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Abstract—GPS, RFID, and other technologies have made it increasingly common to track the positions of people and objects 
over time as they move through 2-dimensional spaces. Visualizing such spatio-temporal movement data is challenging because 
each person or object involves three variables (two spatial variables as a function of the time variable), and simply plotting the 
data on a 2D geographic map can result in overplotting and occlusion that hides details. This also makes it difficult to 
understand correlations between space and time. Software such as GeoTime can display such data with a 3-dimensional 
visualization, where the 3rd dimension is used for time. This allows for the disambiguation of spatially overlapping trajectories, 
and in theory, should make the data clearer. However, previous experimental comparisons of 2D and 3D visualizations have so 
far found little advantage in 3D visualizations, possibly due to the increased complexity of navigating and understanding a 3D 
view. We present a new controlled experimental comparison of 2D and 3D visualizations, involving commonly performed tasks 
that have not been tested before, and find advantages in 3D visualizations for more complex tasks. In particular, we tease out 
the effects of various basic interactions and find that the 2D view relies significantly on “scrubbing” the timeline, whereas the 3D 
view relies mainly on 3D camera navigation. Our work helps to improve understanding of 2D and 3D visualizations of spatio-
temporal data, particularly with respect to interactivity. 

Index Terms—Information visualization, spatio-temporal data, movement data, interactive visualization, evaluation. 
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1 INTRODUCTION

PS receivers and RFID technology have made it easi-
er and more common to track the location of auto-

mobiles, boats, airplanes, smartphones, equipment, mer-
chandise, and people. Standard productivity tools such as 
Excel are incorporating add-ons to tackle the common 
task of analysing large datasets of this type. There is a 
growing need for visualizations tools to help understand 
and analyze such data, commonly referred to as spatio-
temporal data. 

Examples of large datasets include Microsoft's GeoLife 
data [1] which contains movements of almost 200 people 
over four years. However, even teasing apart the move-
ments of one person over one week can be challenging to 
understand. The 2D visualization in Fig. 1, which was 
generated by Google Latitude, makes it clear where a per-
son has been, but not when they were at different places, 
in what order the places were visited, and how many times 

each place was visited. This is partly because 2D suffers 
from overplotting and occlusion. If multiple people's 
movements were shown on a 2D map, it would also be 
difficult to tell if they visited the same places at the same 
time or at different times. 

An alternative visualization of such movement data 
uses a 3rd dimension as a time axis.  Movements thus 
become trajectories in a 3D space, with latitude, longi-
tude, and time providing the coordinates of the trajectory. 

Such a visualization is sometimes called a “space time 
cube” [2] (which we abbreviate as STC), and is perhaps 
best known in the software product GeoTime1 [3] which 
has been available commercially since 2005. Theoretically, 
a 3D (or STC) visualization may allow a user to under-
stand the timing, ordering, and repetitions of events in 
space-time, and gain an overall understanding of an en-
 

1 GeoTime is a registered trademark of Oculus Info Inc. 
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Fig. 1. Movements of a smartphone over 7 days, as captured by the 
Backitude application for Android, sampling at 15 second intervals, 
and subsequenttly visualized with Google Latitude.  Gaps and dis-
continous jumps in the data are caused by traveling through tunnels 
and by occasional spurious errors. 
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tire dataset. 
To better understand the advantages or trade-offs be-

tween 2D and 3D visualizations of movement data, quan-
titative, experimental evaluations are needed. With other 
types of data, past studies comparing 2D and 3D visuali-
zations have found mixed results [4], [5], [6], sometimes 
finding that 3D was worse in certain cases, possibly be-
cause of the complexity of navigating in 3D and under-
standing 3D relationships. Very few previous studies 
have been performed to compare 2D and 3D visualiza-
tions of movement data, the most recent of which [2] may 
have limited external validity due to the design choices 
made in their study, as we will discuss.  Our current work 
aims to compare more realistic implementations of 2D 
and 3D visualizations, in part inspired by GeoTime [3], a 
mature commercial product. 

The current work presents three contributions. First, 
we propose a novel taxonomy of the types of questions 
that can be asked of spatio-temporal data.  This taxonomy 
is extensible to additional dimensions, and classifies both 
basic questions as well as questions about behaviors of 
groups of people (such as group meetings).  Second, we 
present a new experimental comparison of 2D and 3D 
visualizations of movement data, with realistic imple-
mentations of interactive camera controls and the use of a 
time slider in both visualization techniques. Third, we 
present a way to analyze the experimental data to uncov-
er details about the role of different interaction techniques 
in contributing to overall performance time. 

2 RELATED WORK 
Spatio-temporal data visualization can be dated back to at 
least Minard’s famous 1869 map [7], [8]; however, it has 
only gained attention in recent years, as analysis of such 
data has become a necessity in many data rich domains 
and applications. Furthermore, tools such as Google Lati-
tude are incorporating methods for visualizing spatio-
temporal datasets, albeit for less complex datasets than 
those used by domain experts. Researchers working on 
different domains (e.g., computer science, Geographic 
Information Systems (GIS), and urban simulation) realize 
the need for better sense making tools and solutions when 
it comes to spatio-temporal datasets. The challenge, how-
ever, remains the same and that is to depict temporal and 
spatial information simultaneously. We survey two major 
areas of relevant work: visualization of movement data 
(i.e., trajectory data) and performance evaluation of 2D 
versus 3D spatio-temporal data visualization. Visualiza-
tion of movement data can be further divided into 2D 
map-based, abstract space, and 3D space-time representa-
tions. 

2.1 Visualization of Movement Data 
Analysis of information in space and time has gained 
special importance not only by the professional analysts 
but also by today’s modern society citizens [9]. Solutions 
for visualization of spatio-temporal data in the existing 
literature differ based on the characterizing aspects of this 
type of dataset and have been reviewed by researchers 

[10], [9], [11]. The space dimension in this type of data can 
either be “fixed and stationary” or “dynamic and chang-
ing” over time (i.e., movement data) for the target object 
of interest. Depending on the context, there could also be 
extra attribute information attached to the temporal and 
spatial properties of the data [12], [13]. In a recent com-
prehensive review, N. Andrienko and G. Andrienko [14] 
describe and categorize the techniques for visualization of 
movement data from the analysis point of view. They 
separate these categories based on whether or not the 
analyst is interested to 1) looking at the trajectories of 
moving objects as a whole, 2) looking inside trajectories to 
detect particular movement characteristics and patterns, 
3) having a bird’s-eye view on movement and analyze the 
distribution of multiple movements in space and time, 
and 4) investigate movement in context with focus on 
relationships and interactions between spatio-temporal 
objects.  

