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ABSTRACT 

Exploring information content on mobile devices can be 

tedious and time consuming. We present Around-Device 

Binning, or AD-Binning, a novel mobile user interface that 

allows users to off-load mobile content in the space around 

the device. We informed our implementation of AD-

Binning by exploring various design factors, such as the 

minimum around-device target size, suitable item selection 

methods, and techniques for placing content in off-screen 

space. In a task requiring exploration, we find that AD-

Binning improves browsing efficiency by avoiding the 

minute selection and flicking mechanisms needed for on-

screen interaction. We conclude with design guidelines for 

off screen content storage and browsing.  

Author Keywords 

Around-device Interaction; Off-screen Discretization; Data 

Analytics; Visual Analytics. 

ACM Classification Keywords 

H.5.2 [Information Interfaces and Presentation]: User 

Interfaces - Interaction styles.  

INTRODUCTION 

Mobile devices are popular portals for interacting with large 

information repositories. Estimates suggest that over 40% 

of smartphone owners browse and research products on 

their mobiles before making a purchase, 60% of last minute 

hotel bookings are made on portable devices, and search on 

mobiles will generate 27.8 billion more queries than on 

desktops by 2016 [15]. Tasks with high information 

bandwidth often require that users quickly browse and 

compare the breadth of available choices before making a 

decision. On mobile interfaces such tasks require many 

minute operations, such as flicking through screens, and 

opening and closing items of interest, resulting in less 

efficient information exploration and browsing. 

Ideally, mobile devices could be augmented with a virtual 

interactive plane that extends beyond their physical form 

factor for storing, browsing and retrieving data. Instead of 

flipping through screens of icons or through lists of items 

the user can bin frequently used or interesting items in off-

screen space for fast access. This may be possible with the 

next generation of mobiles that can sense user input around 

the device, in thin air [1, 2]. Shifting input intensity away 

from the screen, into a much larger space around the device, 

provides larger proxy objects for interacting with smaller 

on-screen items, minimizes the likelihood of having the 

input hand occlude important screen content, and reduces 

the need for frequent repetitions of small on-screen 

manipulations. We propose and study this idea by intro-

ducing Around-Device Binning, or AD-Binning (Figure 1). 

 

Figure 1. To make a hotel reservation, a user’s query puts 

hotel information in AD-Bins around the mobile device. As (a) 

the finger hovers on an AD-Bin (b) its content is shown on the 

screen allowing the user to browse and compare alternatives. 

While the space around a mobile device can be leveraged 

for different purposes [2, 9, 11], our contribution is in the 

design of an interactive method, AD-Binning, for directly 

storing and retrieving virtual content around the device. In a 

task requiring content browsing for making a decision, 

participants were more efficient with AD-Binning than with 

on-screen exploration. This improvement was a result of a 

systematic design process addressing questions such as:  

º what are suitable methods for placing items off-screen?  

º what selection methods provide efficient retrieval? and  

º how small can targets be before affecting performance? 

Our contributions include: 1) AD-Binning, a novel tech-

nique for storing and browsing content through direct 

interaction with around-device space; 2) an evaluation of 

methods for placing content off-screen; 3) the design and 

study of suitable around-device selection techniques; 4) 

methods for discretizating space around the device into 

 



 

bins; and 5) a demonstration of AD-Binning with an 

information exploration and decision-making task. 

AD-BINNING DESIGN FRAMEWORK 

AD-Binning is inspired by earlier work demonstrating that 

around-device input is valuable for interacting with small 

form-factor devices [7] and for extending the input 

vocabulary of mobiles [10, 11]. Device manufacturers are 

considering adopting around-device sensing methods in the 

next generation mobile devices [1]. Unlike most prior work 

on around-device interaction [2, 7, 9, 10, 11, 12], we focus 

on direct interaction with off-screen content. Such an 

interaction style presumes that the mobile’s interaction 

plane extends beyond the physical boundaries of the device 

[4] and users can directly point to retrieve items. Prior work 

on a class of interactions involving around-body input [3, 

13] suggests that users can leverage their spatial abilities to 

efficiently recall items through mid-air pointing. We expect 

similar benefits for AD-Binning. We examine additional 

prior work to frame AD-Binning’s design factors. 

Design Factors 

Several key factors influence the design of AD-Binning. 

We explore these factors in relation to prior work. 

Selection methods: AD-Binning allows users to explore 

content by letting the user move their finger in the space 

around the device. This facilitates rapid item browsing. 

However, a selection is required to retrieve an item and put 

it into focus for more details. Researchers have designed 

similar mechanisms for triggering a selection when iterating 

through items using auxiliary input channels such as 

pressure and tilt. These include dwelling on an item [8], 

quickly releasing a button [17] or lifting the finger [17]. 

AD-Binning facilitates item selection through two general 

methods: interaction on the device for triggering selection 

(touch or back-tap) or micro-gestures in mid-air around the 

device. We investigate the suitability of both these methods. 

Bin size: AD-Binning relies on direct off-screen pointing to 

place and retrieve items, a task influenced by Fitts’ law 

[14]. However, AD-Binning provides the advantage that 

items around the device can take on large sizes to 

compensate for the small size commonly seen on mobile 

devices. However, little is known of how small targets can 

be without affecting performance with this technique. We 

investigate suitable bin sizes to facilitate accurate selection. 

