s AAMU (but did not get “trapped”) and kept moving
the cursor upwards until Parent 1’s AAMU was activated.
The user then entered this newly activated AAMU and
clicked on the target item.

8. Developing alternate AAMU designs

The movement patterns illustrate some of the difficulties
that users experience concerning cursing trapping with
AAMUs. To lessen the performance impact of trapping,
we investigated variations of the original AAMU techni-
que that provide alternate paths or shortcuts out of
cascading items. We explored the following factors: shape,
visual cue and AAMU drawing position, which led to
three alternative designs: AAMU-Click, AAMU-Curve
and AAMU-Hover.

AAMU-Click appears identical to traditional AAMUs
and it provides a shortcut path (click) to users to get out of
the trap. AAMU-Click allows the users to continue
interacting with other items in the menu while staying

b
Clickable region
a ‘\‘
. : |
File 20 File ‘\‘ :1.0
0 21 0 R 1.1
1 . P T -
20N 23 - B
3 2.4 = |14
-4 2.5 4 :1.5
5 2.6 S5 1.6
0 |- Level2 -] 6 |- Level2 -]
7 7
|- levell -]

|- levell -|

Fig. 14. Example of the AAMU-Click. (a) Before the click action: the
cursor is trapped inside activation area of item 2, whereas the desired
submenu is associated with item 1. (b) After the click action: while staying
inside the old activation area, the user clicked on item 1 and activated it.

inside the AAMU triangle. A single click on any item
makes the AAMU triangle disappear and activates this
current item’s function, as shown in Fig. 14.

AAMU-Hover, shown in Fig. 15, provides users with a
visual cue to indicate an alternative path. When the mouse
crosses over onto an adjacent item that is covered by the
AAMU triangle, a small arrow appears inside the AAMU
triangle. Hovering the cursor on this arrow activates this
next item’s function.

AAMU-Curve 1is a curved version of traditional
AAMU:s. Instead of an equilateral triangle, the legs joining
the cursor position and the top and the bottom of the child
submenu are drawn as curves. This curved triangle is also
drawn a few pixels ahead of the cursor, so that the user can
explore the child submenu without entering the triangle or
getting trapped. Even in case of trapping, the narrow tip of
the curved shape makes it easier for the user to get out of
the triangle. An example of the AAMU-Curve is shown in
Fig. 16(a).

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 779

Hover region
1

\ :1.0
i3 el
O 1.2
=% > 13
B 14
5
416
|- Level2 -]

File

Yo pwNE D

|- Levell -

Fig. 15. A two-level deep menu showing the AAMU-Hover.

a b
A(x,
Curved rggion (xy)
: \\ :1.0

File A 11

0 B 1.2

A= 1

2 p 14 -l - - - height (h)

3 =1%5 Cxy) distance =

4 1.6

= |- Level2 -]

6

7/
|- Levell -| B

Fig. 16. The AAMU-Curve. (a) A two-level deep curve showing an
example of the AAMU-Curve and (b) the geometry of the AAMU-Curve.

The geometry of the curved-AAMU shape is best
explained using the parameters depicted in Fig. 16(b).
The non-curved AAMU is simply a polygon drawn using
three corner points: C(x, y.), A(x4, y,) and B(xp, yp), where
the point C is the position of the cursor prior to invoking
the submenu. Based on the cursor’s distance to the
submenu (d), and the menu’s height (4), we define the
following relations:

distance (d)=14 - x—C - x|

height (h)=|B-y—A - y|

We draw the curved-AAMU polygon in two parts, the
upper half and lower half, using Al =h2="h/2. We use a
quadratic function to draw the curved-shape polygon,
based on f(x) = kx?, where k = hl /d? and x is the x-value
coordinate for each point from the cursor’s position C to
the submenu (defined by the vertical line (A,B)). The
function used for k& was derived through iterative refine-
ments based on its perceived effectiveness in minimizing
trapping. Similarly, we base the bottom part of the curve
on k=h2/d’.