Focusing on movement trace data, another major cate-
gorizing factor is the number of dimensions used to dis-
play or render visualizations. This refers to whether only 
two dimensions are used to represent the movement data 
(we refer to this category of solutions as 2D) or a third 
dimension is also used to encode time, forming the 3D (or 
STC) category of solutions. It is important to note that 
spatial information can also be three dimensional if lati-
tude, longitude, and altitude are all inputs to the visualiza-
tion system, but in this research project, 3D refers to tech-
niques that use time as the third dimension. 

2.2 2D Map-Based Representation 
2D map representations have been the primary method of 
visualization for movement traces and researchers have 
studied the problem of finding an effective representation 
of time that can be nicely integrated with the 2D space 
information [15]. As described by Turdukulov and Kraak 
[16], there are four main types of representations in 2D: 
Single 2D map, multiple 2D maps and linked views, map 
animation, and 2D display of abstract spatial information. 

In the single 2D map design, time labels, arrows, and 
lines are usually the visual cues added to the representa-
tion to incorporate time as well as other subtle properties 
of movement data such as direction [17], [18]. In [19], 
authors present three different approaches to visualize 
multivariate (e.g., time, position, identification, draught, 
destination, etc.) trajectories of vessel movement. All of 
these approaches are presented using a 2D map to repre-
sent space and the trajectories are drawn on top using 
lines. Different visual cues are used to visualize extra 
attributes. For example, color is chosen to show trajectory 
density. Although in the more advanced approach of this 
visualization, it is possible to distinguish various mo-
ments over time, queries for trajectories with specific 
timestamps are not possible. 

In order to better represent time changes for move-
ment trace data, a series of static 2D maps (a.k.a. small 
multiple maps) can be used to show trajectories for dif-
ferent timestamps [20]. A limited number of 2D maps 
with trace data can be presented to the user at a time. 
Ivanov et al. [21] describe a visualization system with a 
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separate timeline view for temporal information, which is 
linked to the 2D floor plan with embedded trace repre-
sentation. Similarly, in [22], [23], [24] linked views are 
used to visualize temporal data and spatial information in 
terms of a 2D map with trajectory overlays. 

The above mentioned 2D solutions and designs are 
limited to small amounts of data and few time intervals 
and use textual representation of time as opposed to the 
alternative graphical representation. Hence, clutter is a 
big issue due to plotting of temporal data over spatial 
data. In addition, the small multiples and linked views 
require high cognitive load and have been found to be 
hard to compare [25]. 

Furthermore, the use of animation has been exploited 
for better understanding of relationships between differ-
ent properties of a dataset and various visual pieces in a 
representation. Animated maps are a result of employing 
animation to show changes of attribute data over time 
and on a map [26], [27]. Griffin et al. [25] have researched 
the effectiveness of animated maps and compared it to 
static small-multiple maps. The results of their controlled 
experiment shows that map readers can identify more 
moving clusters more quickly using animated maps. The 
type and speed of animation can also play an important 
part in whether or not animation is effective or not. In 
[28], authors compare various types of animations for 
showing the relationships between different structures. 
Smooth transitions were shown to help users maintain 
the visual relationships between the different views. Also 
animation speeds that complete a viewpoint change in 
one second are sufficient for maintaining perceptual con-
stancy. Effects of smooth transitions and have further 
been investigated in [29] finding dramatic benefits on 
user performance and guidelines on how to avoid some 
of the costs associated with animated transitions. 

An alternative to animated playback is to provide the 
user with an interactive time slider (e.g., [22], [23]).  Theo-
retically, this could allow the user to more quickly navi-
gate through the data and find valuable information, by 
sliding more quickly through time spans of lower inter-
est, and slowing down when there is more temporal de-
tail.  Previous evaluations of time-varying visualizations 
have sometimes only allowed animated playback, forego-
ing the evaluation of a time slider [30].  In our study, 
users had access to both animated playback and a time 
slider, making the evaluation more realistic and giving 
users more flexibility. 

2.3 Abstract Space Representation 
The 2D approaches mentioned above all keep the original 
spatial structure intact hence incorporation of extra at-
tributes and time in the visualization makes them clut-
tered. There are, however, another group of 2D visualiza-
tion methods proposed in the literature, which exploits 
abstract space representations. For instance, authors in 
[31] use the line graph metaphor to represent time on an 
abstract space. The result is a proximity-based visualiza-
tion of movement trace data in which the spatial relation-
ships (e.g., distance among objects) are preserved. 

2.4 3D Space-Time Representation 
Adding the third axis to represent time takes us to the 
alternative 3D group of visualizations that combine space 
and time in a single display. Originally proposed by 
Hägerstraand [32] and known as space-time cube (STC), 
in this form of representation, space and time are thought 
of as being inseparable and movement is depicted as 
trajectories in 3D with time being one of the coordinates. 
This idea has been expanded by other researchers in the 
field [33], [34]. A potential problem with the STC ap-
proach is occlusion in case many trajectories are involved. 
To facilitate manipulation and perception of information, 
STC has been extended with interactive techniques [35]. A 
more advanced version of STC enhanced with timeline as 
the main interaction device, time zooming or focusing, 
and linking of maps with corresponding symbols is pre-
sented in [36]. The enhanced version of STC that supports 
many of these features has been turned into a commercial 
software application called GeoTime [3], [37]. 

Recent work by Tominski et al. [38] presents a solution 
based on the STC with the focus on trajectory attribute 
data, i.e., movement data which includes other attributes. 
By stacking 3D color-coded bands on a 2D map and or-
dering the bands based on the temporal information, the 
trajectories and their attributes are visualized while tem-
poral information is directly perceivable. Extra visual 
cues are also added to the bands to depict direction and 
other properties. 

Another drawback of the STC approach, besides occlu-
sion, is distortion of both space and time due to projection 
which makes it hard to perceive depth. Even though 3D 
representation of movement data has been introduced, 
much research is being devoted to finding suitable forms 
of representing this complex dataset. 

2.5 Evaluation of 2D versus 3D Visualization of 
Movement Data 

We next survey evaluations of 2D and 3D visualizations 
of movement data. The most closely related work to our 
study is by Kristensson et al. [2]. The authors compared 
2D and 3D visualizations of movement data, asking users 
to answer four types of questions: 

• Category1: simple "when" & simple "what+where" 
• Category2: simple "when" & general "what+where" 
• Category3: general "when" & simple "what+where" 
• Category4: general "when" & general "what+where" 
The 2D visualization was found to be significantly less 

error prone for category 2 questions, and 3D was found to 
be significantly faster with category 4 questions. One 
explanation for these results is the design choices made 
for both 2D and 3D visualizations. 

