

Surround-See: Enabling Peripheral Vision on
Smartphones during Active Use

Xing-Dong Yang
2
, Khalad Hasan

1
, Neil Bruce

1
, Pourang Irani

1

1
University of Manioba,

Winnipeg, MB,Canada, R3T 2N2

{khalad, bruce, irani}@cs.umanitoba.ca

2
University of Alberta,

Edmonton, AB, Canada, T6G 2E8

xingdong@cs.ualberta.ca

ABSTRACT

Mobile devices are endowed with significant sensing

capabilities. However, their ability to ‘see’ their

surroundings, during active use, is limited. We present

Surround-See, a self-contained smartphone equipped with

an omni-directional camera that enables peripheral vision

around the device to augment daily mobile tasks. Surround-

See provides mobile devices with a field-of-view collinear

to the device screen. This capability facilitates novel mobile

tasks such as, pointing at objects in the environment to

interact with content, operating the mobile device at a

physical distance and allowing the device to detect user

activity, even when the user is not holding it. We describe

Surround-See’s architecture, and demonstrate applications

that exploit peripheral ‘seeing’ capabilities during active

use of a mobile device. Users confirm the value of

embedding peripheral vision capabilities on mobile devices

and offer insights for novel usage methods.

Author Keywords

Peripheral mobile vision, mobile ‘seeing’, mobile surround

vision.

ACM Classification Keywords

H5.2 [Information interfaces and presentation]: User

Interfaces. - Graphical user interfaces.

INTRODUCTION

Smartphones are equipped with powerful sensors, such as

accelerometers, GPS and cameras that facilitate a variety of

daily tasks. On commercial and research platforms, such

sensors have been utilized in numerous contexts such as for

distinguishing user activity [26], for sensing on, behind and

around a mobile device [5, 41], for context awareness [46]

and for interactive document exploration [13]. The

integration of an ever expanding suite of embedded sensors

is a key driver in making mobile devices smarter [26].

However, current capabilities are mostly focused on

sensing. We distinguish ‘sensing’ from ‘seeing’ in that the

latter facilitates some higher level of recognition or

interpretation of objects, people and places in the mobile

device’s surroundings. What new applications might be

possible if mobile devices had advanced seeing abilities?

We explore the above theme of empowering mobile devices

with enhanced peripheral vision capabilities. Our prototype,

Surround-See, consists of a smartphone fitted with an

omnidirectional lens that gives the device peripheral vision,

of its surroundings (Figure 1). During active use, Surround-

See effectively extends the smartphone’s limited field-of-

sight provided by its front- and back-facing cameras. With

an ability to ‘see’ the rich context of the region around the

device, smartphones can trigger environment specific

reminders and can respond to peripheral interactions, such

as pointing at a smart-appliance for efficient access to its

control panel on the mobile device.

Figure 1 - (a) Surround-See enables peripheral ‘sight’ on

smartphones by means of an omni-directional mirror attached

to the mobile device’s front facing camera. (b) Surround-See

image shows the corresponding scene. (c) The unwrapped

image can be used for recognizing the device’s peripheral

environment (after removing the user’s body – shaded in red)

The scenario below captures some of the rich applications

Surround-See enables. John, a professional is often using

his mobile device. In the morning, he reads the news on

Surround-See while his car engine warms-up. Recognizing

this, Surround-See triggers a reminder on the danger of

eyes-busy mobile use and driving. Later, as he settles into

his office while checking email on Surround-See, he points

at the speakers in the office, which Surround-See

recognizes and provides a control panel to increase the

speakers’ volume. Laura, a colleague enters his office and

asks about his weekend. John picks up his smartphone to

show Laura pictures on the phone which Surround-See

reorients as the device is positioned closer to Laura. Finally,

Laura asks John for directions to the restaurant, which John

draws using a stylus and his finger to erase, both of which

are recognized as distinct by Surround-See. Shortly after

doing some work he decides to step out for only a few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST’13, October 8–11, 2013, St. Andrews, United Kingdom.

Copyright © 2013 ACM 978-1-4503-2268-3/13/10...$15.00.

mailto:irani%7d@cs.umanitoba.ca
mailto:permissions@acm.org

minutes. Surround-See recognizes this activity and asks

whether he wishes to take his device. As he is uninterested,

he declines by gesturing to the device remotely and

Surround See sets the mobile into voicemail mode.

The above scenario captures the various possibilities made

available when augmenting a mobile device with peripheral

vision. During active use Surround-See can (a) trigger

reminders based on an environment it recognizes, (b) it can

perceive specific objects in the mobile device’s periphery

(i.e. speakers), which the user can control by (c) pointing at

them. In idle mode, such as when resting on a table,

Surround-See can also identify certain activities in the

vicinity of the device, such as (d) when the user walks away

from it or (e) if the user is remotely waving at it to alter its

state, i.e. setting it to voicemail mode.

Our contributions include: (a) the concept of enabling

mobile devices to ‘see’ their surroundings; (b) a

demonstration of its value through an implementation of a

self-contained proof-of-concept prototype, Surround-See;

and (c) a set of applications that demonstrate Surround-

See’s unique capabilities over current smartphone usages.

