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Abstract—Many people spend countless hours watching
videos online or on TV. Current smart TV systems provide
some basic two-way communications where users can interact
with some features (e.g. browsing web, accessing social media,
etc) provided by service providers. We would like to move
beyond such primitive interactions and explore the possibility
of allowing users to interact with video contents. For example,
users can select objects shown in videos and place further
queries on them. We start with exploring different state-of-
the-art object detection and tracking techniques to obtain
an object’s location in the video. Using the best performing
tracking technique, we extract an object’s location in each
frame and allow users to interact with the object using
Microsoft Kinect. Finally, we have developed and compared
a set of selection techniques that assist users to select moving
objects in video. We conclude with guidelines for designing
such interaction systems.

Keywords-object tracking; video contents; video-based hu-
man computer interaction

I. INTRODUCTION

Imagine that you are watching TV in your living room.
Some item (e.g. a dress, perfume, appliance, etc) on the
screen catches your eyes, and you want to find out where
you can buy it. Wouldn’t it be wonderful if you could simply
aim the remote at the object, press a button to select it
while the TV program is still progressing? Then the TV
will automatically send the information to a search engine
and tell you where to purchase this item. In this paper, we
develop a system representing our first step toward realizing
this dream.

Videos are becoming one of the most popular and power-
ful communications tools nowadays. With the rapid growth
of the Internet, people rely on videos for a wide variety of
daily activities such as education, entertainment, advertising
or even business. According to Youtube [30], over four
billion hours of videos are watched and over 800 million
unique users visit the site every month. In addition to online
videos, television is another popular media that delivers
video contents to users. Over the last few years, smart TVs
are gaining significant attentions as they provide services
with more interactive viewing experiences compared with
traditional TVs. For instance, it provides two-way commu-
nications where users can directly interact with different
features provided by the service providers, such as accessing
the web, social media and online applications.

However, the interactions provided by current smart TV
systems are still quite limited. In particular, users do not
have the option to interact with the video contents. For
example, users cannot identify an object appearing on the
screen and place further queries on the object while the video
is still progressing in the background. This form of new
interactions can potentially revolutionize how companies
market, advertise, and sell their products.

In this paper, we develop an interactive system that
enables users to directly select objects from the video using
their hand gestures. In our system, users’ hand movements
are mapped to the cursor control and used to select the
object. Once an object in a video scene is selected, users
can perform basic queries (e.g., product name, price, store
information) on the object.

To achieve our goal, we first investigate and compare
different object tracking and detection methods that provide
object positions in the video frames. We then apply the best
found method to track objects and use Microsoft Kinect to
allow users to interact with those moving objects. Selecting
a moving object in a video involves continually tracking the
object and simultaneously planning to move the cursor over
it. We develop a set of selection techniques that use the
hand gestures and depth information from Kinect sensors
for object selection. We have compared these techniques and
found that object selection is best done when both hands are
used (right hand for cursor control and left hand to confirm
the selection). In addition, our results have revealed that
selecting items from static proxies is faster compared with
selecting moving objects.

The contribution of this work include: 1) an evaluation
of different object detection and tracking methods for video
content interaction; 2) object position extraction from videos
by applying the best tracking method; 3) design of a system
that allow users to interact with video contents; 4) a set of
techniques that assist in moving object selection in videos.

II. RELATED WORK

In this section, we review previous work in several areas
related to our work, including object tracking (Section II-A)
and kinect sensor (Section II-B) in computer vision, and
moving object selection in HCI (Section II-C).



Figure 1. An illustration of our video content interaction system. (a) presents the original video where a user (b) selected an item (c). Current tracked
object is shown in (d) and the static proxy of the selected item is shown in (e) with the cursor (f). A video demonstration of the system is available
online [32].



A. Object Tracking

Object tracking is one of the most extensively studied
areas in computer vision. Interested readers are referred to
[28] for an extensive review. Here we briefly mention some
of the work most relevant to ours.