We tested each of the above three alternative designs in a
pilot study with 25 participants. The results of this study,
which is described in detail in Tanvir (2009), suggested that

AAMU-Curve and AAMU-Click both had potential to
improve on the trapping problems and were preferable to
AAMU-Hover. A major problem with the hover technique
was that the arrow would appear on all diagonal move-
ments, even when users were not actually trapped, at times
causing unintended submenu invocations/revocations
when the users accidentally hovered on the arrow while
navigating. On the other hand, both AAMU-Curve and
AAMU-Click showed promise: We found that the curve
shape helped in the search task, whereas the click helped in
the selection task. Therefore, for our final experiment, we
combined the curve shape and the click functionality in an
AAMU-Curve-Click design to leverage the respective
advantages of both designs.

9. Experiment 4: putting the best designs to the final test

In our final experiment, we tested whether our new
AAMU-Curve-Click technique could alleviate some of the
trapping difficulties caused by our original design. We also
sought to compare both the original and improved
AAMUs to default cascading menus and to the EMU
technique across a range of cascading densities and using
different menu widths. Both cascading density and menu
width influence the likelihood that trapping will occur with
the AAMU design. For EMUEs, cascading density impacts
the size of the enlarged activation areas and hence their
effectiveness (e.g., with high density, the activation areas
shrink). We also tested the different cascading menu
techniques using both search and select tasks.

9.1. Method

9.1.1. Participants

Thirty-nine undergraduate students participated in the
experiment in exchange for course credit. All participants
were experienced computer users, using mouse on a daily
basis. None were color blind.

9.1.2. Conditions

Menus: Experiment 4 tested four menus types:
AAMU-Curve-Click, AAMUs, EMUs
and default.

Tasks: We tested two types of tasks: select
and search.

Cascading density: Given that the techniques appear to
be sensitive to cascading density, we
surveyed commonly used applications
to get a sense of typical density values.
The applications surveyed included
MS Word, MS Excel, MS Power
Point, MS Internet Explorer, Mozilla
Firefox, SPSS 16, MS Visual Studio
2005, Matlab, Adobe Photoshop and
MS Outlook. Our survey revealed that
cascading density varies between 0%

780 E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785

and 100%, with 20%, 50% and 80%
being common values. Hence we
tested these three density levels in
our experiment.

Width: In addition to menu type, task and
density, we included a fourth factor
which was menu width (125 pixels vs.
195 pixels).

9.1.3. Tasks and stimuli

The experiment was conducted using the select and
search tasks described in Experiments 1 and 2, respectively.
While Experiment 2 used a menu depth of 3, in Experiment
4, menu depth was constant at 2, with 10 items in the first
level and 15 items in the second level. We decided to use a
depth of 2 in this experiment for two reasons. First, our
survey of applications revealed depth 2 to be the more
common cascading depth. Second, Experiment 1 showed
that effects compound with increased depth. Therefore, to
reduce participant fatigue, we chose a more pragmatic
menu organization. Five target positions were tested: 2, 5,
8, 11 and 14. An example of a trial in this experiment is
shown in Fig. 17.

A second change in Experiment 4 was to draw the menus
in the center of the screen to enable center alignment in all
scenarios to test the best-case AAMU design. We discuss
the implications of this decision in Section 10.3.

Task order was counterbalanced, with 19 participants
performing the search task first and 20 participants
performed selection first. Within each task, the order of
menu types was counterbalanced using a Latin square,
while density and width were randomized. Participants
completed a short practice block (10 trials) prior to each
menu technique. With two tasks, four menu types, three
densities, two widths and five trials per condition, there was
a total of 240 trials per participant. The entire experiment
lasted approximately 30 min.