RELATED WORK

Mobile ‘sensing’

Researchers have investigated the possibility of embedding

sensors on mobile devices to facilitate tasks in the

background. An extensive review on mobile sensing is

available in [36]. We briefly discuss state and context

awareness enabled by mobile sensors. Hinckley et al.’s [25]

seminal work on sensing techniques for mobile interaction

opened a new wave of interfaces that exploit a mobile

device’s state, such as its orientation. Such capabilities,

among others, have enabled a significant suite of

interactions including the ability to control virtual objects

on a mobile screen [47], for automatically reorienting

images [25], to support navigation in applications [15], or

to facilitate different gesture based interactions [28]. Many

of the sensors proposed in these earlier systems are now

common on commercial mobile devices, and have been

used to create a wide ecosystem of applications that depend

on sensing a device’s state.

Researchers have also demonstrated methods to sense a

mobile device’s environment to alter the state of the device.

Schmidt et al. [46] augmented mobile devices with tilt, light

and heat sensors to identify if the device is resting on a

table, is in a pocket, or is being used outside. Such sensor-

based information can be used for automatically changing

the device state such as lowering its volume. Context

information is also possible with geo-locating sensors that

incorporate information about the user’s location to provide

more relevant and targeted services [15, 34].

Beyond sensing a device state or context, researchers have

introduced novel sensor-based interaction techniques to

facilitate input outside the device’s physical space, in its

periphery. Single finger interactions around a device are

possible with SideSight [5] and HoverFlow [35] which use

IR distance sensors to capture gesture-based interactions

above and to the sides of the device. Similarly, Abracadabra

[21] facilitates input by activating states of a magnetic

sensor and maps these to menu and cursor control. This

results in occlusion-free input on small devices such as

watches. For the most part, sensor-based interaction

metaphors are confined to a specific suite of tasks.

Camera-based mobile interaction

On mobile devices, vision-based systems have advanced to

the point of complementing basic sensing mechanisms in

real-time. Self-contained mobile-based augmented reality

(AR) applications have flourished [50]. Examples include

Wagner et al.’s [50] marker-based AR system, Paelke et

al.’s [41] hand-held AR soccer game and Hansen et al.’s

[20] camera-equipped mobile device to establish a spatial

relationship between a virtual environment and the physical

space to form a mixed reality space.

Camera based input also been shown to work for 2D [51]

and 3D navigation [19], for tracking the user’s face for

zooming/scrolling documents [48], for detecting where

users are standing and reorienting the screen accordingly as

the device is placed closer to them [8, 9] or for generating

input events (e.g., click, double-click) in real-time [31].

In general, most camera-based interactions require that

interactive features be used in exclusion of other tasks, as

the user has to explicitly point the front- or back-facing

camera at the object of interest. Ideally, vision-based

methods on mobiles can include the devices’ periphery

which contains rich context information. This can open new

possibilities for integrating users’ interactions naturally into

the ecosystem of daily mobile applications facilitating a

broader range of implicit interactions that build on Buxton’s

vision for foreground/background interaction [6].

Peripheral vision

Researchers have explored methods for extending a

camera’s limited field-of-view without significantly

changing its form factor. For example, omni-directional

cameras have been applied to robotics problems to give

robots ‘sight’ of their periphery. Applications include

estimating a robot’s motion [16], revealing a robot’s

location [10], recognizing its surroundings [45], and

navigating around obstacles [33]. Very little work has

considered the applications of embedding peripheral vision

on smartphones for advanced interactions.

Walking User Interfaces

There is a growing trend toward building interfaces to

support walking user interfaces (WUIs) [17], including

methods to improve text-entry accuracy to user safety.

Surround-See, is particularly of value for WUIs, as it allows

users to perform additional actions while using the device.

HARDWARE DESIGN OPTIONS

To enable a smartphone with peripheral vision capabilities

during active use led us to explore different hardware

options. We frame our exploration in terms of the level of

‘sight’ enabled by various sensing technologies, from

coarse to fine. Coarse ‘seeing’ can detect the presence of an

object, with limited ability to detect its motion. Finer

‘seeing’ involves recognizing different objects and the

ability to detect changes in the smartphone’s surroundings.

Sensor Options

We first considered sensors that can fit on current

smartphones. A second requirement was to implement and

explore use-cases with a self-contained prototype.

Proximity sensor

Proximity sensors (capacitive, infra-red, or ultrasound)

detect the presence and distance of objects away from it

(giving them coarse ‘sight’). Multiple proximity sensors in

a sensor array can detect the motion of an object in a 2D or

3D space [5]. However, such sensors cannot distinguish

between different objects or detect the changes in their

surrounding environment. The placement of proximity

sensors is also challenged by how users hold the device

without occluding them.

Magnetic Sensor

Magnetic sensors detect the presence and angular location

of a magnet, such as on a ring, in an emitted field (giving

them coarse ‘sight’). A magnetic sensor array can detect the

2D or near surface 3D motion of an object [38], but like

proximity sensors, they do not distinguish specific objects

or content changes in the environment.

Image Sensor

Image sensors (CCD or CMOS) are standard on

smartphones. They sense an optical image, which can be

processed using computer vision techniques to detect the

presence of an object in the image, the motion of an object

in either 2D or 3D (with a 3D depth sensing camera), or

recognize different objects in the surrounding environment.

Sensing Range

Sensors’ limited range can be alleviated by forming an

array of multiple sensors (e.g. proximity sensor array or

camera array). The increased field-of-operation however,

comes with a size tradeoff which makes such solutions

impractical for mobile devices. Other more practical

methods for enlarging the field-of-view consists of using a

wide-angle or omni-directional lens, which can capture a

good portion of the 360° around a device’s periphery.

