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1. INTRODUCTION
We use the word style to mean “how something is done...the way in which a behav-
ior is performed” [Gallaher 1992]. The style layer of a behavior can be quite separate
from the particular task or action which a robot may be performing: behaviors such
as walking has styles that vary between people, and even vary for a given individual
depending on their mood or the social context. Literature in social psychology high-
lights the important role of style (or expressive behavior) on how people are perceived,
and its implications on inter-personal communication and social interactions (e. g., see
[Ambady and Rosenthal 1992; Butler et al. 2003; Gallaher 1992; Hall and Coats 2005]).
For example, it has been shown that the style of actions impacts perceptions of hier-
archy [Hall and Coats 2005], and that suppressing stylistic (expressive) actions can
disrupt interactions and induce stress in others [Butler et al. 2003].

Thus if we accept that people tend to anthropomorphize robots in their everyday
spaces and in some regards treat them as social entities (see, e. g., [Bartneck and Forl-
izzi 2004; Dautenhahn 2002; Forlizzi and DiSalvo 2006; Kiesler and Hinds 2004; Nass
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and Moon 2000; Reeves and Nass 1996; Sung et al. 2007; Young et al. 2009]), then we
can expect that style will be important for human-robot interactions in similar ways
as it is for human-human interactions. It is important for the field of Human-Robot
Interaction (HRI) to consider how a robot’s expressive behavior, its style, is perceived
by people and how it impacts the spaces the robot occupies.

Gallaher [1992] highlights how behavior style is extremely individual and varies
widely from person to person. Therefore, we posit that it will be useful if people can
customize their robots’ behavior styles to suit their culture and specific tastes, for ex-
ample, similar to how a business mentor can teach a junior how to improve their sales
pitch or give a confident handshake. One approach toward this goal is to use Pro-
gramming by Demonstration (PBD), where end users can program their robots simply
by providing a demonstration of the desired behavior [Dillmann 2004; Halbert 1984].
Most PBD work to date focuses on a task goal only – what is to be done – and ignores
the expressive style – how it is to be done. New algorithms and interaction techniques
need to be developed to enable PBD to target the style component of interactive behav-
iors. We call this approach Style-by-Demonstration (SBD).

The goal of our work presented in this paper is to develop understanding of how
people may use, engage, and interact with SBD systems. Given this goal, we aimed to
build complete interactive systems that people could engage rather than to focus on
more narrow questions of perceptions and definitions of style, for example, considering
robot shape or methodologically exploring motion attributes such as acceleration or
hesitance. Our particular work focuses on how the fine-detail aspects of motion (the
high-frequency component, or motion texture) relates to the perceived style.

We designed, developed, and evaluated three original SBD projects that we bring
together in this paper for meta-analysis: SBD for animated character interactive loco-
motion paths [Young et al. 2008], SBD for interactive robot locomotion paths [Young
et al. 2012], and SBD for interactive robot dance ([Allen et al. 2012], Fig. 1). As part
of this we iteratively developed an SBD algorithm we call Puppet Master. Our ap-
proach with these projects has two key features which clearly differentiate them from
prior PBD work: we focus on the low-level style of robotic movements and do not ad-
dress other aspects of style, and, our learned behaviors are interactive, where the robot
learns how to interact in real time to changing and unpredictable human input.

Throughout conducting these projects we faced many challenges related to effective
SBD interaction design and to the question of how to evaluate SBD platforms. In this
paper we present an overview of these SBD challenges and a detailed analysis of the

Fig. 1: SBD for authoring interactive robot dance. The reactor dog is learning to dance with the leader cat.
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various approaches employed across the different projects. Further, we present for the
first time the final (after iterations) technical learning algorithm used in these projects.
Our contributions are:

(1) a complete account of the Puppet Master SBD algorithm after evolution through
several projects.

(2) an overview of three original SBD projects and implementations.
(3) an analysis of SBD interaction design challenges and approaches.
(4) an analysis of SBD evaluation challenges and approaches.

2. RELATED WORK
A great deal of work aims to create life-like and convincing interactive behaviors.
One common approach is through explicitly programming the behavior model (e. g.,
as with [Blumberg and Galyean 1995; Breazeal and Scassellati 1999; Maes 1995;
Reynolds 1987]), where the programmer defines what to do for particular situations.
The idea of programming such behaviors with an explicit focus on style has been
prevalent in social HRI and “Natural HRI,” well exemplified, for example, by work
which explores a robot’s appropriate use of human-like social cues such as gaze [Mutlu
et al. 2009], visual attention [Staudte and Crocker 2009] or head-nodding [Sidner et al.
2006], appropriately following social norms such as not “cheating” [Short et al. 2010]
or proxemics-based behavior [Gockley et al. 2006]. Other examples include robots at-
tempting to have their “presence” felt appropriately [Hüttenrauch and Eklundh 2004],
or investigations on how to engage [Michalowski et al. 2007] or calm [Bethel and Mur-
phy 2010] a person by how it moves, or perhaps even the entire field of android science
(e. g., [Sakamoto et al. 2007]) which aims to make robots that pass for humans [Ishig-
uro 2007]. Such projects do not aim to have their behaviors customizable by users and
thus are generally (and often with great difficulty) hard-coded for the specific projects.

PBD has been successfully employed since the early days of robotics [Halbert 1984]
for such applications as learning specific navigation routes [Kanda et al. 2007] or
physical tasks [Gribovskaya and Billard 2008; Otero et al. 2008]. Many of these sys-
tems explicitly aim to identify key points and smooth between them [Vakanski et al.
2012] to remove, for example, “human inconsistency problems” [Aleotti et al. 2005];
while this is important for trajectory planning, and such trajectories inevitably con-
tain stylistic elements related to the demonstration, these techniques also remove im-
portant style-oriented detail. Notable exceptions include robots which learn human-
like motions and poses [Matsubara et al. 2010; Matsui et al. 2005] or stylistic move-
ments [Frei et al. 2000; Raffle et al. 2004], although these provide only a static replay
of demonstration verbatim and the resulting behaviors are not interactive, or a sys-
tem for learning interactive eye gaze patterns [Mohammad et al. 2010], although this
requires a pre-processed database of examples. Other PBD robot projects use style
and emotion-charged elements as part of the demonstration-task interaction support:
Breazeal et al.’s Leonardo robot uses facial expressions and style-laden gestures, while
being taught, to convey such messages as lack of understanding or surprise [Breazeal
et al. 2004; Lockerd and Breazeal 2004]. Here the stylistic motions are not learned but
serve as communication tools; the tasks being learned are goal oriented.

PBD has also been used in the animation and interaction communities. Early
PBD was used to automate GUI operations [Cypher 1991; Maulsby et al. 1989] or
specifically define character planning models [Dinerstein et al. 2007]. For example,
Pavlov [Wolber 1997] defines the low-level stimulus-response behavior of interactive
agents. These systems define behavior using logical sequences of goals, the what to do,
and do not provide tools to enable the user to tell the agent the style of how to do it.
Further, although there is a great deal of work for defining the style properties of ani-
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mation (e. g., [Dontcheva et al. 2003; Heloir et al. 2008; Hertzmann et al. 2002; Igarashi
et al. 2005; Thorne et al. 2004; Torresani et al. 2006]), these focus on static playback
of demonstrations and do not generalize the result to be interactive in real time to
another entity. While some animation work is interactive to user input, these gener-
ally require a large, pre-processed (by an expert) database, and requires the mapping
from user input to output to be explicitly (and often tediously) defined by the program-
mer [Lee and Lee 2004; Lerner et al. 2007; Wiley and Hahn 1997]. Further, these sys-
tems primarily target physical motion plausibility (punch, jump, collision avoidance,
etc.) and not behavior style.

Robot customization has been explored beyond behavior, for example, with the
robots’ physical appearance. The AIBO robot is packaged with stickers for customiza-
tion and decoration, and people have been found to decorate (and even buy clothes for)
their iRobot Roomba robotic vacuum cleaner [Sung et al. 2009b, 2007]. Thus we believe
that the kinds of customization enabled by SBD will be of interest to end users.

People attribute style, personality, and emotions to even simple movements of ab-
stract shapes [Heider and Simmel 1944; Kassin 1982; Scholl and Tremoulet 2000;
Tremoulet and Feldman 2000], and the style of movements with animated char-
acters has been touted as being critically important for how the character is per-
ceived [Thomas and Johnston 1981]. Therefore we expect people to attribute style
to all robotic movements, even those not explicitly designed, and that this style will
impact interaction: SBD leverages this channel of communication. Style has been suc-
cessfully leveraged for conveying behavior character, both in animation and research,
for example making scripted animation actions such as “pick up a glass” to be “neu-
tral,” “shy,” or “angry” by altering movement style [Amaya et al. 1996], or more general
methods for applying style to human motions such as gestures [Torresani et al. 2006],
and so we expect similar methods to be relevant for robots. Although there are few
interactive-style specific robot projects to date (e.g., [Harris and Sharlin 2011; Saer-
beck and Bartneck 2010]), a great deal of HRI work has a style element, for example,
the consideration of robotic proximity during interaction: while many target practical
mobility and vision challenges (e. g., [Byers and Jenkins 2008; Chueh et al. 2006; Liem
et al. 2008]), others look at how close a robot should be to a person for comfort [Ya-
maoka et al. 2008], or how a robot should follow naturally [Gockley et al. 2007] (i. e.,
copying a path versus shortest route). Our work continues this research direction by
enabling people to teach robots how to interact in a desired style.

Some work aims to simplify the generation of stylistic behaviors, for example,
through leveraging artistic systems such as Laban Effort Analysis [LaViers and
Egerstedt 2012] (for dance styles in this case). Like many other systems mentioned
above that attempt to automatically generate style (e.g., [Heloir et al. 2008; Matsub-
ara et al. 2010; Torresani et al. 2006]), these approaches often clearly define (what they
mean by) style and provides means to generate it, techniques which will be important
for continued work in this area. Our current work does not directly build on these
methods, in part because most of them do not target interactive style, require expen-
sive pre-processing, or target specific stylistic needs instead of being general purpose,
and in part since the goal of our work was not to further unpack what exactly style is or
how it can be represented. However, continued work in this area could benefit from re-
considering the feature space used (see Sec. 3) for developing robust SBD algorithms.