Visual feedback: To get rapid and accurate access to 

around-device items, effective on-screen cues are need to 

point at (a) off-screen items [4] and (b) the user’s moving 

finger. Overviews of the entire workspace have shown 

slightly better performance for direct off-screen pointing [4] 

than visual cues such as Wedge [5]. The differences 

between these visual techniques are affected by regions in 

which off-screen items are placed (performance with 

Wedge is non-uniform across the viewport). Our design of 

AD-Binning uses an overview to show relative item 

positions and the user’s finger in AD-Space. 

Space discretization for bins: Closely tied to the input range 

and target size is the method for breaking up the around-

device space into bins, or space discretization. With 

auxiliary input streams (pressure and tilt) input 

discretization leads to better control [8, 17, 19]. Due to the 

bio-mechanical limits of the arm and difference in control 

at extreme arm ranges we examine the effect of applying 

different discretization methods to the task of placing and 

retrieving around-device items. 

Input range around the device: The bio-mechanical 

properties of the human arm dictate that on average users 

can extend their arm to about 60cm [16], limiting how 

many items can be placed off-screen. Little is known about 

this range when the arm moves around the device, i.e. the 

right arm on the left side will have a smaller range. We 

capture this range in a pilot prior to our studies. 

Ideal binning locations: Prior work has shown that pointing 

at items placed in corners around the device is less effective 

and accurate than pointing at items to the sides [4]. These 

results were not obtained by evaluating the entire range for 

placing items and therefore more knowledge of ideal 

locations can assist in the design of AD-Binning. 

Binning methods: Spatial memory and proprioceptive 

feedback can assist in retrieving information that is laid out 

spatially [3, 18, 20]. Ideally, information can be placed, or 

binned, using techniques that leverage this capability. 

Mode switching: AD-Binning requires mode switching to 

differentiate around-device input from other accidental 

gestures in space. Mode switching could be explicit, 

wherein the user sets the device in bin-mode as needed. 

Alternatively, advanced sensing mechanisms could 

distinguish users’ fingers in space separately from other 

items around the device. We do not examine mode 

switching mechanisms in this paper. 

AD-BINNING APPARATUS AND INPUT RANGE 

In our work, we assume that finger tracking in 3D around 

the device will become possible [1]. We emulate such a 

system using a Vicon MX system with eight cameras (T-

Series) to track participants’ hand movements (Figure 2a). 

We placed markers on a smartphone (Nokia Lumina 800, 

size = 48.380.59mm, resolution = 480800 pixels) and on 

a Velcro loop worn on the right-hand index finger (Figure 

1a). A Windows Presentation Foundation server application 

transferred tracking data every 10ms from the Vicon over 

Wi-Fi to the experimental software (Silverlight Windows 

Phone application) running on the smartphone. Advised by 

previous work [3] on how performance (task speed and 

accuracy) drastically suffers as the input space extends from 

2D to 3D, our current implementation of AD-Binning only 

considers the space defined by the plane around the device: 

all interactions above or below the plane (in the z-direction) 

are projected on the interaction plane (Figure 1a). Future 

work will investigate the use of 3D space to layer items. 



 

To determine AD-Binning’s input range we asked two 

female and four male adults (these and all subsequent 

participants were right-handed and stood in our 

experiments) to hold a smartphone in their left hand and to 

‘draw’ a half-circle around the device with their right hand, 

going from the left to right, and then back again five times. 

Participants were asked to perform without reaching their 

maximum distance. The collected movement data resulted 

in three design decisions: 1) 40cm was comfortably within 

reach for all participants and we used this value as the 

maximum input range; 2) points within ¾ of a full circle are 

within reach, and we use this to map bins into a circular 

layout; 3) we split the circular space into five sectors 

mapped to cardinal directions (North, North-East or labeled 

as Top, Top-Right) to facilitate spatial recall of items 

(Figure 2b). More than five sectors results in to small items 

in the inner circle, leading to inefficient selection in these 

regions. Our exploration was based on these design choices 

and does not limit the use of other parameter values based 

on user preference and arm-length. 

 

Figure 2. (a) Vicon apparatus. (b) The AD-Binning space. 

EXPERIMENT 1 

In our first experiment we identified suitable selection 

techniques, the minimum bin size for efficient item 

selection, and appropriate around-device space divisions 

methods. We split the experiment in sessions A and B to 

reduce experiment length and the complexity of the 

analysis, and to focus on a few design parameters at a time. 

Selection Methods 

Little is known about the specific methods for selecting 

items in around-device space. We grouped our selection 

techniques into methods that take place on or off the device. 

We settled on six candidate methods – two performed on 

the device with the non-dominant hand, and four using the 

dominant hand and its pointing finger in the air. 

º Tap does not restrict the on-screen tapping area (as would 

be necessary when interactive elements are presented on the 

screen).  

º BackTap is based on reading the device’s accelerometer 

data and tapping the back of the device using the index 

finger of the device hand. After experimenting with various 

thresholds we found 0.15g (gravitational units) to be 

suitable for BackTap detection. The obvious advantage of 

BackTap over Tap is that it eliminates the risk of invoking 

interactive items on the screen during a selection. 

Conversely, BackTap cannot be used when the device is 

placed on a table. 

º Dwell is often suggested in the literature as an alternative 

to click, e.g., in eye-gaze input. Our dwell time was 600ms.  

º LiftOff requires an active movement raising the pointing 

finger. A change in z-position >30mm between two 

consecutive time cycles triggers a LiftOff. An alternative to 

LiftOff is to push down, which we did not test as both 

behave similarly. 

º Pierce assumes an imaginary horizontal interaction plane 

defined by the mobile device, which the finger needs to 

‘pierce’ to make a selection.  