:1.0
Al
12
=13
1.4
1.5
156
1.7
o LAz
:1.10
i L |
113
-]:1.14
|- Level2 -]

A

VoY s Lk I
]

Level 1

Fig. 17. An example of a task in the final experiment. A click on the
“File” button activated the menu and a click on the target highlighted in
red (item 1.5) ended the trial. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)

9.1.4. Apparatus

The experiment was conducted on Pentium 4 desktop
computers with 1 GB of RAM running the Windows XP
operating system. Monitors with a 1024 x 768 resolution
were used. A conventional optical mouse was used as the
input device.

9.1.5. Design

Experiment 4 employed a 4 x 2 x 3 x 2 repeated-mea-
sures design with factors: menu type (AAMU-Curve-Click,
AMU, EMU, Default), task (Search, Select), density
(20%, 50%, 80%) and width (125 pixels, 195 pixels). Like
in Experiment 2, the dependent variables were task
completion time and the number of extra clicks.

9.2. Results

Out of the 39 participants, three completed only the first
half of the experiment, in which all the three cases
consisted of the select task.? Their data were not included
in our analysis. Prior to analyzing the remaining data with
an RM-ANOVA, outlier trials, defined as greater than
three standard deviations from the mean completion time,
were also removed representing 1.8% of all trials. While
the total number of outliers is only a small percentage of
our data, outlier removal resulted in us loosing an entire
cell in our 4 x 2 x 3 x 2 repeated-measures design for six of
our participants.® Thus, we had a full set of data (i.e., data
in all experiment cells) for 30 participants (14 of which
completed the search task first and 16 completed the select
task first). All pairwise comparisons are corrected using the
Bonferroni adjustment.

The RM-ANOVA revealed main effects of menu type
(F3,87 = 9.349, p< 0.001), task (F1,29 = 667.706, p< 0.001),
width (F)29 =8.620, p=0.006) and density (frs3=
252.897, p <0.001). There were also significant interactions
between menu type x task (F3g4 =9.516, p <0.001), menu
type x density (Fi211.122.125 = 3.659, p= 0.007),4 and menu
type x width x density (F4.169,120.906 = 4.994, p=0.001).

Fig. 18 displays the overall means per menu type.
Pairwise comparisons showed that AAMU-Curve-Click
(mean 2.05s, sd 0.28s) was significantly faster than
AAMUs (mean 2.16s, sd 0.27 s, p=0.003), default (mean
2.25s, sd 0.31s, p=0.008) and EMUs (mean 2.16s, sd
0.27s, p<0.001). AAMUs were significantly better than
default (p =0.033) as were EMUs (p=0.016). No other
pairwise comparisons resulted in significant differences.

Like in Experiment 2, the impact of menu type on the
number of extra clicks was not significant (F1383353.156 =
0.134, p=0.858). Participants made an average of 0.03
extra clicks per trial with AAMU-Curve-Click (sd 0.10),

For two participants there was a procedural error that caused them to
mistakenly complete the same task twice. The third participant asked to
leave after completing the first task, likely because of boredom.

3The missing cells were distributed across the four menu types.

“The Greenhouse-Geisser adjustment is used for non-spherical data.

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 781

2500 4
)
2 I T
g T ==
~ 2000 — 1
Q
E
(™=
g 1500 4
=
=
] [2255]
2,156 5 2,255
S 1000 - 2,157
=
]
2
500
0 r : , :
AAMU_Curve_Click AAMUs EMUSs Default
Menu Type

Fig. 18. Mean completion times for all menus over both tasks. Error bars
represent the 95% confidence interval (N=30).

0.03 extra clicks with AAMUs (0.11), 0.03 extra clicks with
EMUs (sd 0.12) and 0.03 extra clicks with the default
menus (sd 0.10). Apart from a significant effect of cascad-
ing density on the number of extra clicks (353 = 6.046,
p =0.003), where participants performed more extra clicks
with cascading density 80 (mean 0.05, sd 0.11) than with
density 20 (mean 0.02, sd 0.09, p=0.003) or with density 50
(mean 0.02, sd 0.11, p=0.024), there were no other
significant effects or interactions for this dependent
measure.