Sensor Installation and Form Factor Implications

Proximity or magnetic sensor arrays can be placed above or

under an open surface on a smartphone [5, 38]. This allows

them to sense the entire space around the smartphone

without significantly impacting the device’s form factor.

However, during active use, these become unusable as the

user’s hand occludes these sensors.

While the built-in smartphone cameras can be used for the

purpose of ‘seeing’, during active use, the front and back

cameras face the sky and ground, respectively. The narrow

field-of-view of such built-in cameras (43˚-56˚ on the high-

definition smartphone camera we used), does not allow

these to capture the smartphone’s surrounding space

(Figure 2). This limitation can be addressed by mounting a

wide-angle or omni-directional lens on the built-in cameras.

Figure 2 – (a) the environment where Figure 1b was taken

from; (b)-(c) images taken from the phone’s back and front

facing cameras respectively.

SURROUND SEE HARDWARE

To explore the interaction space for peripheral vision on a

smartphone we create a self-contained proof-of-concept

system, Surround-See. The prototype is a HTC Butterfly

smartphone with an omni-directional lens from Kogeto [1]

mounted on its front-facing camera (Figure 1a). The front

was chosen as placing the lens on the back may make the

phone unstable at rest, thus precluding a significant number

of interactions.

The smartphone runs the Android operating system on a

Quad-core 1.5 GHz Krait CPU with 2GB of RAM. The

front camera has a maximum resolution of 2MP. For real-

time image processing, we down-sampled the resolution to

960×720. The omni-directional lens has a 360˚ and 56˚

field-of-view in the horizontal and vertical planes,

respectively. The final prototype captures a real time RGB

image of the 360˚ surrounding view of the device.

Figure1b-c shows an omni-directional image captured by

the prototype, and its unwrapped counterpart.

SURROUND-SEE CAPABILITIES

We implemented three primary capabilities with Surround-

See: 1) to recognize the device’s peripheral environment; 2)

to recognize objects around the device; and 3) to recognize

user activities in vicinity to the device. We implemented

these features using OpenCV4Android, a JAVA wrapper

that allows the OpenCV library to be used on Android

platforms. It is worth mentioning that there are many

choices for computer vision algorithms for implementing

Surround-See features. We used and present those that have

shown effective results in the literature and that can be

implemented on a self-contained mobile device prototype.

Recognizing the Device’s Peripheral Environment

Recognizing the users’ peripheral environment was

implemented using Local Binary Patterns (LBP) [40] and a

machine learning classifier [7]. Before the recognition

process starts, we pre-processed the raw omni-directional

image by un-wrapping it to a panoramic image using the

method described in [11]. While not technically necessary,

unwrapping the image makes the rest of the processing

easier. Once unwrapped, the bottom of the panoramic

image was cropped so that it did not contain the body of the

user (about 1/4 of the panoramic image). The resulting

image from this pre-process contains only a wide view of

Surround-See’s surrounding environment (Figure 1).

We then used LBP to describe the image using a unique

feature vector. LBP detects microstructures inside an image

(e.g. lines, edges). The histogram of the microstructures

forms a feature vector of the image. LBP is orientation and

luminance invariant, making it robust in describing images

taken from different angles and different lighting

conditions. The algorithm was originally proposed to

classify textures (e.g. cloth). It has, however, been shown to

be effective in detecting landmarks too [23]. The feature

vector was used to train a machine learning classifier or to

recognize a peripheral environment. We collected 20

samples for each of the 5 peripheral environments we

recognized (lab, office, desk, hallway, and car). We took

ten images for each, the morning and afternoon, with the

phone in active use position. To train the classifier, we used

Chang and Lin’s LIBSVM library using the Support Vector

Machine (SVM) [7]. We used a RBF Kernel with

parameters that gave the highest 5-fold cross-validation

scores (e.g. 96%). The trained model was loaded when the

system starts. For every 60 seconds, the system sampled an

image of the peripheral environment for recognition. The

recognition process runs in a background thread, causing no

interference to the phone’s normal activities.

In contrast to a phone’s built-in GPS, Surround-See can

detect subtle changes in its location, e.g. movement inside

or outside of a room or at a specific location in a room.

When combined with GPS data, Surround-See can detect

contextual changes happening within the GPS-sensed

location, e.g. a crowed street vs. an empty street.

Recognizing Peripheral Items

Our implementation focuses on two general types of

peripheral items: surrounding items and the user’s hand.

Recognizing an Object in the Smartphone’s Environment

An object in the device’s environment is recognized using

feature point matching using the ORB algorithm [44]. ORB

searches each input frame for a desired object using a

reference image. The reference image contains only the

object to be searched for (see Figure 3a-b). When the

system starts, ORB extracts a set of feature points for the

reference image. A feature vector (or descriptor) was then

generated for every feature point to uniquely describe the

characteristics of that feature point. ORB was then used to

search for similar feature points in the input frames. If an

object in the input frame contained at least a certain number

of matching points (e.g. 1/8 of the total matching set), it

was recognized as the desired object. We used OpenCV’s

FeatureDetector class for feature point detection, and

DescriptorMatcher class feature point matching.