º DownUp uses a down-up motion (30mm down, and up) 

inside a bin to trigger a selection. The two-stage motion, up 

and down, allows for a backoff possibility to cancel a 

started selection, similar to clicking an on-screen button 

with a mouse. This is the only method with a possibility to 

reverse in mid-course of the selection. 

Session A – Selection Methods and Bin Size 

Participants, Task and Experimental Design 

Twelve daily computer and touch screen users (3 female) 

aged 20 to 39 years participated. With short breaks and 

practice trials, each session lasted around 45 minutes. 

A start button and a small 

overview (1.61cm wide) are 

displayed on the screen 

(Figure 3a). A red marker in 

the overview highlights one of 

the five sectors to indicate the 

direction to the next target bin 

(we chose to indicate direction 

before trial start to minimize 

visual search and unaimed arm 

movements at trial onset). The participant presses the start 

button with the right-hand index finger to begin the trial. 

(Participants were not allowed to time-optimize by first 

moving their tracked index finger to the estimated target 

location and then starting the trial with their left thumb. 

They were also restricted to use their dominant hand for 

interaction as allowing both hands could add confounds to 

the results.) The overview shows the target in green, and a 

blue cursor in the overview follows the tracked finger 

(Figure 3b). A correctly performed selection action ends the 

trial and loads the start screen for the next trial. 

Session A used a 64 within-subjects design for factors 

selection method (Tap, BackTap, Dwell, LiftOff, Pierce, 

DownUp) and bin widths (68, 38, 26, 20mm). The four bin 

widths were obtained by dividing each sector into 5, 9, 13 

or 17 equally wide bins. Participants performed ten 

repetitions of each selection method-width combination, 

resulting in a total of 240 trials per participant. Participants 

completed 20 random practice trials before the test trials. 

The presentation order of the six selection methods was 

balanced among participants using an incomplete Latin 

 

Figure 3. (a) Trial start 

screen. (b) Visual feedback 

overview. 



 

Square. The order of bin widths was randomized for each 

selection method. We kept the distance to the target bin 

constant (230mm) by only using the middle bin in each bin 

sector. Two trials from each method-width combination 

were located in each of the five bin sectors (Left, Top-left, 

Top, Top-right and Right – Figure 2b). The order of target 

location was randomized. No feedback was given when 

participants selected a non-target bin or if the intended 

selection action was not detected. Trials were only 

terminated after a correct selection occurred in the correct 

target bin. We asked participants to perform each trial as 

quickly and accurately as possible. After completing all 

methods participants rated them based on preference. 

Results 

We used a repeated measures ANOVA and post-hoc 

pairwise comparisons to analyze trial times. We used 

Friedman tests with Wilcoxon tests for post-hoc pairwise 

comparisons to analyze error rates (number of trials with 

incorrect selections divided by the total number of 

completed trials). Post-hoc pairwise comparisons were 

Bonferroni adjusted (-level = 0.05). The same tests were 

used in all experiments unless otherwise noted. 

Error rate: The overall error rate was 11.7% (382 of 3262 

trials contained one or more undesirable selections before 

the target bin was selected). Figure 4a shows the mean error 

rates. Selection method had an effect on error rate 

(
2
(5,N=12) = 30.44, p < 0.0001) and pairwise comparisons 

showed that DownUp caused significantly fewer errors than 

BackTap, LiftOff and Pierce. There were no other 

significant differences. DownUp’s low error rate is due to 

its twofold accuracy requirement: 3cm down and 3cm up in 

the same bin without veering into an adjacent one. 

 

Figure 4. (a) and (b) Mean error rates. Error bars:  1 S.E. 

(c) and (d) Geometric mean trial times. Error bars: 95% CI. 

We found error rates of 6.7, 8.7, 13.5, and 17.1% for 68, 38, 

26, and 20mm bins, respectively, and there was also a 

significant effect of width on error rate (
2
(3,N=12) = 28.30, 

p < 0.0001). Pairwise comparisons showed that 68mm bins 

caused fewer errors than both 26 and 20mm bins and that 

38mm bins caused lower error rates than 20mm bins. There 

was no statistically significant difference between the two 

largest and between the two smallest bin sizes. When 

comparing how the selection methods performed at each 

width (Figure 4b) we found a significant difference at each 

width, but only significant post-hoc pairwise comparisons at 

the smallest width, where DownUp caused fewer errors 

than Pierce and LiftOff. 

Trial time: Trial times were positively skewed and we 

performed a logarithmic transformation (which resulted in 

distributions close to normal) before analyzing the data. 

Selection method and width had significant effects on trial 

time (F5,55 = 28.6, p < 0.0001, 
2
 = 0.72 resp. F3,33 = 210.9, 

p < 0.0001, 
2
 = 0.95). Across selection methods, the 

geometric mean trial times (i.e., the antilog of the mean of 

the log-transformed data) ranged from 1.9s for the largest 

68mm bins to 3.1s for the smallest 20mm bins. As a result 

of the increased accuracy demand, trial times increased by 

about 15% for each decrement in bin width. Post-hoc 

pairwise comparisons showed that all bin sizes differed. 

Figure 4c shows the geometric means for each selection 

method. Post-hoc pairwise comparisons showed that 

DownUp was slower than all other selection methods and 

that Tap was faster than Pierce and LiftOff. There were no 

other statistically significant differences between the 

methods. The significant methodwidth interaction (F15,165 

= 2.8, p < 0.01, 
2
 = 0.16) plotted in Figure 4d provides 

deeper insights. Except for DownUp, all methods 

performed about equally well at 68 and 38mm bins. With 

26mm bins though, we see marked peaks for Pierce and 

DownUp, and moderate, similar increases in the other 

methods. Only with the smallest bins do BackTap and 

LiftOff lose ground against Tap and Dwell. 