We next examine the nature of the two-way interactions
between menu type x task and menu type x density on
completion time. These two-way interactions provide a more
in depth understanding of the relative merits of the different
cascading menu techniques. This is followed by a look at the
three-way interaction between menu type, task and width.

9.2.1. Impact of task type

Fig. 19 illustrates the nature of the two-way interaction
effect between menu type and task on completion time.
Pairwise comparisons for each task revealed the following
significant differences or trends:

Select: AAMU-Curve-Click (mean 1.49s, sd 0.21 s) was
significantly faster than EMUs (mean 1.67s, sd
0.28s, p<0.001) and Default (mean 1.77s, sd
0.27s, p<0.001). AAMUs (1.54 s, sd 0.25 s) were
significantly faster than EMUs (p=0.01) and
Default (p=0.001).

Search: There were trends suggesting that AAMU-Curve-
Click (mean 2.61s, sd 0.42s) was faster than
AAMUs (mean 2.77s, sd 0.37s, p=0.08), and
that AAMU-Curve-Click was faster than EMUs
(mean 2.62s, sd 0.35s, p=0.08). No other pair-
wise comparisons were significant, nor there were
other differences with trend-level support.

To summarize the above comparisons, AAMU-Curve-
Click was significantly faster than all other techniques for

Menu Type "
2750 — ANl /
----- AAMU_Curve_Click
Default P
— - = EMU o
@ 2500
E
@
E
F 2250
e
o
g
a .
g 2000
-]
]
§ 1750
=
1500
T T
Select Search
Task Type
Fig. 19. The interaction between menu type and task (N=30).
Menu Type
= AAMU
----- AAMU_Curve_Click
2400 Defaulf et
- -EMU e
w
E
o =
E 2200
=
c
=
=
L
o
g 2,000
0“7
c
a
o
=
74
1,800 < f
: L4
T T T
20% 50% 80%

Density

Fig. 20. The interaction between menu type and cascading density
(N=30).

the select task, while AAMUSs continued to outperform
EMUs and Default. For the search task, there were trends
suggesting that AAMU-Curve-Click improved upon the
original AAMU design and was faster than the EMU
technique.

9.2.2. Impact of cascading density

Fig. 20 illustrates the nature of the two-way interaction
effect between menu type and task on completion time.
Pairwise comparisons for each cascading density level
revealed the following:

Cascading Default (mean 2.00s, sd 0.39s) was signifi-

density 20: cantly slower than all techniques (AAMU-
Curve-Click: mean 1.81s, sd 0.34s, p < 0.001;
AAMUs: mean 1.85s, sd 0.30s, p<0.001;
EMUs: mean 1.81s, sd 0.26 s, p=0.046).

782 E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785

Cascading AAMU-Curve-Click (mean 2.13s, sd 0.325)

density 50: was significantly faster than AAMUs (mean
2.26s, sd 0.33s, p=0.047) and Default (mean
2.31s,sd 0.43s, p=0.013).

Cascading AAMU-Curve-Click (mean 2.22's, sd 0.355s)

density 80: was significantly faster than EMUs (mean
2.41s, sd 0.37s, p=0.008) and Default (mean
2.33 s, sd 0.35s, p=0.034).

To summarize the above comparisons, at low cascading
density, all techniques outperformed Default but were
otherwise equivalent. At medium density, AAMU-Curve-
Click significantly outperformed AAMUs and Default,
and was similar to EMUs. At high density, AAMU-
Curve-Click outperformed EMUs and Default.

9.2.3. Impact of menu width and cascading density
Finally, Fig. 21 displays the nature of the three-way
interaction between menu type, cascading density and
menu width on completion time. While AAMU-Curve-
Click consistently outperformed AAMUSs and Default, its
relationship with EMUs was more dependent on the width
and density. It began to outperform EMUs at higher
densities, particularly as the menu width increases.