ORB is color invariant. It also performs well with objects at

different scales. However, we found it to be error prone to

changes of the device’s orientation. It could fail to identify

the object if it appears at a different orientation in the input

frame than that in the reference image. This would require

the user to hold the device at the same orientation as when

the reference image was sampled, which is impractical. We

resolved this using the device’s built-in compass. When the

system starts, Surround-See loads a list of reference images

and their corresponding phone orientations when the

images were taken. These initial orientations were used to

rotate the input frames during the recognition process. In

our implementation, we used one sample image for each

desired object while multiple samples per object at different

orientations is also possible. Our process however does not

incur any performance overhead.

Figure 3 - Reference images: (a) speaker and (b) monitor; (c)

rotated input frame for more precise object detection; (d)

recognized objects (the blue and green lines indicate the

locations of the recognized objects – speaker and monitor).

Recognizing the User’s Hand

Explicit mid-air user input is possible, in Surround-See’s

periphery. Surround-See detects the user’s hand using a

skin color model in YCbCr color space [30, 42]. A skin

color pixel was detected if its Cr and Cb values fall into the

ranges [140, 166] and [135, 180] respectively. The resulting

input frame formed a black&white binary image with its

white region indicating the skin color pixels Figure 4 top).

Figure 4– Top: binary image of skin-color pixels; Bottom: (a-

b) track fingertip (red dot); (c) detect pinch (red ellipse).

The user’s hand was detected by looking for blobs that are

larger than a threshold size. We found this method to be

effective but also error prone when the background contains

colors close to that of the user’s skin. We thus dynamically

filtered out the background noise by removing the blobs

that appeared in the same location for a certain fixed

number of frames (e.g. 30 in our application). Finally, the

hand contour was obtained by approximating a polygon of

the detected hand blob using OpenCV’s approxPolyDP

function (Figure 4 bottom).

Tracking fingertips: Upon extracting the user’s hand

contour, the user’s fingertips were detected by searching

through the contour points, and identifying those with a

curvature less than a threshold value (e.g. 50˚) [3] (Figure4

a-b) In an omni-directional image, the position of the

detected fingertip indicates the position of the real finger

around the camera (Figure 5). Surround-See can also detect

the finger’s up-and-down (vertical) motion. This is

achieved by calculating the distance from the detected

fingertip to the center of the omni-directional image, where

an increase in the distance indicates that the finger is

moving upward, and a decrease means the opposite.

Figure 5- tracking finger position in the device’s periphery.

Recognizing hand postures: A hand posture is recognized

by counting the number of detected fingertips. This method

is simple and fast. It allows 6 different hand postures in

total – fist and 1 to 5 fingers. Other methods are also

possible in cases where more hand postures are needed [12,

32, 49, 52]. In our implementation, the ‘1’ posture, with the

index finger is reserved for pointing.

Detecting ‘pinch’-ing: Pinch is detected using Wilson’s

method [53], where a pinch is recognized when there is a

connected blob inside a hand contour (Figure 4c) Pinch can

be used as a ‘mouse click’ to confirm an action or to trigger

a command. Once a pinch is detected, the hand posture

recognition method is disabled until the pinch is released.

Detecting User Activities in the Periphery

We implemented three different peripheral activity

detection capabilities: whether the user is moving the

device away from them, whether the user is stepping away

from the device and remotely gesturing at the device.

Proximity to User

During active use, Surround-See uses the user’s upper body

as a reference point to determine its proximity to the user.

We demarcated a rectangular region of interest containing

only the user’s body to detect the smartphone’s

perpendicular motion relative to the user (Figure 6 left).

Motion detection was implemented using optical flow [14],

where the spreading of the motion vectors indicated that

Surround-See was being placed closer (Figure 6b) to the

user and the gathering of the motion vectors indicated that

Surround-See was being moved away from the user (Figure

6a). We found this method reliable especially in

differentiating between the perpendicular motion and the

other motions such as moving left or right. Unlike

previously proposed methods (e.g. [4]), Surround-See is

self-contained. It does not need overhead cameras or

require users to wear sensors on their body. This is

extremely important for mobility.

Figure 6 – Left: ROI contains user’s body; Right: (a)-(b)

optical flow vectors showing the phone is moving away and

closer respectively.

It is worth noting that sensing user proximity cannot occur

by simply using the smartphone’s built-in sensors (e.g.

accelerometer or built-in cameras). For example, the

accelerometer can tell the direction in which the

smartphone accelerates but cannot tell whether or not the

user is moving with the smartphone. Similarly, the

smartphone’s built-in front or back camera may detect its

motion but cannot tell whether or not the user is moving at

the same time, e.g. walking when holding the phone, as the

user is mostly outside the view of these cameras.

Detecting User Activity within a Region of Interest

In idle mode, i.e. when resting on a horizontal surface,

Surround-See can detect the user’s activity within a user-

defined region of interest (ROI). Surround-See can

dynamically track the user-defined ROI using the same

method described in Figure 3. Once defined, the user’s

activities within the ROI were detected using optical flow.

In our current implementation, Surround-See detects four

user activities, including the user’s movement in the

horizontal and in the perpendicular directions (Figure 7).

Additional activities, such as rapid or groups movements

can be detected using sophisticated methods (e.g. [39]).

Figure 7 - ROI at the door (a); user moving from left to right

(b) and right to left (c); user moving away (d) and closer (e).

Remote Gesturing

In idle mode, Surround-See also allows hand gestures to be

carried out when the user is at a short distance away from

the phone. This is convenient for situations when the phone

is left behind on a desk and the user does not wish to walk

up to grab it to invoke a simple command (e.g. turn on the

voice mail). Remote gesturing assumes the phone is sitting

on a stable platform such as a table and that the view is

uncluttered. This allows us to use background subtraction to

remove any skin-color noise in the background. This is

particularly helpful as a hand blob will appear much smaller

in the camera view when the user is not holding the phone,

making the blob-size based noise removal error prone.