Tracking-by-detection has gained significant attentions in
recent years [1]. The basic idea of this approach is to treat
tracking as a sequence of detection problems and repeatly
apply an object detector on each individual frame. One of
the limitations of this approach is that the detector needs to
be trained beforehand.

Adaptive tracking-by-detection is another popular method
used in [1], [7] where classifier is trained online. During
the initialization, a initial classifier is used to search for
the object position in the frame using a sliding window
approach. This generates a new set of training samples
which are used to update the classifier. Examples include
the semi-supervised boosting method in Grabner et al. [10],
and the multiple-instnace learning method in Babenko et
al. [2]. Kalal et al. [21] propose a robust method called
Tracking-Learning-Detection (TLD) that combines tracker,
learner and detector to discover different appearances of the
object and to detect it in a frame. They proposed a new
learning paradigm called P-N learning [20] that generates
positive and negative constrains in runtime which enforces
the labeling of the unlabeled frame.

B. Kinect

Kinect is the first motion capture device on the consumer
market and was originally developed as a game controller. It
has now been used in a wide variety of applications ranging
from art and advertisement to healthcare and business [29].
In the research community, this device has been used for
3D reconstruction, augmented reality, image processing,
interaction and visual recognition [8].

3D reconstruction using Kinect has been a very popular
research topic [3], [17], [23]–[25] in the last few years since
Kinect is a low cost and handheld device. It is capable
of capturing objects’ geometry and colors of a scene in
real time. This 3D reconstruction can be applied in several
applications in including object synthesis, augmented reality,
robotic navigation, image processing, etc [8]. Kinect cameras
have also been used extensively in various application in
computer vision, such as unsupervised feature learning [4],
people detection [27], object detection [22], human pose
estimation [26], etc.

C. Moving Object Selection

According to Fitts’ law [9], the time it takes to select an
object depends on (i) the effective width of the target and
(ii) the distance between the cursor and the target. In recent
years, researchers have studied object selection techniques
by modifying these two properties to improve the target
selection performance [11], [13]–[15], [18]. Area cursor [18]

and comet [13] improve the targeting performance by in-
creasing the effective target width. Instead of using a small
activation area (i.e., point cursor), area cursor uses large
width thus provides a larger activation area. Comet also
works based on the principle of increased activation area
where a tail (that is seen with comet in the sky) is added
to every object. One major limitation of these approaches is
that the enlarged area yields more overlaps or causes visual
distraction. To reduce this problem, bubble cursor [11] used
a dynamically resized activation area that changes its width
based on the location of surrounding targets to the position
of the cursor. This cursor technique is known to be well
performed under different circumstances.

In general, positions of a moving object in the subsequent
frames are uncertain. To reduce the uncertainty, Ilich [16]
proposed a technique called click-to-pause where entire
scene is paused with a mouse click and thus allow users
to select a static object. It is not a suitable solution for
real-time applications as pausing the entire scene would
hide frames that are running in background, thus viewers
might miss other important information. Target ghost [13]
overcomes this problem by creating static proxies of all
moving objects on their position at time of invocation. In
a user evaluation, authors showed that the ghost technique
results in lower selection times and less error for a task
involve object selection.

III. COMPARISON OF TRACKING METHODS

Our system requires tracking objects in a video as the first
step. In our work, we consider two state-of-the-art tracking
methods: the tracking-learning-detection (TLD) method in
[21] and the structured output tracking with kernels (Struck)
in [12]. Both methods have been shown to be effective. But
there is no direct comparison between these two methods. In
this section, we first briefly summarize these two tracking
methods, then perform a quantitative comparison of their
performances.