9.3. Discussion

When collapsing the data across task, AAMU-Curve-
Click performed significantly better than traditional
menus, AAMUs, and the EMU technique in terms of task
completion times. Further decomposition of the data
provided insight into the strengths and limitations of the
improved AAMU design.

When examining the data according to task, we found
that AAMU-Curve-Click was significantly faster than
traditional menus and EMUs in the selection task, where
the user knows the location of the target. There was no
difference between AAMU-Curve-Click and AAMUs for
this task, which can likely be explained by the fact that
trapping is unlikely to occur when the user has to open only
a single submenu. In a search task, there was trend-level

width =125

2,600 Menu Type

— AAMU

=== AAMU_Curve_Click

2,400 — Default ®
= =EMU

2,200

2,000

Mean Completion (ms)

1,800

1,600

support that AAMU-Curve-Click is faster than both the
original AAMU design and EMUs. These results suggest
that the improvements to the basic AAMU design do help
mitigate the trapping problem first identified in Experiment
2; however, additional data are necessary to verify these
trends.

Our results also indicate that the ratio of parent items to
non-parent items impacts the relative efficiency of the
different techniques studied. At low cascading density, all
three techniques (AAMUs, AAMU-Curve-Click and
EMUs) improved upon traditional cascading menus. The
specific benefit of the AAMU-Curve-Click design came at
medium and high densities. At medium densities, AAMU-
Curve-Click significantly improved upon AAMUSs and
traditional menus, and was as fast as EMUs. At high
densities, AAMU-Curve-Click outperformed EMUs, most
likely due to the fact that the EMU activation areas have
less room to expand.

10. Discussion and future work

Our studies systematically reveal the strengths and
weaknesses of our new menu navigation technique, adap-
tive activation area menus (AAMUSs). Based on our results
and observations, we Highlight the effective value of
AAMUs, discuss some of the limitations inherent with
the AAMU design and discuss limitations of our experi-
ments. We then present a set of possible extensions.

10.1. Effective value of AAMUs

Selecting submenu items with conventionally designed
menus are prone to narrow and corner steering problems.
The Steering law (Accot and Zhai, 1997) dictates that
narrow steering can reduce the efficiency of moving a
cursor through a path. More importantly, very narrow
steering can be frustrating in that users tend to steer off-
path, causing submenus to be unintentionally deactivated.
To avoid the pitfalls associated with narrow and corner
steering, we designed AAMUSs to allow users to activate a
submenu by moving diagonally from the parent item to the

width = 195

2,600

2,400 1

2,200

2,000 4

1,800 +

1,600 4

Density

Fig. 21. The three-way interaction effect of menu type x density x width on completion time.

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 783

submenu item. This design is inspired by some of the
existing solutions for minimizing the impact of narrow and
corner steering toward submenu items, namely EMUs
(Cockburn and Gin, 2006).

While we were not aware of this work when designing
the AAMU s or conducting our experiments, Tsandilas and
schraefel (2007) discuss an invisible triangular activation
region present in the Mac OS menus. Thus, the idea of a
triangular activation area is likely not new. The extent of
the similarity between AAMUs and Mac OS menus,
however, is unclear as we have not able to find the details
of the Mac OS design. There are also no reported
evaluations of the Mac OS technique or comparisons with
other techniques.

Results from several experiments described in our paper
show that under a variety of conditions, AAMUs are
either more efficient than or at least as good as EMUs and
traditional menus. Our first experiment also shows when
the user knows where the target is located, AAMUs are
faster than gesture-based menus (Kobayashi and Igarashi,
2003) and as fast as force-fields (Ahlstrom, 2005). The
relative merits of AAMUs and force-based techniques,
however, is an area for future exploration, as is combining
AAMUs and force-based techniques given that they are
not mutually exclusive.