Surround-See uses a real-time adaptive background

subtraction based on a Gaussian Mixture Model [29]

(implemented in the BackgroundSubtractorMOG class in

OpenCV). The algorithm updates the background

dynamically such that if a moving object in the foreground

stalls for several frames, it will be classified as a part of the

background. This creates an effective mechanism for

determining the start and end of a hand gesture. For

example, when standing still, the user is classified as a part

of the background. When the user starts to wave his/her

hand, the moving part of the user’s body becomes the

foreground. This indicates the start of a gesture After the

user stops moving the hand, Surround-See observes no

moving object and gradually classifies the user’s body as

background. If the user does not move the hand again, s/he

will eventually be classified as the background in several

frames. This indicates the end of the gesture.

To track the user’s hand trajectory, Surround-See finds the

user’s hand in the foreground using the same skin-color

model described earlier A hand trajectory is composed of

the temporal and spatial displacement of the center of the

detected hand blob. In our current implementation,

Surround-See uses a simple gesture recognition algorithm,

which identifies hand gestures based on the hand’s moving

direction, e.g. moving left, moving right, or waving (move

left then right or vice versa). More sophisticated algorithms

would increase the remote gesture vocabulary set but could

also demand higher processing power [37, 54].

SURROUND-SEE INTERACTIONS

We have implemented a number of interaction techniques

to demonstrate several key Surround-See features. Each

technique serves as an example of one or more of Surround-

See’s capabilities. Many of the applications are novel while

a few others show how previously proposed techniques can

be implemented in a mobile and self-contained prototype.

Pen vs. Touch Input

Capacitive stylus is a valuable addition to the user’s finger

for handwriting or drawing on smartphones and tablets.

However, smartphones’ touchscreens cannot distinguish a

user’s touch from that of a capacitive stylus. This problem

can easily be solved with Surround-See as it can recognize

objects in the environment. Surround-See can easily

distinguish the stylus from the finger when interacting with

the touchscreen. We implemented a simple drawing

application to demonstrate this unique capability. Users can

use a stylus to draw on the touchscreen and use the finger to

erase the drawing (Figure 8a). Tracking the pen was

implemented using the color model similar to the one used

for detecting the user’s hand.

Off-screen Pointing

Accessing off-screen objects is often considered a tedious

and time consuming task due to the repeated invocation of

panning or scrolling operations [27]. Recent research has

shown that such a task can be made more efficient by

directly pointing in mid-air at the location of the object in

the around-device space [22]. Limited work exists on

identifying the most appropriate sensing methods to

facilitate around-device pointing. We implemented a

restaurant search application to demonstrate Surround-See

off-screen pointing potential (Tracking User Finger). When

a restaurant of interest is located outside the map view,

users can acquire information about it by directly pointing

at its off-screen location indicated by an arrow shown on

the screen (Figure 8b). We developed two selection

mechanisms, dwell and back-tap (tapping on the back of the

phone, sensed by the built-in accelerometers). The user can

then select the restaurant to trigger an action, e.g. to retrieve

a discount coupon. The user can toggle between off-screen

objects in the general direction pointed at by the user by

moving the finger up or down vertically (another

dimension). In comparison to techniques using infrared

proximity sensors [5], Surround-See is capable of tracking

continuous finger movement at the corners of the

smartphone, which is difficult for an array of range

sensors. Furthermore, unlike sensors placed on the side to

achieve this task [5], Surround-See’s range is not occluded

by the user’s grip.

Remote Operation

Current smartphones can only be used when the user is

directly interacting and in contact with the phone (e.g. by

touching the phone’s touchscreen). It is, however, quite

often that the user may want to operate the phone, even

briefly, from a short distance. For example, in a meeting

with clients, the user may leave the phone on the meeting

table when giving a presentation at the podium. If the phone

rings during the presentation, the user may want to be able

to mute the phone without having to leave the podium.

Surround-See allows the phone to be operated remotely

(Remote Gesturing). The user can simply wave at the phone

to mute it. This operation cannot be carried out with

smartphones’ existing front or back camera when the phone

is in a natural idle position. In our implementation, we map

the user’s hand gestures to common functions, e.g. wave

right to mute the phone, wave right-then-left to unmute it,

and wave left to turn on the voice mail (Figure 8c).

Controlling Remote Objects (Physical Shortcut)

Objects recognized in Surround-See’s periphery can be

used to carry out contextual actions. We created a remote

control application, which uses physical objects (e.g.

speaker or monitor) as a handler to trigger their

corresponding controller on the user’s smartphone. Users

can point at a speaker to open a volume controller window

on Surround-See to remotely adjust the speaker’s volume

(Figure 8d) (Tracking Finger and Recognizing

Environmental Objects). Users can also point at a monitor

to remotely turn it on or off. Here the surrounding objects

serve as ‘physical shortcuts’ for launching applications on

Surround-See. Users can also create paper stickers as

disposable shortcuts [55]. The mapping between the

commands and the physical objects relies on the semantics

of the physical objects (intrinsic mapping [55]). This makes

learning shortcuts easy, which is often time-consuming

especially when there is a large number of them [18].