In their [2] experiment, the 2D view allowed for inter-
active pan and zoom, but did not have any time slider or 
animation. Instead, text labels showing the times of "criti-
cal time points" could be displayed or hidden by hitting a 
keyboard key. The 3D view allowed for pan, zoom, and 
rotation, and a "measurement plane" could be moved up 
or down the time axis, with the current time of the plane 
displayed. We intentionally made different choices in the 
design of our own experiment, to test a more consistent 
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implementation in both 2D and 3D visualizations.  In 
particular, we note that Kristensson et al. [2] argue 
against using time sliders and animations "because users 
cannot get an overview of the data set at a glance with 
such representations". This is true, but in their 2D condi-
tion, users had to read text labels to understand timing 
and sequencing, which we suspect is slower than using a 
time slider or animation. Furthermore, the ability to move 
a "measurement plane" in their 3D condition is very simi-
lar to having a time slider, whereas an analogous feature 
was not available in their 2D condition. Temporal zoom-
ing or focusing in the form of a timeline has been shown 
to be a necessity with large datasets [36]. Finally, the text 
labels in their 2D condition were not available in the 3D 
condition. 

With permission from Occulus Info Inc., we imitated 
some of the design choices made in GeoTime [39] which 
supports many similar design elements and interactivity 
features in previous implementations of the STC [33], [35] 
and  has benefited from iterative design improvements 
and experience with real users. GeoTime supports both a 
time slider (which moves a horizontal plane) and anima-
tions. We made text labels, a time slider, and animations 
available in both our 2D and 3D conditions. 

In [2]'s experiment, it is unclear how camera opera-
tions such as rotate were performed. If the user must click 
on small widgets or icons to perform camera operations, 
this impedes performance, due to the cost of pointing at 
the widgets or icons, sometimes repeatedly. This cost can 
be modeled with Fitts' law [40]. We instead designed 2D 
and 3D camera operations so they could be performed 
anywhere in the viewport, without first acquiring any 
widgets. This requires that the user first learn the appro-
priate mouse buttons to invoke each operation, but is 
reasonable for users who are at least mildly expert. 

Examining other previous evaluations, [41] is a thesis 
that evaluates STC, comparing it to other visualizations of 
movement data including single and multiple static 
maps, and animation with the aim of finding the best 
visualization for movement patterns (e.g., speed change, 
return to the same location, stops, etc.). Animation was 
found to perform better than the other evaluated tech-
niques for all patterns except stops, and returns to the 
same path both of which performed better in STC. Alt-
hough complexity was considered to be an independent 
variable in the experiment, it was geared towards trajec-
tory size and not complexity of the questions themselves 
which is shown to have a big impact when designing 
spatio-temporal visualization methods [42]. Animation 
was one of the main visualization methods compared in 
this study and as we argue that it is a requirement when 
dealing with large datasets in any of the 2D and 3D visual 
representations and not a representation to compare 
against. Therefore, we have made animation always 
available throughout our experiment setup. 

In [43], authors present the results of user centered 
study and a focus group interview with the domain ex-
perts in geovisualization. Both 2D and STC visual repre-
sentations were available to the users with no specific 
questions. Users saw new opportunities with STC since it 

gave them a new perspective on how to look at their data. 
Information on the effectiveness of different visual varia-
ble are also presented to be used by future designers fol-
lowing the STC paradigm. 

Kjellin et al. [44] conducted experiments to predict the 
meeting place of moving objects based on the past histo-
ry. After the initial round of tests, improvements needed 
to be made to the STC design only to find little perfor-
mance advantages for STC. Other studies with similar 
goal of evaluation of 2D and 3D STC visualizations have 
also been conducted [45], [46], [47], [48] and mixed results 
have been reported leaving the need for further investiga-
tion. More specifically, an experiment with controlled 
selection of tasks and features is required to better under-
stand the trade-offs between the two visualization meth-
ods. 

3 SPACE-TIME VISUALIZER (STV) 
We implemented an experimental testbed application 
called STV that supports 2D and 3D visualization of 
movement data (Fig. 2). 

In both the 2D and 3D views, the left mouse button can 

Fig. 2. (Top) The 2D visualization of movement data in our STV 
application. Movements of three objects are shown in green, purple, 
and black. Colored dots show individual locations, and are connected 
by tapered line segments similar to an arrow head pointing in the 
direction of the object's motion. The location of each object at the
time selected in the time slider along the bottom is shown by 
squares. Red squares on the map mark specific locations; these may
be referred to in the question, or may also appear as choices in the 
answers at the top left. In the panel on the left, a Play button toggles 
animated playback. When the user drags the time slider, or activates 
animation, the positions of the green, purple, and black squares 
update to show movements. (Bottom) The 3D visualization in STV. 
Each of the green, purple, and black squares now have dotted lines 
projected below them to help see their current geographic location. In 
addition, the red line segments along the "back walls" of the 3D 
space indicate the current time to the user. The red arrow indicates 
an example of a stationary object. 
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be clicked and dragged anywhere in the main viewport to 
pan (i.e., translate the camera up, down, left, right), and 
the mouse scroll wheel can be rolled to zoom in or out. In 
the 3D view, the right mouse button can be clicked and 
dragged anywhere in the main viewport to tilt and rotate 
the scene. 

In addition, whenever the user hovers the mouse cur-
sor over any of the dots in the main view marking a loca-
tion, a “datatip” (or tooltip) appears indicating the date 
and time of that dot. The user may also left-click on a dot 
to select it, causing the datatip for that dot to remain on 
the screen persistently. Thus, the user may select one dot, 
and hover over a second dot, to make the datatips for 
both visible, which can be useful for figuring out the time 
interval between two dots. 

Finally, hitting the enter key on the keyboard toggles 
the appearance of labels on all dots. However, during our 
experiment, this last feature was not used by the partici-
pants. TABLE 1 includes a list of all the visual and inter-
action mappings for the 2D and 3D designs in STV. 

TABLE 1. Interaction and visual mappings for 2D and 3D designs in 
STV. 

  2D Map 3D Space-Time 

In
te

ra
ct

io
n

 

Pan Mouse left button Mouse left button 

Zoom Mouse Wheel Mouse Wheel 

Orbit N/A Mouse Right button 

Time Slider 
Mouse left  

button 
Mouse left button 

Toggle  

Time Label 
Enter key Enter key 

V
is

u
a

li
za

ti
o

n
 

Time Labels 
Labels+  

Time Axis 

Space 2D Map 2D Map 

Object Colored Dots Colored Spheres 

Position (Time) Time Slider 
Time Slider + 

Highlighting Time Axis 

Position (Space)  Squares on Map 
Squares with Dotted 

Line Projection 

Direction Triangles Triangles 

3.1 Design Choices for 3D Visualization of 
Movements 

In the course of developing our STV testbed application, 
we identified some design dimensions that should be 
considered when designing a 3D “space-time cube” visu-
alization of movement data. 