In addition to being efficient, AAMUs are easy to
implement. They can override the properties of existing
menu designs simply by overlaying an activation area that
is transparent and that takes control of the cursor move-
ment. The overlaid activation area can also be easily
adjusted in size, based on both the cursor’s position as
well as the length of submenu lists. We envision AAMU-
style menus being developed as user interface controls for
various development environments. This way, designers
could abstract away from the minutia design elements and
simply apply AAMUs to the application context.

Bringing out the true value of AAMUSs requires that
they be deployed in real-world settings. This can be most
easily taken on by implementing AAMUSs in environments
such as Web interfaces, games or on novel platforms that
have not been designed with any specific menu styles or
menu guidelines. These environments can be more liberal
in their choice of menu design and select the AAMU.

10.2. AAMU limitations

While AAMUSs support submenu navigation and inter-
action, they are also limited in a number of ways. In
particular, AAMUs can be affected by trapping and
organization of menu content.

Results and observations of our earliest experiments
reveal that our basic AAMU design is prone to creating
unwanted/unexpected cursor behaviors. In particular, we
found that participants would have their cursor “trapped”
if an AAMU was unintentionally activated. Our AAMU-
Curve-Click design helps to resolve some of the trapping
issues. Nonetheless, we believe that some amount of

trapping will always be present. The overlay will continue
to cover other menus items, and it will not be entirely
possible to predict whether the AAMU was accidentally
opened or not. As a result, users might experience a slight
learning curve when first exposed to AAMUSs in their
interfaces. This was indeed observed in Experiments 1 and
2, where a certain amount of training was required to
allow users to get familiar with the AAMU design. One
solution to minimize the effects of trapping is to provide a
dynamic activation area that grows and shrinks based on
the number of “off-the-path” crossings. We discuss this
solution in further detail below.

As seen from our results in Experiment 4, when menus
have a large number of adjacent parent menus, more
trapping occurs and thus makes the AAMU interface less
efficient. Therefore, some consideration is needed when
assigning a position to a parent menu item within a menu
hierarchy, a constraint that does not exist with traditional
menus. While we have not fully studied the impact of
reorganizing parent items, our results hint at the potential
gains when such an organization is created.

10.3. Experiment limitations

While our experiments provide insight into the strengths
and weaknesses of the AAMU technique, we acknowledge
their limitations. First, we had only undergraduate student
participants, which could impact the generalizability of our
results to a less homogeneous user population. Second, in
our searching task, users could not use the names of the
menus to guide their search. As a result, users might have
performed more menu navigation in this “worst-case” task
than they would have in a more realistic setting. Third, in
Experiment 4, we lost data from a number of participants
(six out of 36) following a standard outlier procedure.
Although the total number of outliers was reasonable
(1.8% of all trials), they were concentrated within certain
menu/task/density/width configurations for some of our
participants. The outliers were spread out across the
different menu types tested; however, further investigation
would be needed to determine if there is any particular
cause for these types of difficulties. Finally, in Experiment
4, we arranged the menus so that center submenu align-
ment was always possible, reducing the ecological validity
of our study. Further studies are needed to verify that the
benefits of the improved AAMU design over EMUs and
traditional menus persist when a mix of center and top
alignment are used. We do not, however, expect the results
to change drastically in a more ecologically valid setting
given that the total triangle areca would remain the same,
with only its shape changing.

10.4. AAMU extensions
We explored a range of alternative AAMU designs, some

of which help to alleviate existing problems such as trapping.
In this section we present other possible extensions.