A. TLD

TLD has three main components: (i) Tracker: a tracker
follows an object from one to other frame by assuming
limited frame-to-frame motion. TLD uses a median-flow
tracker [19] with failure detection scheme; (ii) Detector: the
detector localizes all appearances that have been observed
and corrects the tracker when necessary. The detector applies
scanning-window method to an input image and for each
patch it estimates the presence or absence of the object. (iii)
Learner: a learner checks the performance of the tracker and
detection and estimates the detector error and updates it to
avoid further error [21]. One of the major contributions of
this work is a novel learning method called P-N learning
that helps to estimate the error by recognizing the missing
detection (generated by P-expert) and false alarm (generated
by N-expert). The learner initializes the object at the first



Figure 2. TLD with positive (green border) and negative samples (red
border). This figure is best viewed in color.

Figure 3. Struck with positive and negative support vectors bordered with
green and red color. This figure is best viewed in color.

frame and updates itself on runtime with the help of P-expert
and the N-expert (Figure 2).

B. Struck

Current adaptive tracking-by-detection methods consider
the tracking process as classification tasks and use online
learning methods to predict the object location during run-
time. However, intermediate processing steps (e.g., sam-
pler, labeler) could be eliminated by directly predicting the
changed object location in frames. Struck [12] use this
approach by merging the learning and tracking state, thus
avoiding the intermediate classification phase (Figure 3).
They used online structured output SVM learning method
described in [5], [6] and adopted it to tracking problem [12].
To limit the number of support vectors that increases in
training, they applied a fixed budget (i.e., specific limit)
mechanism to control its growth and showed that the budget
scheme helped the technique to be computationally faster.

C. Quantitative Evaluation

This section reports on quantitative experiments compar-
ing TLD and Struck. We use the implementations provided
by their respective authors. We initailize both trackers with

Table I
SPEED COMPARISON OF TLD AND STRUCK WITH SAMPLE DATASET1.

FIRST TWO COLUMNS ARE THE TOTAL EXECUTION TIME FOR TWO
TECHNIQUES AND LAST TWO COLUMNS PRESENT NUMBER OF FRAMES

PROCESSED IN EVERY SECOND.

Struck TLD Struck TLD

in sec in sec frame/sec frame/sec

Coke 251 47 1.16 6.21

Girl 401 93 1.32 5.69

Tiger1 394 53 0.9 6.68

Tiger2 334 62 1.09 5.89

Average 345 63.75 1.12 6.12

Table II
PRECISION FOR TLD AND STRUCK. RESULTS SHOW THAT TLD

ACHIEVES HIGHER PRECISIONS COMPARED WITH STRUCK ON ALL THE
VIDEOS.

Struck TLD

Coke 0.69 0.94

Girl 0.80 0.93

Tiger1 0.77 0.86

Tiger2 0.63 0.79

Average 0.72 0.88

a bounding box in the first frame. With this initialization,
both algorithms start tracking the object of interest in the
subsequent frames. We used the dataset in [12] to evaluate
both tracking methods. We conducted the experiment on an
Intel Pentium dual-core processor running at 2.0 GHz with
3GB RAM. During the experiment, we logged the tracked
object position with other necessary information so that we
could use that information later for object selection and
interaction.

The performances of two methods are evaluated using
two criteria: (i) precision measured by the ratio between
the number of correct detections and the total number of
detections; (ii) speed measured by the average number of
frames a technique can process in one second.

Table I presents a comparison of the execution time and
speed for TLD and Struck. For all the video sequences, the
average execution time for Struck (345 sec) is significantly
higher than TLD (63.75 sec). Therefore, TLD is more than
five times faster than Struck. We also found that TLD
tracked the object in less time than struck in every sample
video. Table II shows the comparison of precision for these
two methods results. Again, we observe that TLD achieves
higher accuracies than Struck. Since TLD is faster than more
accurate than Struck according to our evaluation, we choose
to use TLD as our tracking method in our system.



Figure 4. Body parts extracted from Microsoft Kinect.

IV. KINECT AS INPUT DEVICE

Our final goal is to provide interaction capabilities to
streaming videos on TVs or computers. Popular input de-
vices for them include TV remote, Wii remote and Microsoft
Kinect. In our work, we choose to use Microsoft Kinect as
it provides interesting features such as depth information,
user body Skeleton in real time.