Posture for Speed-dialing

Hand postures can be used as an easy and intuitive method

to rapidly trigger a command on the smartphone. In our

implementation, we used hand postures to trigger speed-

dialing on Surround-See (Recognizing hand postures)

(Figure 8e). We mapped 5 phone numbers to the 5 hand

postures (from 1 to 5). To avoid unintentionally making

calls, we allow the users to enable or disable Posture

Speed-dial based on their needs. Unlike the other

applications we describe here, hand posture is not exclusive

to Surround-See, and can be carried out using the phone’s

front or back facing cameras. Surround-See provides an

alternative, allowing postures to be used when the hand is

already in the peripheral space.

Location-based Messaging

When in active use, Surround-See can perform contextual

actions based on its location. We implemented a location-

based messaging application, which displays a reminder or

warning message on the screen (Recognizing Peripheral

Environment). For example, when the application first

recognizes that Surround-See is by the user’s office desk, it

asks whether the user wishes to “Sync your phone?” as a

reminder. When it first recognizes the phone is being used

in a shared space, such as a lab, the application asks

whether to “Mute your phone?”. Finally, it warns the user

to stop using the phone by showing “Don’t use your phone

when driving” on the screen when it recognizes the user is

behind the wheel (Figure 8f). Such reminders can be

included for safe utilization of the phone while walking and

texting, for example [24]. Note that location detection based

on ‘sight’ extends previous approaches using a proximity

sensor [5], i.e. the system can distinguish car-A from car-B.

Proximity-based Screen Rotation

Showing others the content of the screen of a smartphone

can sometimes be cumbersome because the user needs to

reorient the phone to fit the viewer’s field-of-view. The

existing approach reorients the content when the phone is

tilted. This method is error prone as it does not distinguish

between tilt towards and away from the viewer. It is,

however, natural for the user to stretch their arm to place

the phone closer to the viewer so that the content on the

screen can be clearly visible. Based on this observation, we

created an image browsing application, which can

automatically rotate the orientation of the image by 180˚

when it detects the phone is being moved away from the

user (Proximity to User) (Figure 8g). It can also rotate the

image back to its initial orientation when it detects the

phone is being moved back to the user.

Notify to Take the Phone

Occasionally, users may forget to take their cell phone

when leaving their home or office. We created a

notification application to notify the user when this

happens. When Surround-See is idle, e.g. sits on a desk

(Recognize Peripheral Environment), the application is on.

It monitors users’ activities around the door of the user’s

office (Detecting User Activity within a User-defined

Region of Interest), by detecting the motion of the moving

object within the door region. Upon detecting that the user

is moving out of the door (implemented using the same

optical flow algorithm as described in Detecting Proximity

to User), it plays a voice message “Did you forget your

phone?” to notify the user (Figure 8h). The user may

choose to go back to the desk to take the phone or make a

hand gesture to turn on the voice mail (Remote Gesture).

ELICITING USER APPROVAL

We conducted a user survey as an initial step towards

assessing users’ approval of Surround-See as a concept that

can co-exist with common smartphone usage. Our goal was

to examine the value proposition of Surround-See’s

capabilities, our interaction techniques and users’ privacy

Figure 8 – (a) Left: use pen to draw; Right: use finger to erase; (b) Picking restaurant stored in the off-screen space; (c) Remote

gesture to turn on voice mail; (d) Point at a speaker to open a volume controller window; (e) Hand posture for speed-dial; (f) Show

a warning message when the user uses the phone behind the wheel; (g) Auto screen rotation based on the proximity to user; (h)

Remind the user to take the phone when detects that the user is moving out of the door.

concerns. We adapted the feedback method introduced in

[43] and participants made judgments by watching a video

showing the Surround-See prototype (same video as the one

included in this submission).

Participants

Seventeen computer science students (15 male, ages

between 21 and 35) participated in our survey. All of them

were smartphone users. Seven participants have used a

smartphone for more than 3 years.

Procedure

The participants were shown a video presenting the

prototype and all of Surround-See’s capabilities. They were

also shown the interaction techniques one at a time. For

each interaction technique, they filled out a 7-point Likert

scale questionnaire (1: strongly dislike and 7: strongly like),

and gave reasons to justify their answers. After ranking the

interaction techniques, the participants were asked to rank

overall how useful they think the techniques are. Finally,

they ranked their level of comfort about smartphones that

had ‘seeing’ abilities and held by others, such as family,

friends or strangers.

Overall, participants welcomed the idea of making the

smartphone more ‘sight’ enabled during active use. They

mostly like the intelligent features (Notify to Take the

Phone and Location-based Messaging) that could help them

with common daily slips such as forgetting to take the

phone, to mute it in a classroom and features to support

remote operations (Controlling Remote Objects and Remote

Operation). These 4 features were ranked amongst the

highest with an average score higher than 6. Three

participants commented that they always forgot to mute

their phone and another commented that Location-based

Messaging is a useful feature because “it could take control,

when you forget to do something”. People like the

convenient features that allow them to control objects at a

distance and indicated that these should become standard on

smartphones. A participant commented that Remote

Operation is “good because most of the time I leave the

phone away and need to return briefly only to set it”. User

reports suggest that even when users are not holding their

smartphones they still wish to maintain a link with their

devices, even at a distance.