Preference ratings: According to overall preference, 9 of 

12 participants rated Tap to be the best, two preferred the 

LiftOff method and one favored BackTap. 

Summary – Session A 

Our results indicate that performance – in particular errors – 

degrades significantly after the 38mm bin size (9 bins). We 

suggest that for AD-Binning, targets should not be any 

smaller than this size. While Tap and Dwell appear to have 

the least errors and a trend toward faster selection times, 

these may not be practical in all applications. For example, 

dwelling may conflict with object browsing, and Tap 

should only be restricted to a specific on-screen target. We 

continue our exploration with BackTap and LiftOff as our 

on-device and off-device selection methods. The same 

participants were recruited for Session B, providing a 

certain level of expertise with AD-Binning. 

Session B – Space Discretization & Binning Locations 

As indicated above, prior studies [4, 6] have suggested an 

accuracy trade-off in mid-air pointing with targets distant 

from a reference, in our case the edge of the device. This 

led to our evaluation of different around-device space 

division or discretization methods. 

The Uniform discretization (Figure 5a) divides the available 

space into nine equally sized bins of 37.78mm. In the 



 

Distance Dependent discretization (Figure 5b) the inner bin 

is 27.2mm wide and the following bins are allotted an 

additional multiple of 2.64mm according to their position 

from the inner bin. Thus, the outer bin, which is located 

eight positions away, is 27.2+82.64=48.32mm wide. We 

also included a fisheye discretization technique (Figure 5c) 

that uses a hysteresis function similar to [19, 21] to 

dynamically add and remove extra space on both sides of 

each bin (except the first and last bins). The active bin 

expands to 75.28mm, its two neighbors expand to 

50.28mm, and the remaining bins are 27.36mm wide. We 

controlled distance by dividing the available radial distance 

of 340mm in equal distance ranges, D1, D2, D3 and D4 

(Figure 5d). A random number within the desired range was 

drawn and the bin at this distance was set as the next target, 

belonging to the corresponding distance range. 

 

Figure 5. Discretization techniques and distance mapping. 

Task and Experimental Design 

All task procedures were the same as in Session A. 

Session B used a 3254 within-subjects design for the 

factors discretization (Uniform, Distance dependent, 

Fisheye), selection method (BackTap, LiftOff), sector (Left, 

Top-Left, Top, Top-Right, Right), and distance (D1, D2, 

D3, D4). Participants performed 360 trials: three repetitions 

for each combination of factor levels. We counterbalanced 

on discretization technique and half of the participants 

started with BackTap first. Participants completed 20 

random practice trials and then 40 timed trials with each 

combination of discretization and selection methods. 

Results 

Error rate: BackTap had a significantly lower mean error 

rate than LiftOff (7.4% vs. 10.2%, Wilcoxon test: Z = -2.7, 

p < 0.01). We also found significant effects for dis-

cretization (
2
(2,N=12) = 7.2, p < 0.05) and distance 

(
2
(3,N=12) = 15.3, p < 0.01), but not for sector. Pairwise 

comparisons showed that the Fisheye, with a mean error 

rate of 6.6%, caused significantly fewer errors than both the 

Uniform and Distance dependent discretizations (error 

rates: 9.6% and 10.2%, respectively). Pairwise comparisons 

between distances showed that bins in distance range D1 

caused more errors than bins in D2. There were no other 

pairwise statistically significant differences. 

Interestingly, the Fisheye discretization reveals an overall 

equalizing effect over all distances. In the other two 

discretizations (Figure 6a) performance in D4 and D1 

degraded, possibly due to reduced motor accuracy and 

smaller arc lengths, in the far and close bins, respectively. 

The Fisheye discretization also evened out the error rates 

between selection methods. The overall higher error rate 

with LiftOff is a result of poor performance when combined 

with Uniform and Distance Dependent discretization 

(Figure 6b). When extra space is added to the ‘current’ bin, 

as in the Fisheye, LiftOff performs as well as BackTap. 

Trial time: As in Session A, trial times were positively 

skewed and we applied a logarithmic transform (with 

distributions close to normal) before analyzing the data. 

The geometric mean trial time was 2.19s for BackTap and 

2.20s for LiftOff. Across the two selection methods, the 

geometric means for the three discretization techniques 

were 2.24, 2.17 and 2.17s for the Uniform, Distance 

dependent and Fisheye, respectively. We did not find main 

effects for selection method or discretization, but there was 

a main effect for sector (F4,44 = 8.0, p < 0.0001, 
2
 = 0.42) 

and for distance (F3,33 = 33.6, p < 0.0001, 
2
 = 0.75). 

Post-hoc pairwise comparisons between distances showed 

that bins in D4, with a geometric mean trial time of 2.49s, 

were significantly slower to select than bins located 

elsewhere. Bins in D2 were the fastest (1.97s). There were 

no statistically significant differences between bins in D1 or 

D3 (2.18 vs. 2.16s). 

 

Figure 6. (a) and (b) Interaction effects, error rate.  

(c), (d), and (e) Interaction effects, trial time. 