Due to the task focus of most robotic PBD, evaluation has generally been technical
and goal-oriented, measuring accuracy or task-completion time (e. g., [Breazeal 2002;
Matsui et al. 2005]) – these methods do not directly apply to the more subjective SBD
results. Further, there is increasing evidence that human-centric and social aspects of
HRI, such as is core to SBD, are particularly prominent in interaction and must con-
sidered in evaluation [Bartneck et al. 2007; Short et al. 2010; Young et al. 2009, 2010].
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The quantitative method alone of distilling these complex human-oriented aspects into
a set of statistical numbers is often insufficient for properly describing the kinds of
subjective interaction targeted by this kind of work [Strauss and Corbin 1998], and
so qualitative and exploratory evaluation methods often serve as the primary element
of otherwise controlled studies (e. g., [Forlizzi and DiSalvo 2006; Sung et al. 2009a,
2007]), where the methods are used to describe interaction and to construct grounded
interaction theories. Although less common for PBD, existing qualitative evaluations
explore and describe interaction experience as a way of building understanding of how
PBD can be employed, for example, integrated into educational tasks [Frei et al. 2000;
Raffle et al. 2004]. We follow this precedent of using exploratory, interaction-experience
oriented methods to evaluate SBD.

3. THE PUPPET MASTER ALGORITHM
We developed three SBD projects and their interaction and interface designs: author-
ing the interactive path of an animated character, interactive locomotion path of a
disc robot, and interactive robot dance; we refer to these shorthand as the animation,
robot follower, and puppet dancer projects. To realize these projects we developed our
Puppet Master algorithm for SBD, which started as an initial animation-only tech-
nique [Young et al. 2008] but was altered and improved significantly for the robotic
projects; the entire algorithm and cross-incarnation improvements has not before been
presented in detail. Full details on the interfaces are presented later in the paper.

In our setup SBD requires two distinct phases: authoring, where the user provides
a demonstration to the robot of how they would like it to interact, and generation,
where the robot exhibits the interactive behavior as learned. Further, we focus on
enabling rapid and iterative behavior creation, where the user can instantly see the
results of their demonstration, which places limitations on the interfaces and learning
algorithms used. As such, we design for authoring sessions to be from 30 s to roughly
3 m, to enable rapid end-user prototyping.

An important but perhaps nebulous point of our SBD systems is that authoring
requires two entities moving simultaneously: a leader, which moves freely and does
not learn from the demonstration, and a reactor, which monitors the leader’s actions
and exhibits an interactive stylistic behavior in response. Without an exemplar of the
leader’s movements during demonstration the reactor does not have a reference point
from which to learn the interactive component of the demonstration: it would only be
able to reproduce the static path. This is in contrast to many PBD systems where a
user only has to demonstrate how the robot should move. Our SBD process is as fol-
lows: for authoring, the leader performs an exemplar of how it will generally move, and
the reactor is given a demonstration of how it should interact with the leader’s move-
ments. For generation, the leader’s movements are unconstrained and the reactor’s
movements are generated to interact with the leader using the demonstrated behavior
style (Tab. I). In all cases our reactor does not start with a pre-programmed goal or
behavior (e. g., to follow); the entire behavior is learned from a short authoring. In ret-
rospect, our particular paired-motion setup has a limitation in that it does not address
the realistic case of how interactive learning is often reciprocal: a leader may adapt
to a learner and the roles may shift fluidly, for example, with a learner leading to test
what they learned. We return to this point in our analysis later in the paper.

An important point to make here is that we view SBD authoring as an engaged and
complex real-time two-entity acting task, and not a piecewise series of stimuli and
responses [Pavlov 1927] – thus we do not use the stimulus-response vocabulary to dis-
cuss our work. In the stimulus-response paradigm the user consciously chooses stimu-
lus, provides an example of that stimulus, and demonstrates an appropriate response.
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Table I: the leader and reactor roles in each SBD phase

phase
authoring generation

leader moves in an exemplary way to represent the fi-
nal target scenario, gives the reactor something
to interact with

moves naturally however they wish
and fully expects the reactor to inter-
act appropriately

reactor is shown how to interact with the leader in the
appropriate style, dynamically accommodating
the leader’s changing movements

automatically interacts with the leader
in real time using the behavior style
demonstrated during authoring

For our projects the user simply provides a real-time two entity acted out higher-level
example of the behavior without necessarily thinking on the stimulus-response level.

Puppet Master is a pattern matching algorithm with its roots in the Image Analogies
project [Hertzmann et al. 2001]. It generates output at 40 Hz to achieve interactivity;
40 Hz was informally chosen through experimentation to minimize processing require-
ments while maximizing interactivity.1. During authoring, Puppet Master only records
the combined features of the leader’s and reactor’s movements, and processes them in
real-time into an appropriate feature set. For every cycle (40 Hz) of generation, Puppet
Master searches the training data for interactions similar to the real-time state to in-
form the next generation output, and uses frequency-analysis and hysteresis filtering
to maintain coherent results. Thus, Puppet Master’s generated output is a processed
patch-work of pieces from the training data (Fig. 2(a)).

Below we detail the feature-selection, the search and the output generation and
filtering mechanisms. During this section, it is important to keep in mind that Puppet
Master was created for enabling SBD interaction sessions that could be studied. As
such, some of the algorithmic choices and parameters made were selected informally
through use and testing and were often not robustly fine-tuned and optimized.

3.1. Features
Puppet Master requires a set of relevant scalar features to be extracted from move-
ment data for its search (e. g., as in Fig. 2(b)). The features used are selected based on

115 Hz for robot follower to accommodate the slow response time of the robot and the problem of jitter,
explained below; improvements in the algorithm since, also below, makes this accommodation unnecessary.

Real-Time

Training
Data

t

t

fe
a
tu
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v
a
lu

e
s

(jitter)

(a) Real-time Puppet Master generation is a pro-
cessed set of patches from the best-matched train-
ing data. Red x’s denote locations of auxiliary ac-
tions (robot sounds). Illustration only.

(b) Some of the data features used in our imple-
mentations. All features except relative position
are on both entities, but only shown on one for
image clarity.

Fig. 2: Core components of the Puppet Master algorithm.
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the target platform to represent the defining aspects of the motion style. We address
specific features for our projects later, but for now highlight that for Puppet Master
they must be scalar values (in comparison to, e.g., descriptive ones) and must be care-
fully selected to represent the aspects of motion one is trying to capture.

3.2. Best-Match Searching
We search the training database for the leader and reactor configuration most similar
to the current run-time configuration (based on the features used), and use this best
match to inform the next generation step. We use a window of data (1s) compared
against a moving window over the training data (Fig. 3). This neighborhood search
enables us to capture the derivatives of the actions, such as one entity moving toward
another or circling, or a dancing robot starting a dip or twist. The 1s window size was
selected through testing as a balance between interactivity and quality, where larger
window sizes created a delay before appropriate interaction was matched (even when
history was weighted to favor recent data linearly or with a Gaussian distribution),
and shorter window sizes made longer interactions such as one entity circling another
(for the following robot) fail to be matched.

The comparison metric we use is Euclidean distance. At any given time point the
scalar features can be used to form a multi-dimensional vector, such that the Euclidean
distance between a given training-data vector and real-time-data vector can be easily
calculated. Lower values represent a better match, and to compare windows we sum
the distance of corresponding vectors. (We use Euclidean distance squared to save com-
putation as we are simply minimizing the result). This process is a brute-force method
for finding the nearest neighbor in our feature space over the window.

3.2.1. Similarity and Coherence Match. The searching is split into two simultaneous com-
ponents, a similarity match and a generation coherence match (inspired by the Image
Analogies technique [Hertzmann et al. 2001, 2002]), and a balancing algorithm to com-
bine the two. The similarity match focuses on the relationship between the entities: it
compares a window of the most recent real-time situation data – both the generated
reactor and leader movements – to a moving window over the training data (Fig. 3(a)).

The coherency match emphasizes the similarity between generated reactor move-
ment and the demonstration, and puts less emphasis on the leader; it uses the features
of the reactor only in calculating similarity.2 Coherency match does not search the en-
tire training set, only regions which were recently used (within the current window
size) to generate the output (Fig. 3(b)); the algorithm finds the source region for every
recent output generated, and compares that region to the recent reactor movement to
finds the region that is most similar. The intuition is that when situation similarity

2The exception is for interactive locomotion paths where we use the relative-location feature: for example,
for a reactor to finish a circle around the leader it needs to track the leader

(a) For similarity search both the leader’s and
reactor’s data are used to determine which train-
ing data to use for the next generation.

(b) For coherency search if the similarity score
is low we attempt to continue a previous train-
ing region already used in generation

Fig. 3: Searches happen using a 1 s window of training data. In both searches the training data with the
best feature match is chosen for generation.
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match is weak (i. e., no training data matches the current real-time situation), genera-
tion coherency continues a previously-used match to ensure that the reactor is at least
moving in a way that was demonstrated.

3.2.2. Similarity and Coherence Balancing. The results of the simultaneous searches must
be combined or we must alternate between the two. The work we based this approach
on [Hertzmann et al. 2001] simply selects the better score from the two after applying
a static weighting bias k. This does not work with real-time data as: if coherence match
is used to generate output for several consecutive steps, then the reactor generation
will be increasingly similar to the reactor demonstration – irrespective of the leader.
Coherence match continues to improve until it ultimately is used exclusively, with the
result not considering the leader’s actions. We call this problem coherence loops.

This problem did not occur in the original texture synthesis application as all data
was available at the beginning and multi-resolution approaches ensured global co-
herency [Hertzmann et al. 2001]. We cannot use this given our real-time constraints
and the lack of a lookahead method. Our solution is to define a target similarity-to-
coherence use ratio (we used 1:1) and to dynamically tune k to encourage our target
ratio; we use a 1:1 ratio and modify k by 5% each step. A similar algorithm is used in
texture synthesis systems to match the overall color histogram [Kopf et al. 2007]. We
did not observe a large difference in result with different k target or tuning step sizes;
the key seems to be simply preventing one matching technique from dominating and
keeping both matching regularly. Once the appropriate training data is selected the
data immediately following it is used as the best match (Fig. 3).

3.2.3. Hysteresis Smoothing. One problem with the matching and balancing approach
is noise. Instability in the similarity metrics (jumping between regions) and switching
rapidly between similarity and coherence matches can cause large, rapid variations in
the source data passed to the generation system, resulting in distracting rapid gener-
ation movements not consistent with the authoring. This phenomenon is highlighted
in Fig. 2(a), page 6. We use hysteresis smoothing to discourage rapid jumps between
source regions in the training data and to encourage patches (as in Fig. 2(a)). Intu-
itively this can be thought of as sticking to a region, where it is easier to enter a
training region than it is to leave it.