Three features (Proximity-based Screen Rotation, Posture

for Speed-dialing, and Pen vs. Touch Input) received

weaker approval scores between 5 and 6. Most participants

agreed that these are handy features to have on top of the

phone’s existing functions but they also felt these features

are limited to a small set of applications. For example, one

participant said Pen vs. Touch Input is “useful for drawing

apps on my phone. I’d like to see how else it could be used

though”. Finally, participants gave a neutral score (4.7, s.e.

0.37) to Off-screen Pointing. Most participants did not see

high value for this feature in their daily smartphone usage.

Overall, participants did not complain about privacy issues

when other people use Surround-See. They felt most

comfortable when Surround-See is used by people they

know. The user’s level of comfort decreases when

Surround-See is used by people they know less. They feel

neutral (4.3, s.e. 0.24; with 7 being strongly comfortable)

when Surround-See is used by a stranger but also expressed

a demand for feedback to show that Surround-See is turned

on (5.3, s.e. 0.52) (Figure 9). Interestingly, participants

wished to also receive feedback if family members had

devices with peripheral vision (4.18, s.e. 0.5). This needs to

be considered in the design of such devices.

Figure 9 – Left: average user rating for Surround-See’s

interaction techniques; Right: average user ratings for

potential privacy concerns.

DISCUSSION AND LIMITATIONS

In this section, we discuss the lessons we learned and

insights we gained from our experience. We also present

limitations of our approach.

Omni-directional lens: the omni-directional lens we used

provides a 360˚ view of the peripheral space but presents

pixel loss. First, the image from an omni-directional lens is

distorted, especially towards the center of the concentric

circles. During our implementation, we did not observe

major issues caused by this distortion. However, the degree

of distortion may vary from lens to lens. Calibration may be

considered (e.g. checkerboard calibration) when

implementing with different lenses. Second, the object seen

from the omni-directional lens is smaller than what can be

seen with a normal lens. Smaller objects have fewer pixels

to describe their characteristics. This has made object

recognition harder. These issues might be resolved by using

wider angle omni-directional lenses.

Field-of-view: we believe Surround-See’s capabilities can

be further extended if its field-of-view went beyond the

phone’s peripheral space, ideally covering the entire 360˚

spherical space around the phone. With our current

prototype, peripheral objects may not completely fall into

the camera’s view, an issue that can be addressed with

different omni-directional mirror styles and capabilities.

A wider field-of-view allows the system to gain a better

‘picture’ of its surrounding environment. For example,

when the phone is in active use, the user’s face is mostly

invisible. A complementary top view may allow Surround-

See to run face detection on the missing pixels and check if

it is the authorized user who is using the phone. This can

also allow the users to use the original function of the front

facing camera, which we had to sacrifice in our current

prototype. Equally important is the wide-angle view from

the back camera. It complements what is seen from the

front camera, and completes the knowledge of the phone’s

surrounding space. With more advanced image sensing

technologies, we may see true 360˚ cameras such as [2] that

could be mounted on mobile devices.

Depth sensing: Surround-See can also benefit from depth

sensing. With knowledge about peripheral objects’ distance,

Surround-See can alert the user about incoming people or

traffic not only in the front [24] but also from the side

during eyes-busy interaction. A stereo omni-directional

image may be obtained by using 2 sets of cameras and an

omni-directional lens. This setup is mainly used on larger

platforms, e.g. robotics. Further work is needed to explore

this possibility.

User recognition: user recognition could be a useful

addition to Surround-See capabilities. Recognizing who is

using the phone can be helpful for increasing its security.

Knowing who is in the periphery also allows richer

interactions to be carried out, e.g. multi-user input. Future

work will explore different ways to recognize users. It is

worth noting that beyond a certain distance from the phone,

complex pattern recognition tasks are challenging due to

inadequate pixel resolution. The set of interactions possible

will only increase with improved technology.

Computer vision: the performance of Surround-See relies

on several factors, including the mobile devices’ computing

power, the quality of the camera (including lens), and the

choice of computer vision algorithms. Given that

smartphone cameras don’t typically offer nearly the sensor

sizes that appear in more traditional vision applications, and

also have a small fixed aperture, one would expect that the

robustness of most algorithms will suffer somewhat. On the

other hand, the limitations of processing capabilities of

mobile devices also places limits on the set of vision

algorithms that can be used in the proposed applications.

However, these issues will become less significant with

advances in mobile imaging and processing capabilities.

Battery life: mobile devices’ battery life is a concern in our

implementation as batteries drain quickly when the camera

is active. This issue can also be less problematic with newer

ultra-low-power image sensing chips and improvements in

battery technology.

Form factor: The form factor of the current prototype can

be improved. The ‘useful’ lens in our off-the-shelf sensor is

far smaller than its casing, which can be removed to better

integrate the lens in a future device. The lens can be further

engineered to hide inside the smartphone when the front or

back facing cameras are needed for other tasks.

System evaluation: Surround-See warrants careful

investigation of its interaction and recognition techniques.

This will be helpful for understanding its practical usability

across different environments and scenarios.

CONCLUSION

We introduced the concept of enabling mobile devices to

‘see’ their surroundings during active use. We created a

proof-of-concept system, Surround-See, by mounting an

omni-directional lens on the device’s front facing camera.

We explored Surround-See’s capabilities, and implemented

a number of interaction techniques to demonstrate its

unique features. In an informal setting, users welcomed the

idea of having smartphones with advanced ‘seeing’

abilities. Future work will focus on increasing Surround-

See’s field-of-view to its entire surroundings and enabling

3D depth sensing. These will include exploring hardware

options and software applications that integrate seamlessly

with daily mobile tasks.