Post-hoc pairwise comparisons between sectors showed that 

the Right and Top-Right sectors, with geometric means of 

2.08s and 2.12s, respectively, were faster than the Top-Left 

sector which was the slowest at 2.36s. There were no other 

statistically significant differences between any other 

sectors. A significant sectordistance interaction (F12,132 = 

3.9, p < 0.0001, 
2
 = 0.26) (Figure 6c), identifies D1 and 

D2 having marked peaks as the main sources for the overall 

poor performance in the Top-Left sector. We attribute these 

problems to occlusion: presumably, keeping the wrist at a 

natural angle when targeting Top-Left bins close to the 

device causes the hand to occlude parts of the screen and 

the visual feedback provided by the overview. 

We also observed a discretizationdistance effect (F6,66 = 

7.4, p < 0.0001, 
2
 = 0.40, Figure 6d ). As with errors, the 

Fisheye had an equalizing effect on trial time. It is notable 

that trial times for bins close to the device (D1) drop as a 

result of the Fisheye expansion. Comparing Distance 

Dependent to Uniform discretization reveals a clear 

negative effect of removing space from D1-bins (con-

firming Session A’s result that bins should be ≥ 38mm). 



 

The significant discretizationsector effect (F8,88 = 2.7, p < 

0.05, 
2
 = 0.19, Figure 6e), reveals that the Fisheye also 

equalized performance between sectors. It reduced selection 

times in the slow Top-Left sector, but also in the Left 

sector. It is also notable that the Distance dependent 

discretization improved performance in the Right sector. 

Preference ratings: Eleven participants rated Fisheye as the 

preferred technique and one rated Distance Dependent as 

the best. Seven rated the Uniform discretization as their 

least preferred technique. 

Summary – Session B 

We observe that the Fisheye discretization had an overall 

equalizing effect on error rates and trial times, across 

selection method, distance and sector. Our following 

experiments use the Fisheye for dividing the around-device 

space. Unexpectedly, selecting targets in the closest 

distances was less accurate and less efficient. Due to 

constrained movements with crossing arms, areas left and 

top-left of the device are generally more cumbersome. 

EXPERIMENT 2 – BINNING & RETRIEVAL 

Binning items could conceivably be done at any time. The 

user could quickly place an application icon, contact entry 

or web-bookmark in a system wide bin-collection for long-

term storage and fast access. Binning could also be 

application dependent and serve more short-term purposes, 

such as browsing the results from a query or to manage a 

sub-set of items of temporary interest (e.g., yesterday’s 

emails). In this experiment we compare binning techniques 

that provide varying degrees of user-control: 

º Automatic provides no user control on item placement. 

The system assigns each item to an empty bin. Assignment 

can be random or based on item properties (e.g., a name, 

time stamp, color). Items are binned in a batch, either 

initiated by the user (e.g., by shaking the device) or 

automatically triggered through a query interface.  

º Tap-and-Bin allows full user control. The user picks 

items, one by one, tapping their on-screen representations, 

and then, guided by the cursor in the on-screen overview, 

moves the hand to the desired AD-bin to ‘drop’ it using a 

LiftOff gesture. Tap-and-Bin may be time consuming with 

many items but facilitates individual placement strategies 

for improved recall. The direct acquaintance with each item 

in combination with the following arm movement may also 

help develop valuable proprioceptive memory linkages. 

º Flick-and-Bin provides semi-automatic binning that uses 

the flick direction to choose a sector and then places the 

flicked item in an empty bin that is closest to the device in 

that sector. If all bins are filled in the directed sector the 

user has to flick in another direction. The on-screen 

overview provides dynamic sector highlighting during the 

flick. The automatic ‘first-empty’ strategy makes Flick-and-

Bin fast at the expense of user control. A more elaborate 

version could map flick-distance to bin-distance for full 

user control. 

Participants, Task and Experimental Design 

Twelve daily computer and touch screen users (3 female) 

aged 20 to 39 years participated. Five had participated in 

Experiment 1. Participation lasted approximately 30 

minutes (including short breaks and practice). 

Phase 1 of a trial consists of binning multiple icons (6 or 

12); Phase 2 involves retrieving three of them. With Tap-

and-Bin and with Flick-and-Bin the participant taps a start 

button, the next icon to bin in the trial is displayed on the 

screen, and timing starts. With Tap-and-Bin the participant 

taps the icon, moves the hand into AD-space, then bins the 

icon in an empty bin using a LiftOff, and timing ends. With 

Flick-and-Bin, the participant flicks the icon towards a 

sector with an empty bin and timing ends. The on-screen 

overview, where empty bins are yellow and occupied are 

blue, provides dynamic feedback throughout the binning 

activity. Flick-and-Bin forces items to be binned in the 

directed sector with inner bins filled first. Tap-and-Bin 

provides the most flexibility in terms of item placement. No 

flexibility is provided with Automatic binning where the 

system does the binning (i.e., Phase 1 takes no time) and 

automatically fills inner bins (starting from the right sector 

going left) before more distant bins are used. 

A dialog box announces Phase 2 when all icons are binned. 

Dismissing the dialog box displays three random icons from 

Phase 1 for 10 seconds as a preparation for the upcoming 

three retrievals. Showing items prior to retrieval is 

representative of a real task where users know ahead of 

time what items they are looking for (such as during a 

search task). When the three icons disappear, timing begins, 

and the participant starts the first retrieval. As the retrieving 

finger moves beyond the screen border, the overview 

indicates its current location with a red marker. The bin 

content is shown next to the overview. When the correct bin 

has been found, the retrieval (and timing) ends with a 

LiftOff in the corresponding bin. After retrieving all three 

target icons, the binning Phase of the next trial starts. 