Once a training region is selected we give the subsequent region a temporary bonus
to scoring, encouraging its use such that Puppet Master will tend to stick to that patch
for generation even if a slightly better match is found. A dramatically better match will
still overcome the hysteresis to maintain high interactivity. As a patch is continued
the bonus diminishes linearly (over 1.5 s) to ensure that other training data can be
used where appropriate. With this alone Puppet Master would cycle between similar
patches at a period roughly the same as the hysteresis decay (1.5 s in this case). We
discourage this by black-listing used training regions for 2 s such that they cannot be
used during that time. The result of this smoothing is passed to the output module
to generate the next robot movement. Both parameters (1.5 s hysteresis decay and 2 s
blacklist) were chosen simply as values significantly larger than the window size such
that a) a recent match would maintain a bonus even after the window has moved past
it a little (to aid in continuity) and, b) a region is black listed long enough for another
pattern (based on another region) to start, thus making the black list unnecessary.

3.3. Output Generation
Best-match training cannot be copied verbatim to output. First, the feature set may not
map directly to robot output causing ambiguities: for example, the best-match’s target
forward velocity may contradict the target relative position which requires a negative
velocity. Any solution must be feature-set specific and must sacrifice some features for
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favoring others. Our general solution is to solve for target state (on each independent
output), regardless of velocity, then scale that movement to the target velocity. This
maintains the authored speed of the robot while still moving toward the target.

The second problem is that the robot movement detail may contradict the overall
movement target. For example, the target may have the robot bop left while leaning
right: if the robot is not already leaning right, does it move left to perform the bop
motion or move right to reach the global target? Our generation approach, a key insight
of Puppet Master, is to decompose the motion into its low-frequency (move to global
position) and high-frequency (texture or detail) parts and then balance them, as a
means of integrating both the global target and movement detail into each movement.

3.3.1. Frequency-Analysis Output Blending. The algorithm is as follows; we use the robot
follower platform for illustration (Fig. 4). First, given an absolute target (Fig. 4(a)) we
solve for the robot command that will move it to a given Puppet Master target state
(Fig. 4(b)). This is the low-frequency component of the desired movement as it changes
relatively slowly over time, which places the robot in the global position. However, as
the robot cannot instantly keep up with the moving target over time, the texture (or
details) of the desired movement are lost. Second, we find how the robot can reproduce
the exact desired path (Fig. 4(c)), by solving for the delta movement rather than the
target location. This maintains the high-frequency component, but drift means that
the robot soon loses its relative localization: the low frequency component.

We combine the above two components by using a weighted average of the two result-
ing robot commands (Fig. 4(d)). Focusing on the high-frequency component results in
better texture retention but more location drift, and a focus on the low-frequency com-
ponent has the opposite effect. We use a 70/30 high/low-frequency balance to empha-
size texture and to be looser on relative robot location; we found any balance strongly
in the high-frequency component’s favor to yield good results and selected this value in-
formally through experimentation. The intuition is that existing high-frequency robot
movements which tend to move away from the target location are slightly modified
by the algorithm to correct their direction, while movements that are already directed
toward the overall target are generally unchanged. The overall input, training, and
generation data-flow and process is given in Fig. 5.

We believe that our solution is a unique method for filtering a desired movement
against robot capabilities while focusing on the balance of texture and global motion,
and can be used for the general problem of applying less-constrained movement behav-
iors (e. g., as demonstrated by a human that may not match exact robot capabilities) to
the constraints of particular robots. That is, if a robot system is given an unpredictable
movement path without look-ahead capabilities, it can apply our method to adopt the

(a) robot and target
state

(b) solve for robot to
reach target in one time
step if possible

(c) target state over
time forms path, solve
to reproduce texture

(d) combine move-
ments, tend toward
target over time

Fig. 4: Our frequency-analysis robot movement solution.
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Fig. 5: Puppet Master’s process and components.

path while focusing on maintaining style if it has a kinematic model which enables
it to: a) calculate the closest possible fit to reproducing that path and b) calculate the
shortest-path route to a far absolute target.

3.4. Minor Puppet Master Extensions
Here we provide details of algorithm extensions used throughout our projects.

3.4.1. Incrementally Adding Training Data. Data can be added incrementally over several
training sessions simply by storing each session as its own training set. Then, for
searching, all data sets are searched to find the best match. This is used in the robot
dancer project (Sec. 4.3).

3.4.2. Simple Reinforcement Learning. It is possible to incorporate user feedback to fine-
tune the algorithm in real time, for example, by the user indicating good or bad results.
We implemented rudimentary reinforcement learning by adding added positive or neg-
ative weights. This was used in the puppet dancer project (Sec. 4.3).

3.4.3. Auxiliary Actions. The following extension is not addressed in the discussion in
the paper but is included here for completeness; use cases and evaluation results can
be found in prior work [Young et al. 2012]. It is possible to demonstrate discrete actions
in tandem to the Puppet Master demonstrations (e.g., when to smile, take a picture,
etc.). This can be achieved technically by associating the demonstrated actions with
the training data on the time axis, such that the data is marked with the action at the
appropriate time. As marked data is used during generation the associated actions are
performed; this is illustrated in Fig. 2(a), page 6.

3.5. Specific Features Used
Below we present the features used for projects introduced in this paper, but these will
have to be selected and tested anew for each use case.

3.5.1. Features for the Animation and Robot Follower’s Interactive Locomotion Paths. We consid-
ered the important features for interactive locomotion to be the details of the reactor’s
path, and the relative movements to the leader’s location; we do not use global features
such as reactor and leader location in the space. We distilled the locomotion paths into
the following features (Fig. 2(b), page 6):

Velocity. Captures speed and acceleration-related aspects of behavior such as
different reactions for the person being stopped, accelerating, fast, or slow.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



Authoring Interactive and Stylistic Behaviors 0:11

Relative position. Reactor’s position in relation to the leader’s position and look
direction (coordinate space). This captures such relational behavior as following,
circling, and approaching.

Normalized look direction. Look direction relative to movement direction, to
capture, e. g., if the leader or reactor is backing up or moving sideways.

Relative look direction. The difference between the look directions, e. g., to capture
when the leader and reactor are facing each other or looking away.

∆Direction. Change in direction, to represents locomotion path detail, e. g., to
match movement styles such as shaky or smooth.

All features except relative position are used for both the leader and the reactor’s
similarity calculations. As our generation is from the reactor’s perspective we exclude
considering the leader’s perspective directly. We explored many features not presented
here (e. g., delta distance between the characters) but generally found that the feature
was already captured in the system and could be reduced to one of the ones above.

3.5.2. Features for Interactive Robot Dance. For robot dance we envision the reactor robot
performing body poses and movements in relation to the leader, for example, to capture
one robot leaning to the side while the other does a turn. Thus, as features we used
the body pose of the robots themselves; in this case the robot’s have a four degree-of-
freedom spine (see Fig. 10(b), page 19). The features used are the head tilt, body roll,
body pan, and body tilt, considered simultaneously for both the leader and reactor.

3.5.3. Frequency Analysis on Specific Features. Our frequency-analysis output technique
is dependent on the specific movement constraints of each robot. For the robot dancer,
as the features used (head tilt, body roll, body pan, body tilt) matched the motor out-
put capabilities exactly (Fig. 10(b), page 19), solving for the outputs was trivial. For
the robot follower platform, we used a kinematic model of the robot that describes its
movement capabilities and constraints to generate the frequency components above,
with commands guaranteed to be producible by the robot. We solve for robot movement
commands (velocity and turning radius in this case) for the high and low frequency
movements: given a target ∆x,∆y,∆θ (theta is look direction) simple trigonometry
gives us our turning radius (r = ∆x+ ∆y

tan θ ) and velocity (vt = θr, t is time), Fig. 6.

3.6. Evolution of the Puppet Master Algorithm
The Puppet Master algorithm as presented above is the final result of iteration and
evolution through the three projects presented in this paper. Here we briefly discuss
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Fig. 6: Movement capabilities of our follower robot, an iRobot Roomba, showing the relationship between
its control scheme of velocity (distance / time) and turning radius and the resulting ∆x,∆y.
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the main changes and reasons behind them. A major problem with the original anima-
tion Puppet Master was generation jitter when the algorithm confidence was low (it
changed rapidly between sections of training data), and the major effort of subsequent
iterations was to mitigate this problem.

The original Puppet Master algorithm included an explicit smoothing post-process
where the output path was heavily smoothed to remove jitter. We recognized the im-
portance of high-frequency movement texture, and as smoothing removed this texture
(even when training was, e.g., purposefully shaky), we re-introduced the appropriate
texture from the training data using wavelet-based frequency analysis: we extracted
the high-frequency component from training and added it to our output. Unfortunately,
as this was a post-process only the underlying search still maintained the jitter. Re-
sults were improved for minor jitter scenarios, but for more prolonged and pronounced
jitter it still remained. The reason is that rapid movement between regions means that
the training texture introduced to the filtered output itself may rapidly change.

For the robot follower implementation, the slow response time of the robot exacer-
bated the problem: any jitter at all made the robot move in a wrong direction, which is
difficult for a slow robot to recover from in comparison to an animated sprite. Our solu-
tion here was to integrate the insights of the frequency analysis approach into the core
algorithm instead of being a post-process. By splitting the output into the target loca-
tion and detail (low and high frequency components), and balancing them, the robot
was able to maintain relative-location coherency while still reproducing the texture as
trained. Although the actual produced path was not the same as the original, the low
and high frequency components were recognizable and the result was much stronger.
Although we felt this solution was robust, our user studies indicted that people were
very sensitive to any jitter and it remained a problem.

To reduce jitter for puppet dancer we realized that a solution must stop the jitter
at the source instead of filtering it. We adapted the hysteresis solution (in addition to
the frequency-balancing approach) to reduce jitter at the expense of some interactivity
(the smoothing and wavelets technique was completely abandoned). We believe this
was successful as no one in the puppet dancer user study complained of jitter.

Other than the above issues, the other main components of Puppet Master stayed
the same, including the search (coherency and similarity balancing) algorithm, feature
characterization, and so forth.