Kinect has become an importent motion sensing input
device for many researchers to create new forms of in-
teractions with computers. Kinect is capable of tracking
user skeletons and body joints from the depth sensor. In
skeleton tracking, a human body is represented by a number
of joints corresponding to body parts such as head, neck,
shoulders, and arms (Figure 4). Each joint is represented by
its 3D coordinate (x,y,z) in meters. The Kinect API provides
different functionalities such as tracking moving people with
skeletons, determining the distance between an object and
the kinect camera, etc. We take advantage of the Kinect API
to track the user’s skeleton in real-time.

The Kinect sensor doesn’t have enough resolutions to
ensure consistancy accross different frames. So the tracked
skeleton has jitters over time. To get smoothed skeleton
tracking, we apply smoothing and filtering operations pro-
vided by the Kinect SDK to reduce jitters. The smoothing
filter is based on the Holt Double Exponential Smoothing
method that provides smoothing with less latency than other
smoothing filter algorithms [31].

We are interested in capturing hand movements so that
we can map the movements to the cursor control and the
object selection. We first extract the positions of hand joints
(i.e., shoulder, elbow, wrist), then map the middle of spine
as the center of screen. Displacement of right wrist from
the middle of spine is considered as the cursor displacement
from the center of the screen (i.e., moving right wrist to
the left moves the cursor to the left). We also record hand
bending gesture and hand extend gesture to assist object

selection. We discuss details of selection techniques in the
following section.

V. OBJECT SELECTION

For a given video, we apply TLD to extract interesting
objects (e.g., dress, necklace, shoe) from it. TLD provides
us the locations of different objects in each frame. We
use that information to draw a bounding box around each
object of interest (Figure 5). At this point, we have a video
with different objects labelled in it. Placing queries to those
objects requires the development of some form of interaction
capabilities with input devices.

Previous research on selection tasks has demonstrated that
selecting moving objects is considerably harder and more
error prone than static ones. Any form of additional assis-
tance to selection techniques leads to significant performance
benefits [13]. Therefore to assist users selecting an object
from video, we develop a set of selection techniques using
the depth and body skeleton information from Kinect.

A. Selection Techniques

We develop three depth-based selection techniques and
three left-hand based selection techniques using the depth
and body skeleton information extracted from the Kinect.
First of all, we map the right hand movement to the cursor
control (see the first row in Fig. 6). When a user moves
his/her left hand to the left of the body, the cursor will
move to the left on the screen. For the depth-based selection
technqiues, we calculate the distance between the wrist
and the body using their depth information (see the left
image of the second row in Fig. 6). For the left-hand based
selection techniques, we track the left hand movement and
use bending gesture (see the right image of the second row
in Fig. 6) to invoke the selection.

In the following, we describe in details the three left-hand
selection techniques.

Left-hand with Basic Cursor: In this technique, a user
controls the cursor with the right hand and the selection is
invoked with the bending gesture of the left hand. In other
words, when the cursor is moved over the target, the user
needs to bend the left hand to confirm selection.

Left-hand with Ghost: This technique is similar to the
target ghost technique proposed in [13] where a user’s
certain interaction creates static proxies of moving objects
on the position at the time of interaction. We modify the
technique for both hand interaction. When a user bends the
left hand, our system creates static images of all moving
objects (Figure 1e) and s/he selects the static target object
by moving the cursor over it.

Left-hand with Crossing: This novel technique is inspired
by the memory buffering method. Here we considered a
virtual bin and all the objects that are overlapped with the
cursor are stored in that bin. Now users can access the
last stored object by bending his/her left hand. The main



Figure 5. TLD is applied on a sample video. The yellow bounding box indicates the tracked object. This figure is best viewed in color with magnification.

advantage of this technique over left-hand with basis is
that a user doesn’t need to simultaneously follow and plan
the selection. Thus it provides more flexibility on object
selection.