The experiment used a 323 within-subjects design for 

factors technique (Automatic, Flick-and-Bin, Tap-and-Bin), 

set size (6 or 12 icons to bin), and retrieval (first, second, 

third in each trial). With three retrievals per trial, three trial 

repetitions with each technique and set size combination 

each, participant performed a total of 54 retrievals. The 

order of technique was counterbalanced between 

participants and set sizes were presented in a random order 

for each technique. We used the Fisheye discretization and 

five sectors with three bins each. Participants had two 

practice trials with each technique. Icons were randomly 

chosen from a set of 180 similarly styled images. No icon 

appeared in two consecutive trials. 

Results 

Binning Phase 

Binning strategies: after the experiment, all participants 

indicated that they tried to bin items strategically. With 



 

Tap-and-Bin and Flick-and-Bin, most participants 

categorized items (e.g., ‘eatables’, ‘computer stuff’, ‘red 

ones’, etc.) in sectors (participants did not know in advance 

what items to bin). As expected, it was easier to apply this 

strategy with six items than with twelve. Participants placed 

items in inner bins before the outer ones. Trials with six 

items provided more flexibility regarding bin choice but 

participants clearly avoided using the Left and Top-Left 

sectors (Figure 7a and b). 

 

Figure 7. (a) and (b) Sector utilization. (c), (d), and (e) 

Geometric mean retrieval times. Error bars: 95% CI.  

(f) Techniqueretrieval interaction. 

Binning time: As expected, Automatic binning took no 

placement time. Participants spent on average 2.9s to bin an 

item with Flick-and-Bin and slightly longer, 3.3s, when 

using Tap-and-Bin. With a mean trial time of 2.2s for 

LiftOff-selections in Experiment 1 (i.e., the same 

movement and gesture required by Tap-and-Bin), we see a 

strategizing overhead of 1.1s for Tap-and-Bin. Allegedly 

participants used the same strategies for both techniques but 

the flick gesture in Flick-and-Bin took on average 0.4s. 

Retrieval Phase 

Error rates: In 42 of the 648 collected trials (6.5%) 

participants made at least one, and at most four, erroneous 

selections before the prompted item was selected. With all 

three placement techniques using LiftOff as the selection 

method, we found no statistically significant difference in 

error rates between techniques. There was also no 

statistically significant difference in error rates between set 

sizes or retrievals.  

Retrieval time: Retrieval times were positively skewed and 

we applied a logarithmic transform (with distributions close 

to normal) before analyzing the data.  

The geometric mean retrieval times for each set size, 

technique and retrieval are shown in Figure 7c, d and e. We 

found significant main effects for all factors (set size: F1,11 = 

100.2, p < 0.0001, 
2
 = 0.90; technique: F2,22 = 7.3, p < 

0.01, 
2
 = 0.40; retrieval: F2,22 = 8.3, p < 0.01, 

2
 = 0.43). 

As expected, the larger set size required more searching 

than the small set size, and thus took longer time. Post-hocs 

between techniques showed that Tap-and-Bin was 

significantly faster than Automatic and that there were no 

other pairwise statistically significant differences. Post-hocs 

between retrievals showed that the first retrieval was 

significantly slower than the other two. The second and 

third retrievals did not differ. 

The significant techniqueretrieval interaction (F4,44 = 5.9, 

p < 0.001, 
2
 = 0.34, Figure 7f) reveals that the overall 

advantage of Tap-and-Bin (21% vs. Automatic, 12% vs. 

Flick-and-Bin) is mainly a result of exceptionally fast first 

retrievals. With previous placement analysis showing that 

participants did not make use of the possibility to leave the 

inner bins empty with Tap-and-Bin, it is particularly 

interesting to note the large difference between Tap-and-

Bin and Flick-and-Bin in the first retrieval. With no inner 

bins empty, the only difference between the two techniques 

is the amount of physical activity required to do the 

binning, a short flick for Flick-and-Bin, moving the arm 

and a LiftOff gesture for Tap-and-Bin. Apparently, the 

greater physical activity needed for Tap-and-Bin fostered 

spatial memory. In the first retrieval with Flick-and-Bin and 

Automatic, participants had to rely more on the visual 

overview and search. The position information participants 

gained during this first search was then utilized in later 

retrievals to improve performance to Tap-and-Bin’s level. 

Summary 

Our results suggest that the overhead involved in manually 

binning items as in Tap-and-Bin is compensated by 

improved retrieval times due to enhanced spatial encoding. 

Spatial enforcement of item locations is also present while 

searching for items in AD-Bins: retrieval performance 

improved after having selected the first item in Automatic 

and Flick-and-Bin, as participants mentally recorded 

positions of subsequent items to retrieve.  

Results from the above studies suggest that AD-Binning 

can facilitate selection of reasonably large items (Exp. 1A), 

where errors and selection times across distance and sectors 

can be equalized using a space discretization technique such 

as the Fisheye (Exp. 1B). Furthermore, exploring AD-

Binning space enhances spatial encoding of item positions 

around the device (Exp. 2). These results inform the 

selection of suitable design parameters for an efficient AD-

Binning technique. 

EXPERIMENT 3 – ANALYTIC TASK 

With knowledge of how the various design parameters 

influence performance from the previous experiments, we 

next demonstrate and evaluate a practical AD-Binning 

usage scenario for browsing information content.  

Participants, Task and Experimental Design 

Twelve daily computer and touch screen users (3 female) 

aged 18 to 35 years participated. Two were new and had not 

participated in any previous experiment. Participation lasted 

approximately 45 minutes (including breaks and practice). 