3.7. Summary of the Puppet Master SBD Algorithm
The Puppet Master algorithm is a pattern matching technique with patch-based out-
put composition. The original contributions are in the adaption of a previous texture-
synthesis technique to work with real-time feature data without available lookahead,
and the frequency-analysis based approach to smoothing motion-path patch transi-
tions in a way that maintains both movement texture and global position.

We note that our model of motion style relies on the high-frequency components of
motion path. Further, our primary purpose of developing Puppet Master was not only
to solve the hard SBD algorithmic problem itself, but to provide a learning system that
sufficiently enabled flexible end-user authoring of style-oriented robotic behaviors for
the purposes of evaluating the SBD interaction paradigm. Puppet Master is the first
learning system to sufficiently meet these goals: it learns interactive behavior with a
focus on style over goal, and it enables rapid and iterative behavior creation without
lengthy expert-involved pre-processing.

4. OVERVIEW OF THE PUPPET MASTER SBD PROJECTS AND EVALUATIONS
In this section we briefly introduce our three Puppet Master incarnations and give
a summary of their evaluations. The projects are presented in chronological order, to
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illustrate how the research evolved from early animation work (proof of concept) to a
robot implementation and to adaptation to an entirely different feature set. We will
follow with a cross project and study analysis where we investigate the overall SBD
challenges and successes, reflect on how users engage SBD in general and how SBD
interaction can be designed, and reflect on the challenge of evaluating SBD systems. As
such, in this section we provide only enough summary information to clearly portray
the interfaces, and to highlight the interaction and evaluation challenges and solutions
explored; full details of each project can be found in their respective publications.

We conducted evaluations to test the usability of each particular interaction and
interface design (i.e., if people will be able to use our interfaces to comfortably author
interactive, stylistic behaviors), and to test the efficacy of the Puppet Master SBD
algorithm, that is, if it produces satisfactory mimicry results that people can recognize
and understand. However, our primary purpose in creating these systems was to serve
as initial SBD proofs of concept where we investigate how people engage and interact
with SBD systems, test if people easily understand the SBD paradigm of teaching
interactive stylistic behaviors to robots by “acting,” and confirm that people are in
general motivated to engage SBD tasks. Thus, rather than focusing on quantitative
measures such as learning accuracy or time efficiency, at this early point we believe it
is more meaningful to take an exploratory approach to evaluation: we create believable
SBD interaction scenarios which enable us to observe how participants perform tasks
and qualitatively investigate how interaction takes place.

We rely heavily on qualitative evaluation methods, using participant self-reflection
via, for example, verbal comments, long-answer questions and opinion-oriented Likert-
like scales as data. Our specific method draws heavily from grounded theory: we open
code the written answers, interviews, and video data, we perform multi-level analysis
to identify emergent themes and relationships throughout the data, and we use exem-
plary quotations to represent the complex ideas [Bernard 2000; Strauss and Corbin
1998]. An interested reader can find many recent examples of this approach in the
community (e. g., [Voida et al. 2011; Wahlström et al. 2011]).

4.1. The Animation Project
The animation SBD project enables users to create stylistic and interactive character
locomotion: the way that one character moves in real-time tandem to the movements of
another character [Young et al. 2008]. We note that an animated character can convey
complex stories and personalities through its locomotion path only [Heider and Simmel
1944], for example, one character could be friendly or aggressive simply by how it
moves around and in reaction to another character. We use two on-screen characters
for the leader and reactor: during authoring users train a yellow slime how to interact
with (via locomotion path) a green slime. During generation the yellow reactor moves
automatically based on the personality demonstrated.

We constructed two interfaces, a mouse-based GUI and a Tangible User Inter-
face (TUI)-based digital tabletop interface, to explore different interaction styles. The
mouse-based GUI (Fig. 7) is a PC application for authoring interactive slime behavior.
For authoring the user provides leader and reactor example movements sequentially.
First, the user defines a leader movement path by clicking and dragging the cursor
around the screen. When finished, the GUI re-plays the leader path verbatim while
the user demonstrates reactor movements to interact with the leader. Finally, the user
moves the leader and the reactor automatically interacts using the trained behavior.

A limitation is that the standard mouse does not have a rotation sensor, for example,
the slimes cannot be backed up or moved sideways. We locked the look direction to the
movement direction. Further, initial pilots revealed that users found the sequential
nature of training to be unnatural, and they requested simultaneous authoring.
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Fig. 7: The animation project GUI with a leader yellow slime and reactor green slime.

Our TUIs tabletop design (Fig. 8) allows people to use physical objects (the TUIs)
to demonstrate behavior. This enables users to specify slime orientation, and the two
TUIs enable a user to simultaneously manipulate the leader and reactor during au-
thoring (Fig. 8(a)), or, two collaborating people to author together (Fig. 8(b)). This is
reminiscent of puppetry, an idea that people are familiar with. Further, the TUIs im-
prove usability by combining the action and perception spaces and by leveraging the
physicality of the TUIs [Fjeld et al. 1986; Ishii and Ullmer 1997; Sharlin et al. 2004].

(a) Authoring how the green-slime reactor
should interact with the yellow slime leader, con-
trolling both simultaneously.

(b) Two users collaborating to author an interac-
tive behavior.

(c) For generation the green reactor interacts
with the yellow leader in the style demonstrated.

Fig. 8: Using TUIs on a digital tabletop for SBD.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



Authoring Interactive and Stylistic Behaviors 0:15

4.1.1. Animation Study. The animation study consisted of an authoring and an observ-
ing component, where one group of participants created and evaluated behaviors, and
another group of simply evaluated them; we recruited 6 female/14 male, age 19–32,
M=22.8. They were each paid $15 for 60 minute participation. We used written sur-
veys pre-post test and throughout the studies as primary data.

Authoring participants designed character behaviors one at at time – the partici-
pant simultaneously demonstrated the leader and reactor paths – given the following
keywords to describe the learning goal: lover, bully, playful friend, stalker, and afraid,
chosen as a broad range of examples. Participants could re-try if they were not satis-
fied with the results, and questionnaires were administered after each behavior. Next,
they were shown their behaviors in a random order and asked to match them.

Although we did not ground our behavior selection in behavior theory, and admit
that this limits our ability to generalize our conclusions, the selection serves our pri-
mary exploratory purpose of creating scenarios that engage participants. It further
provides a broad test of the robotic Puppet Master SBD capabilities: the Puppet Master
algorithm has no hard-coded behavior model, and must learn each of these behaviors
completely and wholly from a participant’s demonstration.

Observer-study participants were first shown one of each behavior type from a set
subjectively-selected by the experimenters from authoring-participants creations. Af-
ter each they were asked to “describe the character” in a questionnaire. Following, par-
ticipants were given the titles of the behaviors and asked to match them when shown
again in a scrambled order. The study structure is summarized in Tab. III, page 25.

4.1.2. Results and Discussion. Observation indicated that participants were highly en-
gaged with the SBD interface, task, and behavior results. Four authoring participants
were observed to be highly immersed in the design process, for example, making ex-
aggerated faces, noises, and speaking out loud to the characters while training. One
participant hummed the “Jaws” movie theme while training the afraid behavior, and
another commented “what a jerk!” when observing the designed “bully” character. No
authoring participant exhibited problems understanding and executing the SBD tasks,
and all 10 strongly agreed that they enjoyed using the system. Observer participants
were observed to be role-playing their characters, and used anthropomorphism to de-
scribe their observations, for example “the guy who kept sucker-punching” and “he
needs more confidence.”

The authoring study results found that eight of the ten participants correctly iden-
tified all their own behaviors, participants were satisfied with the results 74% of the
time, and that all particpants strongly agreed that they enjoyed using the system. Fur-
ther, this was accomplished with no participant training, with on average of 32.5 s of
demonstration, and on average 1.7 attempts at each behavior. Thus Puppet Master
supports rapid end-user prototyping of interactive behaviors that captures the behav-
ior style and personalities reasonably well.

Observer participants used exact or similar (e. g., “girlfriend” instead of “lover”) key-
words to describe the behaviors during the open ended phase in 38% of the cases. For
the matching phase, behaviors were correctly identified 50% of the time (significantly
better than random choice). The pattern of incorrect matches suggested crosstalk be-
tween behaviors, for example, afraid and stalker were often mistaken for each other.

A common criticism across both phases was jitter in the reactor generation: people
reported that it was distracting and made the behaviors feel fake. Another reported
problem was the lack of character capabilities, for example, “he doesn’t have hands so
I can’t punch,” and several participants noted the lack of intelligence in learning, such
as “if you pause to catch your breath, the system takes it as deliberate behavior.”
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Overall, this study supports SBD behavior creation for locomotion paths, and shows
that end-users will be able to easily understand the interaction paradigm.

4.2. The Robot Follower Project
This project enables people to design the interactive, stylistic locomotion of a robot re-
actor – an iRobot Roomba – interacting with a person leader [Young et al. 2010, 2012].
We created two authoring interfaces for this project: the broomstick interface, where
a robot-on-a-broomstick is used to show interactive locomotion style (Fig. 9(a)), and
the Surface interface, where a tangible puck on a tabletop Microsoft Surface computer
is used (Fig. 9(b)). Both authoring interfaces are designed to physically constrain the
demonstration movements which are reproducible by the robot: the interfaces, like the
robot, can turn on the spot but cannot move sideways, forcing the person to express
their desired movement style using the robot’s movement capabilities and limitations.

For the broomstick interface, a person leader moves in a path and a second person
manipulates the broomsticked robot reactor to shown how it should interact with the
person (Fig. 9(a)). The broomstick design motivation was to enable free demonstration
as directly to the robot as possible. Grasping the robot directly is not feasible due to
the robot being low to the ground. The person cannot act using their own body as this
would incorporate degrees of freedom not reproducible by the robot. The broomstick

(a) Authoring interactive robot locomotion style
using the broomstick, showing a Roomba reactor
how to interact with a person leader.

(b) Authoring using the Surface, with a TUI for
the Roomba reactor and the happy-face repre-
senting the person leader example input.

(c) For generation a Roomba interacts using the
demonstrated behavior, enabling the person to
experience the result directly.

Fig. 9: the broomstick and Surface SBD interfaces for robot locomotion path.
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solution provides a fairly-direct demonstration method, while the robot on the end
constrains demonstrator input to motions reproducible by that robot.