Similarly,we define three depth-based selection tech-
niques: Depth with Basic Cursor, Depth with Ghost and
Depth with Crossing. All of these techniques have similar
functionalities that described above. The only difference is
that the selection is done by placing the right hand closer
to the screen. For instance, in Depth with Basic Cursor
technique, a user needs to move the cursor into the bounding
box and at the same time s/he needs to extend the wrist away
from body to a certain distance to confirm the selection.

B. Quantitative Evaluation
We conducted a user study to compare the performance

of all those techniques in an object selection tasks. In the
experiment, at least one object was always moving on the
screen and we asked participants to select that object with

all six techniques. Three right-handed participants with ages
range from 25 to 30 participated in this experiment. The
experiment ran on a Windows 7 PC connected to a Microsoft
Kinect. In this experiment, we measure the task completion
time, i.e. the time from when a user starts the trial to
when s/he successfully selects the target. We also logged the
number of attempts a user took to select the target object.

The results of our study show that participants were
faster with all left-hand selection techniques than all depth-
based selection (Figure 7). Among the left-hand techniques,
participants were fastest with Ghost (2,824ms), followed
by Crossing (4,325ms) and then with the Basic cursor
(5,183ms). We find similar trends for depth-based techniques
where Ghost technique (3,543ms) took less time than Cross-
ing (4,779ms). Depth with Basic cursor took the longest task
completion time (6,491ms) among all the techniques.

We observe similar results for the number of attempts. All
left-hand selection techniques took less attempts (Figure 8)



Figure 6. Illustration of different selection techniques. First row: control
the cursor with right hand movement. Second row (left): left-hand selection
by bending the left arm. Second row (right): depth-based selection by
placing the right hand closer to the screen.

Figure 7. Task completion time across different techniques with left-hand
and depth.

than depth-based techniques. Users took only one attempt to
successfully select an item with Left-hand with Ghost and
Left-hand with Crossing techniques, whereas they took 1.60
attempts for left-hand with basic on average. Depth with
Ghost took the minimum number of attempts (1.07) among
all depth based techniques, followed by Depth with basic
(1.67). Surprisingly Depth with Crossing technique took the
maximum number of attempts (1.80) to select an object.

Overall, our study shows that participants were faster and
more accurate with left-hand techniques. In all cases, basic
cursor takes the longest completion time and requires more

Figure 8. Average number of attempts across different techniques.

attempts for selection. The same trend has been reported in
the literature [13], [16]. As crossing techniques involve two
sequential operations (i.e., cross an object and then bend the
arm for selection), overall it shows slower performance than
ghost techniques. All the ghost techniques show significant
improvement of results in comparison to other techniques.
With the ghost techniques, since participants can select the
proxies of moving objects (i.e., motionless target), they have
more control on the selection and require less attempts.
Overall, our results show that for moving object selection
task, creating and allowing users to interact with a static
version of moving objects provides better results.

From the results, we propose the following guidelines for
developing application involving user interactions with video
contents:
• For object tracking, the TLD method is the prefered

method since it is faster and provides more accurate
results compared with Struck.

• For Kinect based interaction, left-hand selection is
prefered over depth-based selection.

• For a task involving moving object selection, better
results can be achieved by using a static proxy of the
moving object.

Interested readers are referred to the video demonstration
of our system [32] for a more intuitive understanding of
these approaches.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a novel application that
allow users to interact with video contents using Kinect.
Our system uses the state-of-the-art tracking method to
obtain object positions in a video. We then proposed several
different object selection techniques that allow users to select
targets using various gestures.

This work can be extended further in several directions
in the fields of computer vision and human-computer inter-
action. For instance, the current version of TLD only tracks



one object at a time. This can be extended to track multiple
objects simultaneously. Furthermore, in our implementation,
we first extracted objects location off-line and then apply
that information to video frames. The whole process can be
done online and in a single step. Finally, we only explored
a small set of selection techniques for Kinect based system.
As future work, we plan to explore a richer set of interaction
techniques for this application.
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