3.1.1 Direction of Time 
In our first version of STV, in the 3D view, we had time 
increasing upward.  This seemed the natural and obvious 
way to do things; however, alternative approaches are 
possible, such as displaying time increasing downward, 
as done in GeoTime.  Using the software, the reason be-
came clear: when the user wishes to see an animated 
playback of events in 3D, or see the history of movements 
leading up to a specific event, having time increase 
downward means that (1) the present location of the ac-
tors or entities can be close to a ground plane displaying 

the geographic map, making it easier to see their present 
positions on the map, and (2) the recent history of their 
movements remains visible above this ground plane, 
rather than disappearing below it.  We thus adopted the 
same convention in STV. Fig. 3 shows screenshots, all 
with time increasing downward. 

3.1.2 Relative Motion of Visual Elements 
We implemented three additional options in STV to con-
trol how elements move with respect to each other.  In all 
cases, a red horizontal line shows the selected time on the 
time axis, and an icon along each trajectory shows the 
selected location of the actor or entity (the green icon in 
Fig. 3). First, we can have the ground plane and trajecto-
ries fixed (with respect to the camera's current position), 
and move the red line and the icons as time progresses.  
This means that the distance between icons and the map 
on the ground plane will vary with time.  When icons are 
very far from the map, it is more difficult to understand 
the locations of actors. 

 
Second, we can have the red line and icons displayed 

at a fixed distance from the ground plane, and move the 
ground plane, red line, and icons with respect to the tra-
jectories as time progresses.  This prevents the icons from 
ever getting very far from the map.  There are two vari-
ants on this possibility, depending on which elements are 
moving with respect to the camera: we can have a “mov-
ing plane”, where the plane (and red line and icons) move 
with respect to the camera, or “moving trajectories”, 
where the trajectories move with respect to the camera. 

The “Moving plane” approach also implemented by 
[2] and [35] is shown in Fig. 3, A and B.  We found that 
this has the disadvantage that the plane changes angle 
with respect to the camera, requiring the user to adjust 
the camera at different times to keep the map legible.  

Fig. 3. Screenshots of our STV testbed application (edited by hand to 
increase legibility), showing two design options.  A and B show a 
“moving plane”: the ground plane, red reference line, and vertical 
position of the green icon all move downward as time advances.  C 
and D show a “moving trajectory”: the ground plane, red reference 
line, and vertical position of the green icon are all fixed, but the trajec-
tory moves upward as time advances.  A and C show Monday morn-
ing at 10:00, B and D show Monday evening at 23:25. 
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“Moving trajectories” is shown in Fig. 3, C and D.  This 
design choice seemed the best, and was used in STV dur-
ing our experimental evaluation. It is also the approach 
used in [3]. 

3.1.3 Offset Between Present and the Ground Plane 
In both the “moving plane” and “moving trajectories” 
approaches, an additional design parameter is the vertical 
distance between the present (indicated by the red line 
and vertical position of icons) and the ground plane.  
Both STV and GeoTime allow this to be varied.  Setting 
this distance to zero places icons directly on the map, 
whereas a non-zero value allows the user to see an inter-
val of the future movements of the icons.  There is a 
trade-off between increasing this distance to make more 
of the future visible, and decreasing the distance to make 
it easier to perceive the locations of icons on the map.  
With a non-zero distance, dashed vertical lines show the 
projections of icons on the map to ease judgments of loca-
tions (Fig. 3). 

4 QUESTIONS ABOUT THE DATA 
This section presents a taxonomy of questions that can 

be asked about movement data. This taxonomy is the 
result of many design/pilot iterations using several dif-
ferent types of questions and is built on the conceptual 
models and typologies presented by prior research, some 
of which we mention here.  

The notion of “question type” first introduced by Ber-
tin [49] refers to variables in the data where each type can 
have three different “reading levels” depending on 
whether the variables map to a single element (i.e., ele-
mentary), a set of elements (i.e., intermediate), or the 
whole phenomenon (i.e., overall). Andrienko et al. [50] 
take a more general approach when building their con-

ceptual model and focus on “search levels” to add the 
exploration dimension. By considering spatio-temporal 
data the authors still distinguish the components in the 
data similar to Peuquet’s [51] approach. While we like 
Bertin’s idea of differentiating between different reading 
levels, we find little or no difference between the inter-
mediate and overall levels and similar to [10], our taxon-
omy is based on two levels for each variable. In what 
follows, we elaborate on previous concepts in classifica-
tions of questions about the data while focusing on 
movement data variables and patterns [52]. 

Datasets of the movements of multiple objects over 
time can be thought of as multidimensional multivariate 
data (“mdmv” data [53]), where object and time are the 
two dimensions (independent variables) and spatial posi-
tion is the dependent variable. In other words, spatial 
position x=f(o,t) is a function of object o and time t, where 
x is a vector encoding the latitude and longitude. We will 
use location or space as synonyms for spatial position. 

Over the course of our research, we have considered 
several examples of questions that might be asked about 
such datasets, and different ways to classify such ques-
tions. We observe that, in the questions we have consid-
ered, each of the variables involved in the question (ob-
ject, time, spatial position, or derived variables such as 
speed) may have one particular value that is being re-
ferred to by the question (e.g., one object, one time, one 
location), or multiple values (e.g., multiple objects, multi-
ple events). We distinguish these two cases with the terms 
singular (s.) and plural (pl.). Furthermore, the value(s) in 
question may be known (k), or unknown (u). While this is 
similar to [10], our definition of known vs. unknown 
resulted from pilot run observations, is focusing on 
whether the value is explicitly given in the question or 
user has to perform some discovery action on the particu-
lar value. We also classify the overall question complexity 

Fig. 4. Taxonomy of questions for movement data. The blue solid lines show the type of questions in our study, and the 
orange dashed lines show the type of questions in the study conducted by Kristensson et al. [2]. 
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(i.e., level) and not the components within it. This classifi-
cation is possible by looking at the combinations of the 
variable types in the question. For each variable, there are 
thus four possibilities: {known, unknown} x {singular, 
plural} = {k.s., u.s., k.pl., u.pl.} (Fig. 4). We now illustrate 
with some examples. 