The Surface authoring interface (Fig. 9(b)) uses a digital tabletop (Microsoft Sur-
face): the leader example movements are pre-scripted and presented as a happy face
icon on the table, and the user manipulates a wheeled puck TUI (reactor) to show the
robot how to interact with the person’s movements. We pre-scripted the movements for
simplicity of implementation, and as the human movements for the broomstick were
also rigidly scripted we believe it was not necessary to have these controlled live, and
having a person perform on the same small tabletop introduces occlusion issues. This
design was an explicit follow-up on the animation project and the results of the related
study: the Surface is smaller than the previous table, such that the demonstrator can
easily reach over the entire space while maintaining smooth motions, and we avoided
having two pucks to lower mental load [Young et al. 2008]. The puck was a hand-made
wheeled platform with a wireless mouse attached.

For generation the leader person simply walks around the space freely while the re-
actor robot interacts using the demonstrated style (Fig. 9(c)). The broomstick robot and
leader person’s movements are tracked using a Vicon camera motion-tracking system.

4.2.1. Robot Follower Study. The robot follower study consisted of a programmer design
critique, and authoring and observing phases. In all cases we used four stylized inter-
active robot locomotion behaviors: a polite follow (polite), stalking the person (stalker),
happy to see the person (happy), and attacking the person as if they were a burglar
(burglar); the behaviors used in the animation study were adapted here to the task
of “following” and more words were added to improve clarity (e.g., compare the burger
description above to simply “bully”). Further, in all cases an experimenter performed
leader movement paths for the reactor to interact with. Movement paths varied greatly
by study phase (but were consistent for behaviors across participants), and for gener-
ation the participant watched the reactor robot interacting with the leader actor.

For the programmer design critique we recruited 4 experienced programmers (1 fe-
male / 3 male) and asked them to create interactive robot behaviors both program-
matically (via our easy-to-use Java API) and using our SBD broomstick interface with
an actor as the leader. Participants were given two hours to program four different
behaviors, and no time limit to create and evaluate the same behaviors by SBD. We
video-taped the study and interviewed participants post test.

Twenty-two participants were recruited for the authoring phase and were split
evenly between the broomstick and Surface interfaces: they were 11 female / 11 male,
aged 19–34 (M=26.9), and were paid $20 CAD for one-hour participation. Participants
were first asked to create the four behaviors in order, using the assigned SBD inter-
face, observing the result and completing a questionnaire after each. They could re-try
a behavior until they were satisfied. Following, participants were asked to identify
their behaviors when presented in a shuffled order.

For the observer phase we recruited 12 additional participants (5 female / 7 male,
aged 19–36, M=26.3) for a one hour study. Participants first simply observed a robot
reactor with an actor leader for each behavior type, then were informed of the behavior
categories and asked to classify a new set (which included the programmer behaviors)
while watching again, and were finally given the option of an unstructured task where
they become the leader and interact with the robot in-situ; this last phase was simply
an opportunity to observe organic interactions with the stylistic robotic behaviors.

Both the authoring and observer phases were video taped, and free form and Likert-
scale questionnaires were administered throughout the studies. The study structure
is summarized in Tab. III, page 25.
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4.2.2. Programmer Results and Discussion. The programmers embraced the SBD ap-
proach: they anthropomorphized the robot and “played along” with the behaviors, de-
spite their technical view. The primary finding was that, rather than categorizing SBD
or programming as one being better than the other, all four participants described an
accuracy and control versus time and ease trade-off: participants reported that pro-
gramming gives explicit control but demands considerable time, and it is difficult to
convert stylistic ideas into raw movement commands. On the other hand, SBD gives
a direct, quick, and easy method for showing intention at the cost of losing detailed
control of the robot’s movements. These trade-offs are not clear-cut, as participants
pointed out that programming gives a false sense of control: “even when I program
I don’t know exactly what is going to happen.” Programming tools are also perhaps
ill-suited to the task: “when you’re programming something you have to anticipate ...
what kind of situations can come up and how [the robot] should react ... that’s not a
natural way of doing things.” Further, it was pointed out that SBD cannot be a perfect
solution because the algorithm is “relying on its interpretations of [their] intentions,
rather than on [their] actual intentions. There is no way to directly convey intentions.”

All participants took the full two hours to program the four behaviors, and took an
average of 10 m 27 s total in the SBD task, including iterative demonstration, observa-
tion, and simple discussion; the SBD approach obviously saved time, a benefit which
would be dramatically stronger for non-programmer users.

Overall, this study suggests that the SBD approach may be useful even for users
who have the capability to program behaviors more explicitly; it still makes sense to
leverage people’s demonstration abilities. Further, it highlights important limitations
and benefits in comparison with traditional methods.

4.2.3. Authoring and Observing Results and Discussion. The authoring study results show
that people understand and accept the SBD approach: no participant was observed
having problems understanding the SBD concepts, tasks or interfaces, and many ap-
plauded the idea of easy customization, for example, “each person’s interpretation of
aggressive would be different, it wouldn’t make sense to pre-program.” The Puppet
Master algorithm enabled people to quickly (M=50 s and M=1.27 tries) create inter-
active, stylistic robot locomotion behaviors that they were satisfied with and could
reasonably identify (67% overall): half the participants perfectly identified their be-
haviors. 67% was less than hoped for, highlighting the need for improvement. For the
observer study overall match success was 54%, which was much better than chance
alone (t(11)=6.13, p <.001). Further, there was a clustering of similar behaviors, that
is, polite and stalker, and burglar and happy were often mistaken for each other.

As in the animation study, some felt restricted by limited robot capabilities, for ex-
ample, “a dog would run around, jump, move its tail and follow its owner.” The most
frequent complaint was that the robot’s movements “seemed really jerky.” However,
unlike in the animation study, this was in the majority of cases interpreted as a per-
sonality trait: that the “robot seemed a bit confused” (the most common attribution by
far) or that it “looked like [sic] thinking and deciding.” Further, the same relationship
emerged in the observer study where there was no context of teaching and learning
which may create such an interpretation.

Eleven of the 12 participants opted to participate in the in-situ free-form phase.
One result was that the level of anthropomorphism and “buy in” for the social robotic
personalities was informally observed to increase for participants in comparison to the
less direct behavior observation phase.

Overall, the authoring and observer study, as in the animation case, provides sup-
port for the approachability of the SBD technique to untrained users.
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4.3. The Puppet Dancer Project
The puppet dancer project [Allen et al. 2012] is an SBD system for enabling people to
create interactive robot dances (Fig. 1, Fig. 10). We selected dance as: a) dance is heav-
ily style oriented and generally lacks an overarching task which must be considered,
and b) paired dance is highly interactive as we envision many robotic tasks will be.

This interface enables a user to teach a reactor dog robot how to interactively dance
with a cat leader by providing a demonstration (Fig. 1). This is a paired dance where
the reactor responds directly to the leader’s motions, for example, if the leader dips the
reactor may dance from side to side. After authoring, during generation the reactor
dog will automatically dance in the fashion demonstrated as the user manipulates the
leader cat (Fig. 10(a)). The robots are stuffed toys with robotic spines (Robotis Bioloid
servos, Fig. 10(b)) that enable both robots to tilt their body forward and backward, pan
from left to right (a side-to-side movement), turn or roll left and right, and tilt the neck
up and down (Fig. 10(b)). Further, both the cat and dog are mounted rigidly facing each
other on a plastic box containing the controller boards (Fig. 1, Fig. 10(a)).

The robot dancer SBD interaction design was modeled after how people interact
when teaching one another. First, the user can switch seamlessly between authoring
and generation, to alternately provide additional training and test the incremental
result. This is modeled after how human teachers will regularly stop a progressing
human learner to provide additional input, for example, saying “like this” while giving
a physical demonstration. This is enabled via a toggle button with the label “training”
on it (Fig. 10(c), left): when depressed, it blinks and robot dancer enters authoring
mode, when toggled out, the light extinguishes and robot dancer enters generation
mode. In addition, there is “reset” button which, when pressed, makes the reactor
forget all training (Fig. 10(c)). This design was a deliberate attempt to make training
more free-form than prior Puppet Master systems; we analyze this directly in Sec. 5.

(a) Dance generation: the reactor dog auto-
matically dances along with the leader cat.

Tilt Head 
 

Roll Body 

Pan Body 

Tilt Body 

(b) The reactor dog and embedded servo spine.

(c) The buttons used for robot dancer control.

Fig. 10: The Puppet Dancer interface.
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Additionally, we enabled users to give real-time feedback to the reactor regarding if
it is doing well or not, interaction modeled after how teachers will often give real-time
verbal feedback to guide a student working on a new task, for example, saying “yes” or
“no” as they try. For this we mounted two arcade-style press buttons on the top of the
robot platform (Fig. 10(c)). The user can press the green approve and red disapprove
buttons to signal to the reactor when they like or dislike the dancing.

4.3.1. Puppet Dancer Study. The puppet dancer study consisted of a creation / compari-
son phase to compare Puppet Master against other dance generation methods (remote
control and non-interactive), a feedback phase to target the reinforcement learning
mechanism, and an open-ended phase to explore how participants engage the overall
training process when not given constraints; the overall structure is summarized in
Tab. III, page 25. We recruited 11 participants for one hour participation; 4 female /
7 male, aged 20-52 (M=29.0). Some analysis numbers total less than 11 due to early
study finishes from robot and camera problems. We administered questionnaires pre-
and post-test, and after each phase.

In the comparison phase participants freely authored an interactive robot dance – for
as long as they liked – by manipulating the reactor dog while an experimenter moved
the leader cat (pre-scripted). Following, the participant controlled the leader while the
reactor interactively danced along, to evaluate the three reactor cases in turn (Puppet
Master, remote control, non-interactive, presented in a counterbalanced order); they
were not informed of the differences and evaluated each one immediately after inter-
acting with it. Remote-control was achieved via a hidden web-cam and remote-control
with the same morphology as the dancing robots, and random replay was achieved
by selecting random patches of training data instead of using the algorithm’s “best
match,” and still using Puppet Master’s output mechanism which smoothly transitions
between patches through its emphasis on movement texture by sacrificing localization:
the result was a smooth dance taken from the training but was not interactive. Here,
the training, reset, and feedback buttons were all hidden.

Next, participants were introduced to the feedback (approve/disapprove) buttons.
They manipulated the leader while simultaneously observing the reactor and using
the reinforcement buttons to shape the result. We used Puppet Master generation with
training data from the first phase. There were two parts, the standard reinforcement
method and a variant where button presses has no effect. We believe this compari-
son was valid (instead of, e. g., comparing to random effect) as, even with the buttons
enabled, the effect was not immediately obvious due to the small weights.