The task simulates a frequent situation where the user has 

queried a system for information. In our case, a geographic 

tourist portal for hotel reservations where the query results 

are displayed on a map. Issuing the query can result in 

items being placed automatically in around-device space, 

and ready for retrieval. 



 

A trial starts with the screen displaying a prompt to search 

for the cheapest n-star hotel (n=number from 1 to 5). After 

reading the text, the participant taps a start button and trial 

time starts. The next screen shows a city map with a set of 

circular markers (ø 5mm) representing various hotels. We 

place the search criteria at the top of the screen as a 

constant recourse (Figure 8a). In the ‘on-screen’ condition, 

the price and rating (number of stars) for a hotel are 

displayed in a callout box that opens when the marker is 

tapped (Figure 8a). Participants were informed that they 

could either close the box with a tap on the map or fill the 

box with new information by directly tapping on another 

marker. When the participant believes having found the 

hotel satisfying the search criteria, the trial ends with a tap 

on the button (10.7cm) in the callout box. If correct, the 

trial time stops and the text prompt for the next trial is 

displayed. If incorrect, an error message pops up which 

blocks further input for one second before it automatically 

fades away. After that, the search for the correct hotel can 

continue. Panning and zooming are fully enabled. 

 

Figure 8. (a) On-screen interface with 10 hotels at low density. 

(b) AD-Bins with 15 hotels at high density. 

With AD-Binning, we use the automatic binning method 

such that ‘proxies’ to hotel markers are placed in random 

AD-bins. The AD-space is divided into five sectors, with a 

total of 5, 10 or 15 bins depending on the condition (see 

below), and uses the Fisheye discretization. The participant 

browses hotels in off-screen space by moving the index 

finger between bins. At bin-entry, the corresponding hotel 

marker is highlighted and the hotel information is shown 

next to the bin-overview at the bottom of the screen (Figure 

8b). To select a hotel, the user performs a LiftOff inside the 

desired bin. The trial prompt, timing and error notifications 

work as previously described. On-screen panning and 

zooming are fully enabled. As this task primarily involves 

browsing, we opted for the automatic binning method over 

manual binning which is better suited for more complex 

tasks that involve setting aside objects for later retrieval. 

The experiment used a 223 within-subjects design for 

factors interface (on-screen, AD-Binning), marker density 

(low, high), and number of items (5, 10, 15). Participants 

performed five repetitions for each combination of factor 

levels, for a total of 60 timed trials per participant (five 

practice trials were given per interface). Combinations of 

density and number of items were presented in random 

order within each interface. Six participants started with 

AD-Bins, six with on-screen browsing. In low-density 

conditions all hotel markers were positioned at random 

positions within 1.974cm of the map/screen center. The 

high-density conditions used 0.987cm. At least two hotels 

with the requested number of stars existed in each trial. 

Hotels, prices, stars, and marker positions were otherwise 

completely randomized. 

Results 

Error Rate 

In 90 of the 720 collected trials (12.5%) participants made 

at least one, and at most five, erroneous selection before 

finding and selecting the correct hotel (44 trials with on-

screen, 46 with AD-Bins). Neither interface nor density 

influenced the error rate (Wilcoxon tests), but number of 

items did (
2
(2,N=12) = 10.8, p < 0.01). Post-hocs showed 

differences between 15 and 5 items (46 vs. 19 trials) and 

between 15 and 10 items (46 vs. 25 trials). Naturally, with 

more items to manage and to compare, the risk of making a 

mistake increases. 

Trial Time 

AD-Binning, with a mean trial time of 17.5s (s.d. 9.3), was 

significantly faster (F1,11 = 43.9, p < 0.00001, 
2
 = 0.80) 

than the on-screen interface with a mean trial time of 27.6s 

(s.d. 17.2). There was no statistically significant difference 

between high and low density but number of items 

significantly influenced trial time (Greenhouse-Geisser 

corrected, F1.12,12.31 = 164.6, p < 0.00001, 
2
 = 0.94) with 

post-hoc comparisons showing differences between all 

factor levels. 

Number of items interacted with both interface (F2,22 = 24.5, 

p < 0.00001, 
2
 = 0.69) and density (F2,22 = 3.7, p < 0.05, 

2
 

= 0.25) (Figure 9a and b). Time savings with AD-Binning 

increased disproportionally with the number of items: 

27.9% with five items, 31.9% with ten, and a whopping 

40.2% with 15 items. Overall, AD-Binning was 35.8% 

faster. Across interface, there were no statistically 

significant differences 

between low and high 

density in conditions with 

5 and 10 items but 

performance deteriorated 

with 15 items at high 

density (Figure 9b). 

Presumably, this was 

mostly caused by the in-

creased need for elaborate 

pan/zooming and closing 

of the callout actions in 

the on-screen condition 

(however, we note that 

there was no significant 3-

way interaction). 

 

Figure 9. (a) Numbers of 

itemsinterface. (b) Numbers of 

itemsdensity. 



 

Preference Ratings 

Three of twelve participants preferred the on-screen 

interface, eight preferred the AD-Binning and one was 

undecided. The most frequent reason for preferring AD-

Binning was how it helped recalling the rough location 

(sector/‘quadrant’) of the ‘current best answer’. 