In the simplest questions, all variables have singular 
values. These questions might ask what the (unknown) 
value of one variable is, given the values of two other 
variables: 

• Where is the red object at 14:00? [o:k.s.; t:k.s.; x:u.s.] 
In slightly more difficult questions, we can again have 

singular values, but two or three unknowns. The below 
example involve one value that is extremal (a maximum 
or minimum). Because such extremal values are not ex-
plicitly given in the question, we classify them as un-
known: 

• When (or where) is the eastern-most position reached 
by any of the objects? [o:u.s.; t:u.s.; x:u.s.] 
The question above can be rephrased as: Of all the ob-

jects, there is one that reaches a more easternly position 
than any other object, and we want to know when (or 
where) this occurs. So, even though the question requires 
the user to consider all objects as candidates, there is one 
particular object that is being referred to, hence the value 
of the object variable is singular (just as many moments in 
time and many spatial positions may be candidates to 
consider, but there is one particular moment and location 
that is being referred to by the question, and so these 
variables also have singular values). 

Other questions can be constructed in terms of derived 
variables, such as speed: 

• Which object has traveled more distance between 
10:00 and 12:00? [o:u.s.; t:k.s.; speed:u.s.] 
The question above involves an interval of time, how-

ever we still classify its time value as singular, because we 
consider the interval of time to be relatively small. This is 
analogous to classifying a location like “museum” as a 
singular value, even though it is an extended region of 
space. However, if a question was referring to multiple 
events within a relatively large interval of time (or a large 
region of space), we would classify the temporal (and 
spatial) values as plural. 

Next, we consider questions that refer to multiple 
events at different times (i.e., multiple values for time, 
and possibly multiple values for spatial position): 

• Which object is on the campus area for the longest 
time? [o:u.s.; t:u.pl.; x:k.s.] 
The question above involves a duration, which is equal 

to the temporal difference between two events: arriving 
on the campus, and leaving the campus. Since it involves 
two events, the values of time are plural, but because only 
one location is involved, the value of x is singular. We 
could also say that duration is a derived variable, and its 
value here is extremal. 

Finally, questions may refer to multiple objects: 
• Are any two persons at the same place at 9:00? 
[o:u.pl.; t:k.s.; x:u.s.] 
Questions of this type are classified using the dimen-

sions of object, time, and space.  However, as shown with 

the example involving speed, it is possible to extend the 
taxonomy by adding arbitrary additional dimensions.  
For example, further dimensions might include “pattern” 
or derived variables. 

5 EXPERIMENTAL EVALUATION 

5.1 Goal 
The purpose of the user study was to determine whether 
the 2D or 3D condition was better in answering each of 
the 6 questions listed in the previous section. 

5.2 Apparatus 
The experiment testbed application was run on a Dell 
OptiPlex 9010 PC, with an Intel Core i7-3770 3.4 GHz 
CPU, 16 GB RAM, an AMD Radeon HD 7570 graphics 
card, running Microsoft Windows 7 Professional 64 bit, 
connected to a Dell U2312HM 23 inch monitor. 

The software testbed application was run in full-screen 
mode, at a 1920x1080 resolution. Users operated the 
tetsbed with a mouse, and could also hit the Enter key on 
the keyboard to toggle (i.e., show or hide) labels. 

5.3 Participants 
Twelve undergraduate students (2 females) majoring in 
computer science aged 21 to 30 years participated in the 
experiment. We also conducted post hoc power analysis 
with sample size of 12 and the effect sizes between Co-
hen’s d=0.4 to d=0.8 (i.e., between medium to large effect 
size) and alpha level p < 0.05. The post hoc analyses re-
vealed the statistical power for this study was calculated 
to be in the range of 0.88 to 0.99, which is more than ade-
quate (i.e., power > 0.80) for detecting the specified effect 
size level. 

5.4 Datasets 
For this study, we decided on simulating movement da-
tasets to better control the characteristics of the data. 
These characteristics support the kind of questions we are 
interested in evaluating in our experiment, which open 
source real trajectories that are currently available did not 
provide. To generate the synthetic datasets, we used the 
maps of English speaking cities and avoided modern 
cities with only horizontal and vertical streets knowing 
our algorithm can easily be applied to those simpler 
maps.  We then wrote a Java program to create a node-
link graph by putting nodes on each intersection as well 
as on any sudden street direction changes. Edges were 
drawn between any adjacent nodes. This gave us a realis-
tic node-link graph that had more than 2500 nodes and 
3400 edges. 

Trajectories were generated based on the node-link 
graphs described above and by applying several different 
constraints for each dataset. The following is the list of 
these constraints for each trajectory which are based on 
the patterns and characteristics of sample real trajectories: 
number of meeting points, the home node (staying during 
night), the breakdown of movement times during morn-
ing, noon afternoon, evening, and night. To generate a 
trajectory, source and destination nodes were selected 
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randomly and Dijkstra’s SP algorithm was used to find 
the path between nodes. 

9 datasets were prepared2: one dataset d0 to be used 
for a discovery phase (both in 2D and 3D), two datasets 
d1 and d2 to be used for warm-up trials (one in 2D, the 
other in 3D), and 6 datasets d3, ..., d8 to be used for actual 
trials (three in 2D, three in 3D). The dataset d0 had trajec-
tories over the (familiar) home city of the participants, 
whereas datasets d1, ..., d8 each had different trajectories 
in a 2nd city unfamiliar to the participants, and each con-
taining three moving objects over three days. Although 
the trajectories were generated algorithmically, they fol-
lowed the streets of real-world cities, and covered a dis-
tance of approximately 10 square kilometers, which gave 
us a relatively dense set of trajectories. 

5.5 Questions 
To prepare our experimental study, we first performed a 
pilot study involving a variety of the question types dis-
cussed in section 4. The pilot study involved users an-
swering the questions with the 2D and 3D visualization 
techniques. We expected 3D to be superior for answering 
several of the questions, because we thought users would 
be able to directly “see” answers in 3D without spending 
time using the time slider to scroll through time. Some-
what to our surprise, 2D was found to be no worse than, 
and sometimes superior to, 3D for all the questions (sig-
nificantly better for some questions, and not significantly 
worse for the others). Our subjective impression of using 
3D is that it is often difficult to perceive the geographic 
position of a trajectory for a given time without first using 
the time slider to position the ground plane at that time 
and see the relevant intersections between the ground 
plane map and the trajectories. There is a general difficul-
ty in judging depth and distance in 3D, partly due to a 
lack of depth cues (such as stereopsis and head coupled 
display). Even after rotating the 3D scene to look at the 
trajectories and map from above, the perspective projec-
tion can make it difficult to see where objects are located 
at a given time. 