In the unstructured open-ended phase participants were shown the buttons that
enabled them to add training incrementally or to “reset” learning. Participants were
encouraged to simply play with the system as they wish for as long as they wish. For
authoring they themselves manipulated the leader and reactor simultaneously.

4.3.2. Results and Discussion. Participants were engaged, clearly understood the tasks
with minimal instruction, and were able to author a wide range of interactive dances.
Overall, they reacted positively to SBD, and there were only a few negative comments,
primarily about the learning ability and result. No participants complained of jitter.

For the comparison phase, there was an effect of generation type on how partici-
pants ranked the quality of the generation (Friedman’s ANOVA on Likert-like scale
responses, X2(2) = 4.923, p < 0.05); post-hoc tests failed to reveal additional effects,
Friedman rankings: Puppet Master 2.0, wizard 2.35, non-interactive 1.64. Participant
feedback on questionnaires had a similar pattern, with Puppet Master and remote
ranked similarly with non-interactive lagging behind. Thus this supports the impor-
tance of having interactive stylistic dance instead of static pre-scripted approaches.
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Most participants reported that they found the reinforcement-learning buttons use-
ful, and several related the importance to the feeling of teaching: “having the like and
dislike buttons I really felt that the robot is learning.” Although participants rated the
enabled reinforcement-learning condition as being more effective than the (unknown
to them) disabled condition (T = 2.5, p < 0.05, r = −0.47), we found no effect of this
condition on how participants actually used the buttons (e. g., frequency, which ranged
from 3–49 hits across participants). When asked overall whether the buttons were
useful, 3 disagreed, 1 was neutral, and 5 agreed, participants cited heavily in written
answers the importance of the reinforcement mechanism, and were observed to use
the mechanism extensively in the open ended phase. This highlights the importance
of providing SBD users with a fine-detailed and incremental way of modifying their
behavior without resorting to the core demonstration mechanism.

Our open-ended phase analysis found that individuals engaged SBD and used the
tools in a surprising breadth of ways. Some built behaviors piece-wise, others created
them at once monolithically, and others relied heavily on reinforcement to shape the
result. No “average” user emerged from our study and there was no overarching theme
or method to dance creation or engaging SBD. Many participants highlighted in writ-
ten feedback the importance of the various components to support exploration. This
points to the importance of having a flexible SBD interface that supports various rapid
prototyping and refinement methods to match individual preferences and styles.

We analyzed our video data to investigate if participants would simply want a mim-
icking reactor or a more freeform dance. Of the 10 cases for which we had video, 2
participants were found creating a mimic behavior. The remaining 8 participants per-
formed more complex, personalized dances which were interactive but did not directly
mimic the leader’s movements. Another finding of note was that nearly half partici-
pants (across the cases) were found taking a deliberate leading behavior, where they
would, for example, do a movement with the leader and then stop to observe the reac-
tor, testing for things that they taught. Thus this supports the idea that participants
will want individualized and personal dances and not mimicry only.

The results of the puppet dancer study further lend support for the success of the
SBD approach, for behavior types other that interactive locomotion paths. Further,
the open-ended interaction nature of this study helped highlight the different ways in
which participants may engage an SBD interface.

4.4. Overall Results
Above we detailed three different SBD interface design approaches and realizations,
and a summary of several user studies. The results support our primary research ques-
tions, that is: a) people understand the “acting” concept of SBD and can quickly use
it to author custom interactive robot behaviors with minimal to no training, b) our
interfaces support various authoring and interaction styles to enable SBD, and c) the
underlying Puppet Master algorithm is reasonably successful in learning the interac-
tive stylistic behaviors and generating convincing results.

Although we did not conduct benchmarking of the Puppet Master algorithm, in all
the studies computational limitations were not reached; informal testing found that
saturation happened at about 10 minutes of training data, where output began to stut-
ter. The current algorithm was not optimized, and future work could improve speed,
for example, by using caching techniques, parallelizing the search, or approximate op-
timizations such as approximate nearest neighbor.

Directly comparing quality of generation between the interface instances is problem-
atic given the differences in the behaviors and interfaces, as well as stark differences
in how each one was evaluated. However, informally we note that generation quality
– and user satisfaction – improved through the iterations. We believe this was due
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to improvements in the base algorithm (primarily removing jitter) and having a more
free-form interaction setup; this is addressed more in the next section.

More importantly for this paper, the above discussion detailed the various SBD in-
terface designs which we explored, and the various evaluation methods applied. Below
we take a closer look at how these decisions varied across the studies.

5. CROSS-PROJECT AND CROSS-EVALUATION ANALYSIS
In this section we present a macro analysis of our three SBD platforms and evalu-
ations to investigate SBD in a broader way than is possible with any single project,
to reflect on how our interface design decisions impact user experience, and to reflect
on the various evaluation design choices tested. Overall, we expect that our analysis
will reflect fundamentally on SBD above and beyond our specific platforms, and will
provide insight into how future HRI interaction techniques can be designed.

We split this presentation into two sections: first we discuss the SBD interface de-
signs, and then discuss our approach to SBD evaluation.

5.1. Analysis of SBD Interaction Design
A primary SBD interaction design challenge that we explored through our projects is
how to best scaffold authoring to help a user define their desired behavior. We explored
such questions as:

— should a user perform leader and reactor authoring movements simultaneously or
sequentially

— should we have two people, one for the leader and one for the reactor, or should a
single person control both

— should we structure the authoring process or keep it more free form

With this in mind, the following discussion focuses on two key components of SBD
interaction design that we varied between projects: the user’s role in interaction, and
the authoring and generation interaction process.

5.1.1. User’s Role in Interaction. We explored the question of whether a single person
should control both the leader and reactor simultaneously for authoring, or whether
two people should demonstrate in tandem; Tab. II provides a breakdown of the roles
assigned throughout the studies.

In the animation project we took the solo single-user approach in order to give the
user full control; although the tabletop interface supports two users in tandem, our
studies did not take advantage of this. Study results (and pilots for later studies)
suggested that participants had difficulty concentrating on both the leader and re-
actor simultaneously for authoring. One alternative we explored with the animation
mouse GUI interface is sequential demonstration, where the user first demonstrates
the leader movement, and following, the leader is replayed and the user demonstrates
the reactor’s response. Pilot testing showed this to be highly confusing and difficult to
use, as people wanted to control the leader and reactor in real time.

Following from this problem, for robot follower we decided to employ a second person
(an experimenter in our studies) to perform some of the leader roles, as a way to en-

Table II: Who performed the leader and reactor roles for each phase, “pct.” is shorthand for participant.

authoring generation
leader reactor leader reactor

animation pct. pct. pct. generated
robot follower actor pct. actor generated
puppet dancer actor / pct. pct. pct. generated
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able participants to focus on the reactor training only. While this hinders user demon-
stration freedom as they cannot control the leader during authoring, in our study no
participants complained or commented on this limitation.

As an attempt to lower these restrictions on author freedom while still considering
user mental load, for puppet dancer we took a hybrid approach. Initially in our study,
to keep participant cognitive load low, the leader was controlled by an actor. However,
after participants gained experience we had them control both the leader and reactor
simultaneously for authoring. This had the desired effect of easing users into the SBD
paradigm and enabled them to still have freedom later in the study. Although people
complained about the lack of freedom during the early phase that involved an actor,
unlike in the animation study no participants complained of the mental load required
to simultaneously author the leader and reactor.

The task difference between the animation and puppet dancer cases makes it diffi-
cult to make strong conclusions, but at the least these results suggest that a) simple
training may mitigate interface complexity problems, and b) single-user simultaneous
training of both the leader and reactor is feasible and desirable for some SBD tasks.
An open question here is the problem of how to best design an interface to support
single-user paired authoring or multi-user tandem authoring, for example, how could
a single user demonstrate both roles in the robot follower case?

5.1.2. Authoring and Generation Interaction Process. We designed the authoring and gen-
eration interaction process in the early Puppet Master projects (animation and robot
follower) for simplicity: users could demonstrate a behavior, see the results, and start
over if they wish. The studies showed that, as designed, this minimized training re-
quired, and participants did not complain of limitations or request more functionality.

With puppet dancer we explored additional functionality (incrementally add train-
ing, reinforcement) to investigate if people would use the functionality and, if so, how
they would use it. The study results showed that not only did users find both the re-
inforcement and “add training” features to be very useful, but also that they used the
various features in completely different ways to build a behavior. Although we did not
compare the quality of the authored behaviors between the earlier limited version and
the one with more functionality, these results suggest that SBD interfaces can bene-
fit from providing a flexible range of behavior generation and fine-tuning mechanisms;
users benefited from having the freedom to explore the authoring task in various ways.
Further, the success of the more-limited versions suggests that, although extended
functionality may be beneficial, it is not required for SBD to be successful.

As mentioned early in the paper, one limitation of our interaction process is that our
leader-reactor role setup is not inherently reciprocal, where the leader is expected to
simply move freely and the learner should adapt. In our studies, we have both a rigid
leader (e. g., pre-scripted and controlled by an experimenter) or flexible one (controlled
by the user). We did notice that users would modify the leader movements to try and
elicit particular responses (both informally in the animation study and through video
analysis in the puppet dancer study); it will be interesting for future work to consider
how to integrate such behavior into the learning itself, for example, by identifying
modified leader behaviors and tuning the reactor learning accordingly.

5.2. Analysis of SBD Evaluation Design
One problem we faced for our study design is a lack of similar SBD systems against
which we could compare. While there are many PBD implementations available, they
either a) do not create interactive behaviors (results are static), or b) do not focus on
style but rather on task-level goals, or c) require detailed expert pre-processing and
very large training databases which would prohibit our rapid and iterative behavior
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design paradigm. Likewise, there is a lack of SBD evaluation methods which we could
directly use in our work, and the broader problem of how to evaluate the social aspects
of HRI itself is yet not solved (see [Fernaeus et al. 2009; Young et al. 2010]).