784 E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785

10.4.1. Truly adaptive?

Our studies have shown that alternative AAMU designs,
such as AAMU-Curve-Click, can minimize the effects of
trapping. While they are superior to the original AAMU
(and therefore conventional menus), some trapping is still
possible, suggesting that there is further room for improve-
ment. Currently, AAMUSs contain both adaptive and static
components: the shape is fixed as a curve, while the
drawing position and size are adapted to the users’ cursor
position on the parent menu item and the size of the child
submenu. However, there are no adaptations based on
users’” movements/menu navigation patterns. One possible
alternative would be to design an intelligent version of
AAMUs that adapts both the AAMU shape and size
according to the users’ movement patterns. The intelligent
interface could continue to learn how users navigate with
submenus to find the optimal shape and size. It could be
possible that with more acute angles on the AAMU-Curve,
less trapping happens. For some users, a wider activation
area may be ideal, whereas for others, a narrow shape
might work better.

10.4.2. Extending AAMUs to different menu styles and
environments

AAMUs were designed for current linear styles of
menus. An area of future investigation would be to apply
AAMUs to other types of menus, for instance marking
menus (Kurtenbach and Buxton, 1994), pic menus
(Callahan et al., 1988). These other menu style might also
suffer from narrow and corner steering gestures.

AAMUs were also designed with conventional desktop
environments in mind. However, such menus have also
been ported onto various other platforms, such as mobile
devices or large multi-touch or wall-sized displays. These
other environments typically do not provide users with a
cursor or mouse, and are typically constrained to input
based on hand gestures and direct pointing. There is a
reason to believe that steering in such environments might
be even more difficult. For instance, on large displays, the
cursor is affected by hand jitter, causing involuntary hand
gestures. It is possible that AAMUSs could alleviate some of
the impact of jitter in such environments. Similarly,
pointing on mobile devices is suspect to the ‘fat finger
problem’, potentially causing users to steer-off onto unin-
tended paths. AAMUs could be potentially redesigned to
provide an activation area that would be less affected by
such input constraints.

11. Conclusion

Menus and submenus are common interface elements.
They allow designers to group commands based on
function and intent. Numerous menu designs have been
proposed, but current menu designs can be frustrating to
interact with. In particular, hierarchical conventional
menus are prone to inadvertent submenu inactivation,
particularly as users steer cursors off the menu paths.

Performance with current submenu selection is governed
by the Steering law (Accot and Zhai, 1997), which states
that movement time to the target of interest is linearly
proportional to the ratio of the length and width of parent
menu items. By removing the constraint to steer through
narrow parent menu items, the performance of submenu
selection can be improved. Our novel design, the AAMU,
is based on this assumption, i.e., removing the constraints
of narrow and sharp corner steering down a parent menu
path. Our experimental results support this novel design
and show that there are performance improvements with
the AAMU.

Primary user studies showed that when it came to item
selection, AAMUs outperformed traditional menus and its
closest competitor, EMUSs, a technique that also enlarges
the activation area. AAMUs performed as well as or better
than techniques that aim to reduce target distance. For a
task involving more menu searching, AAMUs suffered
from the ‘“‘cursor trapping” problem, where the wider
activation area hindered the search process. To address
this issue, we designed an AAMU variant called AAMU-
Curve-Click, which reduces the total area of the activation
region while still permitting diagonal steering and provides
a means of quickly accessing items under the overlay.
Results of the final experiment showed that AAMU-
Curve-Click was better than or at least as good as both
traditional cascading menus and EMUs across a range of
scenarios. The new technique showed the greatest benefits
in scenarios more prone to cursor trapping problems, such
as wider menus and higher cascading densities.

Overall, there are many future directions to take and
improving the AAMU design to work in various environ-
ments is one of our primary priorities.

References

Accot, J., Zhai, S., 1997. Beyond Fitts’ law: models for trajectory-based
HCI tasks. In: Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI'97), pp. 295-302.

Accot, J., Zhai, S., 1999. Performance evaluation of input devices in
trajectory-based tasks: an application of the steering law. In: Proceed-
ings of the ACM Conference on Human Factors in Computing
Systems (CHI’99), pp. 466-472.