We nevertheless suspected that 3D could be good for 
getting an overview of the dataset, and for perceiving 
relationships between multiple objects, especially when 
objects repeated the same movements multiple times, 
causing overplotting and occlusion in a 2D view. For 
example, in Fig. 1, the movements cover certain routes 
multiple times, making it impossible to tell how many 
times these routes were covered without using a time 
slider to replay the movements. It is possible that 3D 
would be better for this task, by allowing the user to more 
directly count the number of sub-trajectories of a given 
shape. 

For our full experiment, we generated new datasets as 
described in section 5.4 containing meetings of multiple 
objects and repeated movements, and chose a new set of 6 
questions. Considering the overall taxonomy of possible 
questions, Fig. 4 illustrates the questions used in our 
study (blue lines) and the questions used in [2]. In the 
following we list and label the questions and give an  

2 http://hci.cs.umanitoba.ca/projects-and-research/details/stv  

example: 
• Q1 (basic): Where was the green object on 06/02/13 
at 14:30? [o:k.s.; t:k.s.; x:u.s.] 

• Q2 (speed): Which object is moving the fastest on 
08/02/13 between 19:30 and 20:30?  
[o:u.s.; t:k.s.; speed:u.s.] 

• Q3 (complex): How many times the green object has 
been stationary for 3 hours? [o:k.s.; t:u.pl.; x:u.pl.] 

• Q4 (cluster-space): At which of the following loca-
tions all objects meet? [o:k.pl.; t:u.s.; x:u.s.] 

• Q5 (cluster-object): How many meetings have taken 
place in which all objects are involved? 
[o:k.pl.; t:u.pl.; x:u.s.] 

• Q6 (cluster-time): Which object is usually late to the 
meetings? [o:u.s.; t:u.pl.; x:u.s.] 
The choices above were made to see how users exam-

ine sequences of events and ultimately identify a pattern. 
The first 3 questions above involve individual objects. 
Question 2 was chosen to test the possibility that 3D 
might be good for judging the slope (speed) of trajecto-
ries.  This had already been somewhat tested in the pilot, 
but the full experiment gave us a chance to test it more 
fully. We also suspected that 3D would be useful for no-
ticing when an object is stationary (see red arrow in Fig. 2 
for an example), which motivated the choice of Question 
3 above. Questions 4-6 involve meetings of multiple ob-
jects (we will refer to these as cluster-based questions). 

8 variants of each of the 6 questions (Q1 through Q6) 
were prepared, with one variant for each of the datasets 
d1, ..., d8, yielding a total of 48 questions. All questions 
were multiple-choice questions with 3 or 4 possible an-
swers for each question. 

5.6 Design 
For each of the visualization techniques (2D and 3D), 

users were first presented with the user interface showing 
the d0 dataset, and allowed to interact with the testbed 
application during a discovery phase. They were shown 
all features of the testbed application, in an attempt to get 
them comfortable with the software. After a few minutes, 
they were then shown the warm-up dataset d1 or d2, and 
asked to answer the 6 questions for that dataset. During 
the warm-up and after the experimenter covered the list 
of all the features in the tool, users were closely observed 
and encouraged to ask questions to make sure they un-
derstood all the features presented as well as all the inter-
actions available to find the answers. In cases where the 
participants seemed confused about a particular feature 
previously explained to them or when they asked ques-
tions, they were reminded of the features and shown 
strategies that could help them answer questions more 
quickly by taking advantage of all the features, for exam-
ple: scrubbing the timeline efficiently in 2D, or rotating 
the 3D view to look at the scene from different camera 
angles to better identify certain features in the data (e.g., 
to find meetings, trajectory slopes, locations, etc.). Next, 
the user was presented with three subsequent datasets 
(either d3, d4, d5; or d6, d7, d8) and asked to answer the 6 
questions for each dataset. 

At the start of each trial, the question was displayed at 
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the top of the window (see blue text in Fig. 2) with no 
visualization. After the user had read and understood the 
question, they clicked on the “Start” button in the upper 
left corner, at which point the visualization appeared and 
the timer was started. The user could then interact with 
the visualization (panning, zooming, rotating, dragging 
the time slider, hitting the “Play” button and adjusting 
the animation speed, hitting Enter to toggle labels, and 
hovering over, or clicking, points in the visualization). 
When the user had determined the answer to the ques-
tion, they selected the answer from the radio buttons in 
the upper left corner, and clicked the “Confirm” button, 
at which point the timer was stopped if there was no 
error. However, if the user's first answer was incorrect, 
the user had to try again, with a maximum of three at-
tempts before going on to the next trial. This discourages 
the participant from being less careful in an attempt to 
finish the experiment faster, and instead encourages them 
to put in a reasonable effort at getting the correct answer 
on the first attempt. 

The order of presentation of visualization techniques, 
and the assignment of datasets and visualization tech-
niques, were both fully counterbalanced. Each quarter of 
participants performed one of the following: 

(d1,d2,d3,d4) in 2D followed by (d5,d6,d7,d8) in 3D; 
(d1,d2,d3,d4) in 3D followed by (d5,d6,d7,d8) in 2D; 
(d5,d6,d7,d8) in 2D followed by (d1,d2,d3,d4) in 3D; 
(d5,d6,d7,d8) in 3D followed by (d1,d2,d3,d4) in 2D. 

The questions for each dataset were randomly shuffled 
for each user. In total, not counting warm-up trials, there 
were 2 visualization techniques (2D and 3D) x 3 datasets 
per technique (d3, d4, d5; or d6, d7, d8) x 6 questions per 
dataset (Q1 through Q6) x 12 users = 432 trials. 

6 RESULTS 
We used an Analysis of Variance (ANOVA) test at the 
significant level of α = 0.05 with a Bonferroni adjustment 
to carry out all the statistical analysis for this paper. As 
the completion times were positively skewed, we per-
formed a logarithmic transformation (which resulted in 
distributions being close to normal) before analyzing the 
data. 

The within-subject variables were visualization tech-
nique (i.e., 2D vs. 3D), and question type (i.e., Q1 to Q6). 
The two dependent measures for which we performed 
the tests were the total time taken to answer a given ques-
tion and the number of attempts it took until the right 
answer was picked by the participants. The latter was 
measured in terms of the error rate. We also measured 
separate times spent by the participants on various inter-
action features available in the tool: use of the time slider 

Fig. 6. Average time to complete for Q3 and Q6 presented separate-
ly for 2D vs. 3D visualization styles. 

Fig. 7. Percentage of time spent on interaction features and static exploration for each question and separately for 2D vs. 3D visualization styles. 

Fig. 5. Average time to complete for each task presented separately 
for 2D vs. 3D visualization styles. 
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and different camera control features including zoom 
in/out in the space dimension as well as panning and 
rotating of the space dimension. All the interaction fea-
tures were available in both 2D and 3D techniques except 
the rotating functionality which was only available in the 
3D technique. 