Another problem is a lack of metrics for evaluation and comparison. Similar work
developed metrics, for example, for comparing how “guessable” or “similar” pen-based
gestures are to a trained example [Long et al. 2001; Wobbrock et al. 2005]. Our prob-
lem is much more difficult, stemming from the interactive two-entity (“paired”) demon-
stration and that the temporal order of demonstrated features has little bearing on the
result. For example, while demonstrating a similar behavior one person may provide
a long demonstration repeating one important aspect several times and then give a
single example of other aspects, while another person may simply give a quick but
clear demonstration with one example of each feature. Numerically comparing these
two examples is quite difficult. Other similar prior work has people rate how natural
a result is, for example, for learned robot interactive eye gaze patterns [Mohammad
et al. 2010]: in our flavor of SBD the goal is to enable a user to create their own desired
style and not something which would be natural to most people (at least, within a cul-
tural setting), and thus such generalized metrics do not quite apply here. We leave the
development of comparison metrics as important future work, and in our studies, focus
rather on qualitative results of how users engage and experience our SBD platforms.

Due to the lack of methods for SBD evaluation and lack of related work to compare
to, through our studies we explored various evaluation techniques for investigating
SBD research questions. In this section we summarize some of our methods and dis-
cuss the advantages and limitations of each. For reference and as an aide in discussion,
Tab. III provides a breakdown of the various studies and components.

5.2.1. Exploratory Qualitative Approach. Across the studies we used exploratory qualita-
tive evaluation techniques as a means of developing understanding of how users will
engage and use SBD systems. Our data collection methods include think-aloud exer-
cises, open-ended questionnaires, interviews, and video recording, all of which yielded
important insights into interaction. Analysis techniques used were primarily data-
driven approaches heavily inspired by grounded theory [Strauss and Corbin 1998]
and included open-coding and axial coding, affinity diagramming, and multi-level code
analysis. This approach has been successful, as the studies improved our basic under-
standing of how people engage SBD as well as specifics such as the varying ways in
which people interact (i. e., there is no clear “average” user).

A drawback has been that we lack concrete criteria and metrics for evaluating our
SBD interfaces and interaction designs. This makes it difficult to compare our results
to future and similar work in the area.

5.2.2. Prescribed Behaviors. A primary evaluation design goal across the projects was
to get people engaged in a task so that we can perform our exploratory qualitative
evaluation. Although initially we tried to keep experiments as free-form as possible,
participants in early pilot studies expressed difficulty being creative given the limited
ecological validity of the study. Thus, we prescribed behaviors for participants to create
in the animation and follower projects. This also served the purpose of standardizing
behaviors across participants and providing a means of between-participant analysis.

We found that comparing behaviors was difficult as people often have dramatically
different interpretations of high-level behaviors such as angry or happy. We could mit-
igate this by further restricting behavior freedom and clearly defining concrete behav-
ior descriptions (perhaps with a video), effectively trading creativity in favor of easier
analysis. However, this would have to match the evaluation purposes: for us, freedom
is more important as we explore SBD interaction design and not behavior results.
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Table III: A breakdown of the three evaluations discussed in this paper, with participant counts, and how
the authoring, observation, and programming phases relate. Pct. is shorthand for participant.

study ptcs. task procedure purpose

an
im

at
io

n

auth. 10 behavior
creation

create: lover, bully, playful friend,
stalker, and afraid

engage pct. in SBD for a range of
behaviors

behavior
match

interact with just-created
behaviors in a shuffled order and
identify

engage pct. in SBD for a range of
behaviors
test Puppet Master’s learning

obs. 10 open-ended
observation

pcts. who did not do authoring,
watch behaviors and think-aloud

elicit open-ended reactions to the
behaviors before biasing pcts.

behavior
matching

match behaviors to given titles test if informed pcts. can identify
behaviors they did not create

ro
bo

t
fo

llo
w

er

prog. 4 programing create: happy, polite, burglar, and
stalker by programming

give programmers experience
creating and thinking of behavior
to serve as comparison baseline

SBD create: happy, polite, burglar, and
stalker with broomstick interface

explore expert programmer’s
experiences with SBD, compare to
the programming approach

auth. 22 behavior
creation

create: happy, polite, burglar, and
stalker using broomstick or Surface

engage pct. in SBD for a range of
behaviors

behavior
match

observe actor interacting with
just-created behaviors in a shuffled
order, and identify

engage pct. in SBD for a range of
behaviors
test Puppet Master’s learning

obs. 12 open-ended
observation

pcts. who did not do authoring,
watch behaviors and think-aloud

elicit pct. reactions to compare
against pcts. who trained

behavior
matching

match behaviors to given titles test if biased pct. can identify
behaviors they did not create

in-situ eval-
uation

pct. open-ended interaction with
robot

test pct. interest
compare pct. reactions when
observing versus interacting

pu
pp

et
da

nc
er

auth. 11 behavior
creation

create a single robotic dance with
zero training, only one try

engage pct. in SBD
test acceptance of interaction and
interface with minimal experience

behavior
comparison

interact with behavior created by
Puppet Master, remote control, or
non-interactive

compare Puppet Master reactive
generation against remote-control
person and non-reactive replay

reinforcement
learning

interact with reinforcement
interface with buttons having /
have no effect

test pct. reactions to giving
reinforcement for SBD

free-form unstructured interaction with full
platform

explore how pcts. will engage SBD,
use behavior resetting or additions,
or reinforcement learning, when
not given structure

With the puppet dancer pilots we noted that, in comparison to the locomotion path
work, participants showed no problem being creative. Thus we took a free-form ap-
proach and did not attempt to compare behaviors across participants. Perhaps creativ-
ity was easier here because of the dancing task (in comparison to locomotion path).

5.2.3. Experimenter Actor Involvement. For both the robot follower and puppet dancer
studies we employed an experimenter (“actor”) in authoring, to control the leader while
the participant manipulated the reactor in response; actor involvement is summarized
in Tab. II, page 22. This simplified interaction and enabled participants to focus on the
authoring task, and kept movement consistency throughout the study to aid in cross-
participant comparison. However, similar to using prescribed behaviors as discussed
above, this imposed restrictions on authoring and limited creativity. If we intend SBD
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platforms to enable freedom of expression and authoring, then moving forward we
need to consider how limiting participants in this way impacts the study results.

With the animation study and for a later puppet dancer phase, instead of employ-
ing an actor, study participants authored the leader and reactor simultaneously. This
suited our exploratory purposes to examine how people engage the interaction task
when not being led. Further, although for animation participants noted the challenge
of controlling two entities simultaneously, this was not raised with puppet dancer, per-
haps due to the “easing-in” of interaction with an earlier phase using an actor.

As an alternative to actor involvement we explored two participants working to-
gether (one for each the leader and reactor) as a means of lowering interaction com-
plexity. We avoided this in our work as pilots showed that it created complications in
evaluating the quality of results, for example, the leader participant evaluating re-
sults without knowing the reactor participant’s intentions. However, the question of
how two people may interact together is an important one for future work.

In the robot follower study only, we employed an experimenter actor during gener-
ation to play as the leader, so that the participant could watch the generated reactor
results without having to focus on their own interaction; we selected this design in
part as pilots showed that people were constantly watching over their shoulder and
stopping and observing, and did not tend to walk naturally as was needed. Informally,
we did find differences between people observing robot interaction from the sidelines
and interacting themselves (e. g., level of anthropomorphism). Thus future work should
explore how the directness of interaction relates to evaluation goals and results.

5.2.4. Real Robots Impact Results. Although movement jitter was a problem for the an-
imation and robot follower projects (the algorithm was improved for puppet dancer),
there was a strong difference in how people interpreted the jitter. For the robot, it was
attributed to the robot’s personality and seen as a sign of confusion, while for anima-
tion, it was seen as simply a bothersome software error. This suggests that the embodi-
ment of the movement impacts how generation is received, a finding which agrees with
a plethora of work which highlights how robots encourage anthropomorphism (e. g.,
[Sung et al. 2007; Young et al. 2009]). Thus, for investigating interaction with robotic
SBD systems it is important to use real robots instead of on-screen simulations.

5.2.5. Involving Programmers. Ultimately, SBD will be but a part of a larger behavior
design system. By involving programmers to compare SBD to programming, we iden-
tified ways in which SBD can be integrated within a larger framework. Programmers
have a unique perspective in that they can appreciate the benefits of SBD but under-
stand the technical context within which the results must work.

5.2.6. Evaluating SBD Generation Results. We explored various methods for evaluating
the performance of the Puppet Master SBD algorithm generation. This evaluation is
a non-trivial problem as there is no SBD standard to compare to, and no prior SBD
evaluation work to build on. Further, SBD generation is subjective by definition, mak-
ing it difficult to define generation performance metrics; not only should people be
happy with their own creations (internal validity), but we must consider how results
are perceived by others (external validity).

For the animation and robot follower projects we tested if authors could identify
their creations. This method successfully tested the internal validity of the algorithm,
that is, if Puppet Master captures what authors expect for their behavior. We further
solicited participant satisfaction ratings of the generation quality, although we note
that without a comparison point it is difficult to make conclusions based on this data.

We recruited people to evaluate behaviors authored by prior participants, to test
if appropriate features were sufficiently captured to convey core behavior character-
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istics to others (external validity). We first did this in an open-ended fashion, where
participants were asked to interact with the behaviors and to think aloud about their
reactions. While we markedly avoided language that would suggest anthropomorphic
behaviors, in retrospect this was a mistake: some found the task of explaining in-
teractive motion path confusing without more context, and some thought they should
explain technically, using angles and speeds. While overall this approach helped us un-
derstand how people interpret locomotion paths, the lack of context and explanation
made it difficult to use it to reflect on Puppet Master generation quality.

Following this we asked participants to match shown behaviors to a set of given ones.
This added context and so was more successful at testing whether people perceived
the behavior similar to the authors’ intentions. However, there was still a problem
of ambiguity: for example, stalker and afraid reactors were often mistaken for one
another, as they both often tried to stay out of the leader’s sight. In retrospect, we
believe that the approach of testing identifiability in an abstract setting — without
sufficient scenario context – is flawed, as SBD in use would be strongly embedded in a
task. If one is to take this approach, we recommend taking care to build context.

Instead of testing behavior identifiability, for puppet dancer we compared the Puppet
Master results against other generation methods: remote controlled human operator
and non-interactive random replay of demonstration. This provided a generation com-
parison where no other SBD system exists, and enabled participants to select which
method they prefer to create their results. In this case we saw the human as a best-case
comparison point, although our non-expert-actor experimenter found the open-ended
mimicry task to be very difficult. We found this method to be successful, although for
future work we would like to compare to other automatic generation methods.

Overall throughout the projects, we fundamentally had difficulty determining when
the algorithm failed, when people were simply doing a poor job of demonstrating what
they wanted, or if the limited robot capabilities hindered representation of the desired
behavior. This could be mitigated by, for example, improving participant training or
giving strongly-scripted behaviors (that match the robot) to create instead of keeping
it free-form. While the latter hinders creativity, this can be acceptable if the evaluation
goal is to test the algorithm and not the interaction.