Summary 

In comparison to on-screen input, AD-Binning reduces 

information browsing time for three reasons. First, AD-

Binning is in ‘browse’ mode by default. Retrieving object 

information involves hovering or sliding the finger between 

bins. In contrast, on-screen consumes at least two steps: i) 

tap on an icon to pull-up information, and ii) tap again to 

close the callout box or to retrieve information from another 

marker. Second, AD-Binning target sizes can be 

significantly larger than those on-screen. In our example, 

queries with 5 items used five bins, each with a larger space 

then when the query had 15 items. Finally, participants 

exploited spatial abilities with AD-Binning. They would 

cache in memory the best bin location satisfying the query 

criteria and update in memory this bin location only when 

the next best item was available. While this happened with 

automatic placement, in a full manual placement reliance 

on spatial memory would be even stronger as indicated 

from results of Experiment 2. 

DISCUSSION 

We summarize our main findings and present them as 

around-device binning guidelines, discuss other 

applications that can benefit from our guidelines and 

conclude with some limitations of our investigation.  

Design Considerations 

Our results offer the following guidelines to designers for 

interfaces similar to AD-Binning:  

º Input range: An interaction space extending 40cm beyond 

each side of the device is suitable when around-device 

interaction is focused on a horizontal plane defined by the 

device. A radial division and partitioning in sectors allows 

for comfortable reach.  

º Target Size: Use the largest targets possible, and targets 

should not be much smaller than 4cm across. With a radial 

bin arrangement, interactions close to the device cause a 

higher number of errors, as bins are smaller there. 

º Ideal interaction regions: Prioritize interactions on the 

same side as the dominant pointing hand, as users 

intuitively avoid interaction on the non-dominant side to 

avoid occluding on-screen visual guidance.  

º Around-device space division: Fisheye discretization can 

suitably divide around-device space to provide equally 

efficient access to all content around the device and reduces 

accuracy requirements.  

º Selection methods: On-screen and off-screen methods can 

be equally effective for selection. Designers can choose a 

selection method based on task. Finger lift-off is possible in 

both mid-air and when the device is resting on a surface.  

º Placement methods: Promote spatial learning through 

direct ‘physical contact’ with off-screen space. The extra 

time and effort required to manually place items in around-

device space pays off in item browsing and retrieval tasks. 

Rapid binning is possible with automatic placement 

methods, which can be triggered through a query.  

Applications 

Some obvious applications for AD-Binning including photo 

storage (organized in sectors denoting date, event or any 

other semantic information), storing and retrieving items 

from contact lists and bookmarking items of interest when 

browsing a web site. We also envision longer term 

applications where the user can capitalize on proprioceptive 

memory linkages developed over time to access content 

across applications or regularly issued commands, similar 

to CommandMaps [18]. With further development, AD-

Binning could also apply to the following applications: 

Item retrieval based on item organization. Our 

implementation of AD-Binning did not consider specific 

ordering of items. However, many datasets have inherent 

structures that AD-Binning interfaces can leverage. For 

example, items could be sorted based on price, 

alphabetically or chronologically. In an email client, items 

can be placed in chronological order in around-device 

space. This can allow the user to retrieve items immediately 

based on their previously developed knowledge of AD-

Binning item organization. 

Mixing physical and virtual bins. AD-Binning could also be 

used in mixed physical and virtual workspace scenarios. By 

tracking the position of a digital pen, AD-Binning could 

facilitate note taking and brainstorming scenarios where 

ideas and sketches are made on physical notes arranged 

around the device (Figure 10a). Committing the final note 

content and position stores the note in the corresponding 

AD-space for later retrieval or browsing (Figure 10b). 

 

Figure 10. AD-notes. (a) Creating, arranging and storing 

physical notes. (b) Browsing notes stored in AD-space. 

Limitations and Future Work 

AD-Binning relies on a robust tracking mechanism (Vicon 

cameras) for around-device interaction and in 3D space. 

Further experimentation is needed for determining suitable 

design parameters for devices equipped with new sensors 

that track fingers in off-screen space. Our results indicate 

that partitioning around-device space into 45 bins (based on 

five sectors and the smallest target size) is a suitable 

strategy. However, further studies are needed to investigate 

other approaches such as non-circular ones or 3D-layouts 



 

that allow stacking items on top of one another. Our results 

are also dependent on visual feedback, which consumes 

space on the screen. Additional work is needed to identify 

whether such visual guidance can be eliminated after 

repeated use in a given task and application (as indicated by 

the results of Experiment 2). Finally, our automatic 

placement strategy inserts items in bins in a random 

manner. More robust layout mechanisms are needed to 

provide for an efficient organization of around-device 

items. For example, in the map application, items in one 

area could be assigned to corresponding relative regions in 

off-screen space. Additional future work will consider 

extrapolating our results to other forms of tasks in around-

device space, such as selecting commands, bridging 

between physical items around the device and AD-Binning, 

and coupling around-device input with on-screen 

interaction. We are also interested in investigating the 

social acceptability of around-device interactions. 

CONCLUSION 

We have presented the design and evaluation of AD-

Binning, a novel user interface for future small-screen 

mobile devices that will be able to sense finger movements 

in their vicinity. With AD-Binning the user can off-load 

screen items from the small screen into the larger off-screen 

space around the device. AD-Binning was mainly designed 

to support the user in analytic scenarios that require 

intensive browsing and comparisons between many 

alternatives, such as long query result lists or other 

information intensive situations where exploration is 

necessary before a decision is made. Such tasks can be 

laborious to perform using the interactions provided by 

small touch screens. With AD-Binning the user can 

efficiently store, browse and retrieve content through direct 

interactions in the space around the device. 
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