In this study, we focus on the specific questions that 
can be performed using interaction features available in 
the 2D and 3D techniques for visualization of movement 
data. Therefore, to examine the data more closely, we 
consider participants’ performance on a question by ques-
tion basis. 

6.1 Time to Complete  
The average time to complete for 2D and 3D visualiza-
tions is plotted for each question in Fig. 5. Error bars cor-
respond to standard error. There is an overall main effect 
of question type for the time to complete (F5,55=126.811, 
p<0.001). We can observe Q3 taking the longest, and 
therefore analyze all questions separately. 

The results further reveal main effect of visualization 
style (F1,11=11.37, p=0.006) in favor of 3D. There is also a 
significant statistical difference for question type × visual-
ization style interaction (F5,55 =13.425, P<0.001). 

6.1.1 Effect of Visualization Style on each Question 
As expected the mean response time for the question in 
the complex category (i.e., Q3) is significantly higher than 
response times for all other questions (F5,55=497.001, 
p<0.001). The question in this category was unique in the 

sense that it required going through the whole dataset 
and counting specific patterns in time and space. Focus-
ing on this question, we found main effect of visualization 
style on the time to complete: it took significantly lower 
amount of time to answer this question in 3D using all the 
visualization and interaction features (F1,11=159.817, 
p<0.001). We also observed differences in time to com-
plete for questions in the cluster-based category which 
involved finding patterns in time and space for a cluster 
of objects. The results support our hypothesis that the 3D 
visualization is efficient when answering cluster-based 
questions. In particular it was significantly faster for the 
participants to answer Q6 using the 3D visualization 
(F1,11=9.211, p=0.003). Fig. 6 plots the average completion 
time for Q3 and Q6 for the 2D and 3D visualizations.  
Taking a closer look at the rest of the questions and ap-
plying post-hoc analysis, we did not detect a main effect 
of visualization style on Q1 in the simple question catego-
ry (F1,11=0.313, p=0.577). This category of questions has 
been studied in the literature and similar results have 
been reported [2]. Our initial experiment design also in-
cluded more questions from this category, however, after 
two rounds of pilot experiments without significant dif-
ferences, we decided to shift our focus to more complex 
questions especially cluster-based questions (i.e., ques-
tions3-6). 
To our surprise, there were not any main effects of visual-
ization style shown for Q2 in the speed category 
(F1,11=2.663, p=0.104). We had hypothesized that this cate-

gory of questions would be easi-
er and faster to answer in 3D 
since there are additional visual 
cues to observe slopes in the 
space time cube setup. 

6.1.2 “Time to Complete” or 
“Interaction Time”? 
In most of the commercial and 
study setups for 3D space time 
cube [37], different interaction 
features are provided to build a 

complete system that is capable 
of answering different questions 
such as the ones targeted in our 
study. As mentioned in the pre-
vious sections, we too have in-
cluded several of such interaction 
features in our system. Prior 
similar studies for 2D vs. 3D 
performance analysis and com-
parison have mostly focused on 
the overall time to complete for 
questions but it is important to 
examine interaction process sep-
arately to get a better under-
standing of the potential causes 
of main performance effects in 
such visualization systems. 
Therefore, we have also meas-
ured the time spent using each 

Fig. 8. Interaction sequence and duration for Question 5 using the 2D visualization (top), and the 
3D visualization (bottom). 
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Fig. 9. Error rate for each question separated for 2D vs. 3D visuali-
zation styles. 

interaction feature separately. In this paper, we call the 
time during which, the participants did not use any of the 
interaction features, the “static exploration” time. How-
ever, it is worth noting that this does not mean that dis-
covery does not occur during interaction since there is 
definitely some exploration time intertwined in the inter-
action times. It is very hard to separate the two since the 
participants use interaction tools while exploring the data 
visually at the same time. 
We can see from the stacked and clustered percentage 
charts in Fig. 7 that interaction time is largely contrib-
uting to the overall time to complete in both the 2D and 
3D visualizations. This is especially true under the 3D 
condition where the static exploration time is lower in 
comparison to the times spent on interaction. This is part-
ly because of the additional interaction feature for rotat-
ing the space dimension. In retrospect, one reason the 
users may have spent much time rotating the camera 
view is to benefit from structure from motion [54], i.e., the 
depth cue that results from a changing point of view.  It is 
plausible that this would be less necessary, and user per-
formance would improve, if they had a stereoscopic dis-
play of the 3D scene. In addition, zooming and panning 
are used far more in the 3D than in 2D. On the other hand 
the time slider interactivity was used far more in 2D than 
in 3D because of the fact that using the 3D technique, we 
can take advantage of the time axis for temporal queries. 

By breaking down the overall time to complete into the 
interaction time and static exploration time, we can now 
see more pronounced differences as the main effect of 
question type × visualization style interaction on the stat-
ic exploration time. In addition to previous statistical 
significances for questions 3 and 6 (Fig. 6), we also found 
main effect for Q5 which shows significant lower comple-
tion time using the 3D technique (F1,11=10.848, p=0.001). 

An interesting observation to be made here is with re-
gards to the complex category (i.e., Q3). Although we can 
still observe a significant difference as the main effect of 
visualization style (F1,11=239.956, p<0.001), the effect is 
reversed and the static exploration phase took significant-
ly shorter amount of time using the 2D technique. This 
can again be correlated to the interaction time since par-
ticipants spent a significant amount of time using the time 
slider to answer this question in 2D compared to 3D 
(F1,11=1288.932, p<0.001). This once again confirms the 
direct relationship of interaction time with the overall 
response time. 

Furthermore, we illustrate the sequence of interactions 
and static exploration using Gantt charts. Fig. 8 shows an 
example of this sequence and the duration of each interac-
tion in the 2D and 3D visualizations respectively. There 
was much more switching between different interaction 
features as well as static exploration with no interaction 
using the 3D visualization technique.  

6.2 Error Rate 
Fig. 9 shows error rate averages for each question. Over-
all, low error rates of lower than 5% were measured for 
most question types except Q3 (i.e., over 30%). As ex-
pected, error rates are higher for complex and cluster-

based categories of questions. 
We observed main effect of question type on error rate 
(F5,55=25.737, p<0.001) and once again Q3 is greatly con-
tributing to this effect. Further post-hoc analysis showed 
no statistical significances in error rates when it comes to 
visualization style (F5,55=0.266, p=0.616). Referring to Fig. 
9, we can see that error rates are higher in 3D for Q5 and 
Q6, however, we did not detect an overall main effect of 
question type × visualization style interaction for error 
rate (F5,55=0.932, p=0.467). 