5.3. Analysis Summary
Here we summarize our SBD interaction design and evaluation approach analysis.

5.3.1. SBD Interaction Design

USER ROLE IN SBD INTERACTION. Two people can work in tandem to demon-
strate leader and rector movements, although this hinders author freedom as they
can only control one character at a time. One person can effectively demonstrate
simultaneous leader and reactor motions for authoring, but for some applications
controlling two entities at once can be mentally challenging. There is some
evidence that this can be mitigated by simple training.

AUTHORING METHOD. Provide various means of authoring and shaping a behav-
ior to support differences in peoples’ teaching styles. However, simply enabling
rapid demonstration-test-re-demonstrate prototyping is sufficient to enable people
to explore and create behaviors they are happy with.

5.3.2. SBD Evaluation Design

QUALITATIVE METHOD. Qualitative evaluation is an effective means for inves-
tigating interaction experience design goals (how people engage and use an SBD
interface) when quantitative measures such as task completion time are less
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relevant for the given task.

PRESCRIBING BEHAVIORS. Prescribing behavior types can be an effective way to
have participants create similar results which can be compared. Provide a high
level of detail to avoid confusion and maximize comparability. However, this limits
creativity, and when exploring interaction experience and interface engagement
strategies it may be better to allow free-form interaction instead.

ACTOR INVOLVEMENT. Employing an actor to aid in tandem demonstration can
improve study consistency across participants, lower required participant mental
load, and simplify demonstration when controlling two entities is difficult (e. g., as
with robot follower). However, having an actor restricts participant demonstration
freedom and inhibits creativity.

USE REAL ROBOTS. Robots encourage anthropomorphism and thus fundamen-
tally impact how the SBD generation is perceived. Avoid on-screen animation
simulations and use real robots when possible to maximize validity of results.

INVOLVE PROGRAMMERS. Experienced programmers can still benefit from SBD:
including them in evaluation design can provide insight into how the SBD system
may be integrated into a platform.

GENERATION QUALITY. Metrics need to be developed for assessing SBD genera-
tion quality; in summary, we found testing internal validity (user satisfaction) and
external validity (recognition by others) to be promising directions. We found au-
thor self-assessment to be effective for testing internal validity, but testing against
a similar system (or variants of itself, as with Puppet Dancer) can provide more
generalizable results. When testing external validity with non-authors be careful
to provide sufficient context to creating ecological validity for fair evaluation.

6. FUTURE WORK
Here we present an overall discussion on open questions and directions for future work
for interaction design, SBD algorithms, and evaluation approaches.

6.1. Evaluation Methods
As highlighted through our cross-project analysis, we must develop guidelines and
metrics for evaluating and comparing SBD systems. Part of the problem of evaluation
is that there are many competing angles of evaluation, with all being important for a
particular system. In our work we identified that it will be important to:

— evaluate interfaces and interaction processes which support creativity (usability)
— evaluate the SBD generation results (the algorithm)
— evaluate if a user is a good teacher or a particular demonstration was a good one for

the learning purposes (input validity)

In our work, separating these components was not always trivial as new algorithms,
interfaces, and interaction designs were all created in tandem, but we hope that we
can develop these evaluation directions more fully for future work.

A recurring theme in our own evaluations was the idea of internal and external
validity of a demonstration: approval by the demonstrator (internal) and others (ex-
ternal). For future work we hope to standardize our measurement techniques for
these such that results can be compared across systems more readily. Similarly, we
intend to follow similar techniques as used in Puppet Dancer where generation results
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were compared against random variants and a wizard, to provide a means to compare
projects, as well as to further investigate this evaluation method.

6.2. Beyond Paired Interaction
The current Puppet Master algorithm and interfaces are designed for paired leader-
reactor behaviors only. It should be extended to enable more complex and diverse sce-
narios with multiple people, robots, and consideration of more detail such as people’s
body language. While there is a plethora of work which learns crowd behavior from
examples (e. g., [Lerner et al. 2007]), these primarily focus on collision avoidance or
macro-level crowd movement. The interface design of having multiple entities will face
many of the challenges already discussed: should a demonstrator operate all simulta-
neously or in sequence, should other people be employed, and so forth. Algorithmically,
it may be useful to consider how such groups could be represented as a statistical dis-
tribution, for example, representing a group as a mean (center) and standard deviation
(measure of size and dispersion).

6.3. Evolving Behaviors
Similarly, the current current systems only enable creation of simple behaviors that do
not evolve or change over time; this is why the behavior can be created with just a few
minutes of training data. Future work should investigate how to author higher-level
behavior changes such as a happy robot slowly calming down. The interface design
challenge of enabling people to demonstrate such changes is non-trivial, and will re-
quire a re-consideration of the approach. Algorithmically, one way of implementing
more complex behaviors would be to create a set of Puppet Master behaviors, and then
develop a higher-level behavior manager that monitors interaction and somehow de-
cides (e.g., based on high-level features such as character fatigue) which Puppet Master
behavior should be employed at a given time, or even somehow combines them. Tran-
sitions between behaviors are expected to be smooth as a strength of Puppet Master
is how it can maintain appropriate movement texture in the face of unexpected (or
suddenly-changing) trajectory targets.

6.4. Interaction Process
The culmination of our interaction process development was in the puppet dancer
project, which included mechanisms for real-time feedback and behavior shaping:
adding additional training and using the reinforcement buttons. However, in real inter-
action, feedback from a teacher is more comprehensive than the good / bad mechanism
we provide, more natural than the mode-switching training / generation technique, and
often reciprocal in how the roles play out. Future systems should investigate how to in-
tegrate and enable more natural real-time feedback. One example is to automatically
recognize when a user is trying to give feedback or a new demonstration, thus remov-
ing the need to mode-switch between training and generation. Or, perhaps if feedback
contradicts a recent movement this could be detected and taken as re-enforcement
learning instead of requiring the user to explicitly hit the “bad” button.

Algorithmically speaking, Puppet Master’s current reinforcement learning and inte-
gration of additional training is rudimentary only, enabled for the purposes of testing
the basic interaction concepts. Additional work in this area should address these areas
more appropriately and investigate advanced techniques such as analyzing existing
training and replacing components with updated training (instead of just adding more
training as is currently done).
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6.5. Context of Interaction
One of the goals of the Puppet Master interaction designs has been to simplify inter-
action to enable people to focus on a general behavior they want to create. A downside
of this is that the approaches remove much of the context which would exist and be
important in real-world interactions, for example, a dancing robot would react to a par-
ticular song, or a following robot would react to obstacles, other robots, and the social
situation. The current interface designs do not provide any mechanism for including
context or, if it was there, indicating which components of the context are important.
A simple approach could be to include key elements in the interaction space (e.g., ob-
stacles, or enabling the user to change the song for dancing robot).

Algorithmically, Puppet Master could include additional context elements as addi-
tional features in its best match searching, although there remains a question of bal-
ance between how context and current-behavior features should impact the result. For
example, should context features be weighted heavily to trigger modal-like reactions
but be considered less often (as a low-frequency change) to enable flexibility of real-
time interaction within that context. Another problem is that if there is a great deal
of additional context information, the computational costs of the brute-force Puppet
Master system could be problematic; potential solutions include using approximate
nearest neighbor techniques (since Puppet Master uses Euclidean distance).

6.6. Wider Behavior-Creation Framework
In our work we briefly touched on the question of how Puppet-Master-like SBD may be
useful for programmers. We would like further to explore how SBD will integrate into
a broader behavior-creation system or existing behavior models, for example, when
using SBD to show a robot how to follow a person on a street the robot can have an
existing goal-based algorithm for following and avoiding objects; SBD can focus on
movement texture only.

Similarly, when incorporating professional programmers and a bigger behavior con-
text, we need to explore what practical roles SBD may be able to provide in production,
for example, as an early prototyping tool, or perhaps some Puppet Master parameters
should be exposed to programmers to enable them to tweak a behavior.

6.7. Definition of Style
Throughout our work we focus on the high-frequency, detailed components of motion
as the important style elements. Future work should consider what limitations are
introduced by this definition, and explore other definitions. For example, Laban Mo-
tion Analysis [Newlove and Dalby 2003] is a comprehensive framework for describing
human motion, including subjective elements such as intentionality; could motion be
distilled into these features and those then used to drive Puppet Master?

6.8. Alternate Directions
In contradiction to the overall approach presented in this paper we still believe it is
important to pursue alternate directions. For example, while we aimed for a general-
purpose style algorithm (within the context of texture-based movement style), it may
make sense to special-tailor the approach to narrower scenarios or even a particular
behavior, where context-specific optimizations or assumptions can be introduced. The
same may apply for interaction design: a risk with our free-form approach is making
a general interface which can do many things reasonably well but may not perform as
well as a specific targeted one. Would it make sense to consider one specific interface
for demonstrating a stalker and one for burglar, each with context-specific adaptions?
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Similarly, while we shy away from the stimulus-response approach to defining a
behavior [Wolber 1997] in our work, it may be useful to consider how such an approach
would integrate with our free-form method. For example, given a scenario where one
may want an explicit mechanic (such as with learning concrete rules of a dance), could
Puppet Master be integrated into this with the more relaxed style elements, perhaps
by analyzing demonstrations for stimulus-response and presenting them to the user.

7. CONCLUSION
As robots begin to permeate people’s everyday environments, and people increasingly
find themselves working with robots, it will be important for these people to be able to
direct and teach these robots how they want particular tasks done. In addition to the
clear goal of completing a task, the Style-by-Demonstration (SBD) approach enables
people to teach robots the style of how the task should be done, for example, how a
robot should shake a hand or how it should sneak around a sleeping person.

In this paper we have presented the idea of SBD, detailed three interaction and
interface designs, and gave an overview of a series of studies investigating users’ expe-
riences with SBD. We provided an analysis of the various projects and highlighted the
various challenges and techniques explored, and solutions implemented. In addition,
we presented the Puppet Master algorithm in full detail.

Our results support our primary research hypotheses that: people naturally under-
stand and can use SBD to create interactive robot behaviors, our interfaces are usable
and enable people to demonstrate such behaviors, and the underlying Puppet Mas-
ter algorithm is effective in generating satisfactory learning and mimicry results that
people can understand.
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