Ahlstrom, D., 2005. Modeling and improving selection in cascading pull-
down menus using Fitts’ law, the Steering law and force-fields. In:
Proceedings of the ACM Conference on Human Factors in Comput-
ing Systems (CHI’05), pp. 61-70.

Ahlstrom, D., Alexandrowicz, R., Hitz, M., 2006. Improving menu
interaction: a comparison of standard force enhanced and jumping
menus. In: Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI’06), pp. 1067-1075.

Bederson, B.B., 2000. Fisheye menus. In: Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST00),
pp. 217-225.

Callahan, J., Hopkins, D., Weiser, M., Shneiderman, B., 1988. An
empirical comparison of pie vs. linear menus. In: Proceedings of the
ACM Conference on Human Factors in Computing Systems
(CHTI’88), pp. 95-100.

Cockburn, A., Gin, A., 2006. Faster cascading menu selections with
enlarged activation areas. In: Proceedings of Graphics Interface
(GI’06), pp. 65-71.

E. Tanvir et al. | Int. J. Human-Computer Studies 69 (2011) 769-785 785

Fitts, P., 1954. The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental
Psychology 47, 381-391.

Kobayashi, M., Igarashi, T., 2003. Considering the direction of cursor
movement for efficient traversal of cascading menus. In: Proceedings
of the ACM Symposium on User Interface Software and Technology
(UIST’03), pp. 91-94.

Kurtenbach, G., Buxton, W., 1994. User learning and performance with
marking menus. In: Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI'94), pp. 258-264.

MacKenzie, I.S., 1992a. Fitts’ law as a research and design tool in human—
computer interaction. Human—-Computer Interaction 7, 91-139.

MacKenzie, 1.S., 1992b. Movement time prediction in human—computer
interfaces. In: Conference on Graphics Interface (GI°92), pp. 140-150.

Pastel, R., 2006. Measuring the difficulty of steering through corners. In:
Proceedings of the ACM Conference on Human Factors in Comput-
ing Systems (CHI’06), pp. 1087-1096.

Tanvir, E., 2009. Improving cascading menu selections with adaptive
activation areas. Master’s Thesis, University of Manitoba, Depart-
ment of Computer Science.

Tanvir, E., Cullen, J., Irani, P., Cockburn, A., 2008. AAMU: adaptive
activation area menus for improving selection in cascading pull-down
menus. In: Proceeding of the ACM Conference on Human Factors in
Computing Systems (CHI’08), pp. 1381-1384.

Tsandilas, T., schraefel, m.c., 2007. Bubbling menus: a selective mechan-
ism for accessing hierarchical drop-down menus. In: Proceedings of
the ACM Conference on Human Factors in Computing Systems
(CHI’07), pp. 1195-2004.

	Improving cascading menu selections with adaptive activation areas
	Introduction
	Background and related work
	Theoretical models for predicting performance in menu selection
	Improvements to cascading menus
	Techniques for decreasing distance
	Techniques for increasing width

	Adaptive activation area menus (AAMUs)
	User studies to evaluate AAMUs
	Experiment 1
	Method
	Participants
	Conditions
	Task and stimuli
	Apparatus
	Design

	Results
	Subjective rankings

	Discussion

	Experiment 2: search and multiple devices
	Method
	Participants
	Conditions
	Task and stimuli
	Apparatus
	Design

	Results
	Discussion

	Experiment 3: investigating movement trajectories
	Movement patterns in ’’clear’’ trials
	Movement patterns in trapped trials
	Trap avoidance

	Developing alternate AAMU designs
	Experiment 4: putting the best designs to the final test
	Method
	Participants
	Conditions
	Tasks and stimuli
	Apparatus
	Design

	Results
	Impact of task type
	Impact of cascading density
	Impact of menu width and cascading density

	Discussion

	Discussion and future work
	Effective value of AAMUs
	AAMU limitations
	Experiment limitations
	AAMU extensions
	Truly adaptive?
	Extending AAMUs to different menu styles and environments

	Conclusion
	References