6.3 Subjective Evaluation 
In addition to tracking performance measures, we also 
collected subjects’ opinions regarding each visualization 
technique at the end of the experiment. Participants re-
plied to 8 statements on a Likert-scale with responses 
ranging from 1 (Not preferred/Very difficult) to 5 (Pre-
ferred/Very easy). The median scores are summarized in 
TABLE 2. The statements were based on the questions 
that were answered about movement data earlier in the 
experiment. Using the Wilcoxon Signed Ranks test at the 
significant level of α=0.05 overall, there was a significant 
difference in participants’ preference choosing the 3D 
visualization technique over 2D (p<0.001) but no signifi-
cant difference in overall difficulty level when using ei-
ther one of the visualizations. When asked to rank the 
visualization styles for each question in terms of prefer-
ence, participants significantly favored 3D over 2D for 
questions 3, 4 and 6. Amongst all, it is interesting to see 
Q3 from the complex category is significantly favored in 
3D over the 2D technique in terms of preference (p<0.001). 

6.4 Open Comments 
We also asked each participant to provide us with open 
comments and suggestions for possible improvements 
they would like to see for any of the visualization sys-
tems. Keeping in mind that the participants had experi-
enced both of the representations; they were able to com-
pare the visualization styles.  

Several participants felt that it was “easier” to answer 
the questions using the 3D technique. The 3D technique 
was perceived as “very cool” and “much better” for get-
ting all the required information for the questions. One of 
the participants, who had started the experiment with the 
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3D style, mentioned that he missed 3D when switching to 
2D because of the fact that in 3D “the time info is embed-
ded into the visualization”. 

There were some particular comments about the inter-
action features included in both of the visualization tech-
niques. One participant stated that although questions 
were easier to do using the 3D technique, they required 
more panning and rotating compared to the 2D style. 
Two of the participants found the time slider hard to use. 
Some perceived the 3D style as “busy” and “messy” at 
first but mentioned that they were “more comfortable” 
with it and were able to “find their way around” after 
using it for a while during the practice rounds. Consider-
ing the fact that the participants were not domain experts 
nor did they have extensive experience using 3D visuali-
zations (except from some gaming experience), it is inter-
esting to see that most preferred the 3D technique. 

The suggestions to improve the system included hav-
ing the filtering feature to be able to filter objects, a more 
precise date and time query tool, and in the 3D style hav-
ing a better display of the information on the time axis. 

TABLE 2. RANKING (1-5) MEDIAN FOR EACH STATEMENT IN THE SUBJEC-

TIVE EVALUATION FORM.   
 2D 3D 

Overall preference 3.00 5.00 

Tool preference in Q1(Basic) 5.00 5.00 

Tool preference in Q2(Speed & Slope) 4.00 4.50 

Tool preference in Q3(Complex) 1.00 5.00 

Tool preference in Q4(Cluster-Space) 3.00 5.00 

Tool preference in Q5(Cluster-Object) 4.00 5.00 

Tool preference in Q6(Cluster-Time) 3.50 5.00 

Overall difficulty 4.00 4.00 

7 DISCUSSION AND LIMITATIONS 
During the process of designing the experiment for our 
study, our choice of questions was based on the result of 
series of pilot studies and motivated by identifying the 
ways in which the 3D view would be superior and this 
did not necessarily include the wide range of possible 
questions that can be asked about a dataset with moving 
object traces. The use of such approach could, therefore, 
explain why it appears that the 2D Map visualization was 
not superior in any of the tasks which contradict some of 
the findings by Kristensson et al. [2].  

The complexity of questions with movement data varies 
from very low level of complexity where there exists only 
one unknown component to very high complexity where 
multiple compound or plural components are unknown and 
of interest to the analyst. When evaluating any visualization 
method designed for this dataset, it is important to carefully 
select and include questions which cover the complexity 
spectrum as much as possible. 

The results of our study show that the 3D space-time 
cube style of visualization is beneficial (i.e., quicker to 
answer) specially when users have to examine sequences 

of events to identify a complex behavior (e.g., identifying 
meetings and stationary moments in time) within object 
movement datasets. 

Furthermore, we captured the analysis process of 
movement data and made interesting observations about 
how a visualization system is used with such datasets. In 
a realistic scenario, users utilize various interaction fea-
tures during analysis. We found that in relation to the 
overall time to complete, the time spent on interaction 
takes up a significant chunk of total performance time as 
opposed to the time spent exploring the visualizations 
statically, i.e., without interactions. Additionally, drawing 
the sequence and duration of the interactions revealed 
distinct differences between the 2D and 3D designs: use 
of the time slider was extensive in 2D whereas in 3D 
many switches between different interactions and static 
exploration were observed. 

The complexity of moving objects varies from one ob-
ject along a simple trajectory to as many moving objects 
along geometry of trajectories. Therefore the level of 
complexity influences the effectiveness of the visualiza-
tion. Although, the accessibility of open source datasets is 
on the rise, there are still several privacy and confidential-
ity issues associated with the access to the more complex 
datasets. Therefore, many researchers still choose to simu-
late their datasets in order to better control the different 
aspects and characteristics of the data. We too, decided on 
simulating the datasets used in our study to make sure it 
is complex enough for the types of questions involved, 
which also makes the datasets sensitive to variations of 
complexity. 

8 CONCLUSION AND FUTURE WORK 
Through our experimental comparison of 2D and 3D 

visualizations of movement data, we have analyzed in 

more detail the fraction of time spent by the user per-

forming different interactions. As discussed, in some 

questions, interactivity dominates performance efficiency 

and including this element is key to understanding how 

and when users employ different interactive widgets. 

Future work might include combining the advantages 

of 2D and 3D visualizations, as also alluded to by Kris-

tensson et al. [2]. One approach would be to provide the 

user with a quick way of smoothly transitioning between 

a 3D perspective view and a 2D orthographic view, al-

lowing the user gain a bird’s-eye view of trajectories 

when desired [55]. Future designs based on the 3D space-

time cube visualization should also consider minimizing 

the need to switch between various interaction features 

by carefully selecting features to provide a system that is 

capable of seamless transitions between interactive ele-

ments. For example, different widgets included in the 

system (e.g., slider widget in STV and rotation widgets in 

GeoTime) may be replaced by an alternative method of 

interaction depending on the target user and commonly 

performed queries.  

Another interesting direction for future work can be 
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user studies to investigate other variables in the dataset as 

well as other visualization techniques. Amongst all, we 

can name studies to investigate 2D vs. 3D, vs. stereoscop-

ic 3D, path complexity and tortuosity, time constrained 

gisting, and investigation of long-term benefits of the 3D 

visualization through a longitudinal study.  
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