REFERENCES

1. Kogeto http://www.kogeto.com/say-hello-to-dot

2. Ricoh's 360-degree camera http://www.ricoh.com/

3. Argyros, A. A. & Lourakis, M. I. A. Vision-Based

Interpretation of Hand Gestures for Remote Control of a

Computer Mouse. ECCV'06, 40-51.

4. Ballendat, T., Marquardt, N. &Greenberg, S. Proxemic

Interaction: Designing for a Proximity and Orientation-

Aware Environment. ITS'10. 10 pages.

5. Butler, A., Izadi, S. & Hodges, S. SideSight: multi-touch

interaction around small devices. UIST’08 201-204.

6. Buxton, W. Chunking & Phrasing and the Design of

Human-Computer Dialogues. IFIP'86. 475-480.

7. LIBSVM--A Library for Support Vector Machines.

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

8. Cheng, L.-P., Hsiao, F.-I., Liu, Y.-T. & Chen, M. Y.

iRotate: automatic screen rotation based on face

orientation. CHI’12. 2203-2210.

9. Dearman, D., Guy, R. & Truong, K. Determining the

orientation of proximate mobile devices using their back

facing camera. CHI’12. 2231-2234.

10. Drocourt , C., Delahoche, L., Pegard, C. & Clerentin, A.

Mobile robot localization based on an omnidirectional

stereoscopic vision perception system. ICRA'99. 1329-

1334.

11. El Kadmiri, O. An omnidirectional image unwrapping

approach. ICMCS'11, 1 - 4.

12. Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D. &

Twombly, X. Vision-based hand pose estimation: A

review. CVIU’07, 108 (1-2), 52-73.

13. Eslambolchilar, P. & Murray-Smith, R. Tilt-Based

automatic zooming and scaling in mobile Devices-A State-

Space implementation. LNCS'04. 120-131.

14. Farneback, G. Two-frame motion estimation based on

polynomial expansion. SCIA'03. 363-370.

15. Gasimov, A., Magagna, F. & Sutanto, J. CAMB: context-

aware mobile browser. MUM’10, 1-5.

16. Gluckman, J. & Nayer, S. K. Ego-motion and

omnidirectional camera. ICCV'98. 999-1005.

17. Goel, M., Findlater, L. & Wobbrock, J. WalkType: using

accelerometer data to accomodate situational impairments

in mobile touch screen text entry. CHI’12. 2687-2696.

18. Grossman, T., Dragicevic, P. & Balakrishnan, R. Strategies

for accelerating on-line learning of hotkeys. CHI’07, 1591-

1600.

19. Hachet, M., Pouderoux, J. & Guitton, P. A camera-based

interface for interaction with mobile handheld computers.

I3D’05. 65-72.

20. Hansen, T. R., Eriksson, E. & Lykke-Olesen, A. Mixed

interaction space: designing for camera based interaction

with mobile devices. CHIEA’'05. 1933-1936.

21. Harrison, C. & Hudson, S. E. Abracadabra: wireless, high-

precision, and unpowered finger input for very small

mobile devices. UIST’09. 121-124.

22. Hasan, K., Ahlström, D. & Irani, P. AD-Binning:

Leveraging Around Device Space for Storing, Browsing

and Retrieving Mobile Device Content. CHI'13. 899-908.

23. Heikkilä, M., Pietikäinen, M. & Schmid, C. Description of

interest regions with local binary patterns. Pattern

Recognition, 42 (3), 425-436.

24. Hincapié-Ramos, J. D. & Irani, P. CrashAlert: Enhancing

Peripheral Alertness for Eyes-Busy Mobile Interaction

while Walking. CHI'13. 3385-3388.

25. Hinckley, K., Pierce, J., Sinclair, M. & Horvitz, E. Sensing

techniques for mobile interaction. UIST '00. 91-100.

26. Hinckley, K. & Sinclair, M. Touch-sensing input devices.

CHI’99. 223-230.

27. Irani, P., Gutwin, C. & Yang., X.-D. Improving selection

of off-screen targets with hopping CHI'06 299-308.

28. Jones, E., Alexander, J., Andreou, A., Irani, P. &

Subramanian, S. GesText: accelerometer-based gestural

text-entry systems. CHI’10. 2173-2182.

29. KaewTraKulPong, P. & Bowden, R. An Improved

Adaptive Background Mixture Model for Real-time

Tracking with Shadow Detection. AVBS’01.

30. Kakumanu, P., Makrogiannis, S. & Bourbakis, N A survey

of skin-color modeling and detection methods. Pattern

Recognition, 40 (3), 1106-1122, 2007.

31. Kang, Y. & Han, S. Improvement of smartphone interface

using an AR marker. VRCAI’12. 13-16.

32. Khan, R. Z. & Ibraheem, N. A. Survey on Gesture

Recognition for Hand Image Postures. CIS, 5(3), 110-121.

33. Kim, J. & Suga, Y. An Omnidirectional Vision-Based

Moving Obstacle Detection in Mobile Robot. IJCAS’07, 5

(6), 663-673.

34. Kjeldskov, J. & Paay, J. Just-for-us: a context-aware

mobile information system facilitating sociality.

MobileHCI’05. 23-30.

35. Kratz, S. & Rohs, M. Hoverflow: exploring around-device

interaction with IR distance sensors. MobileHCI’09, 1-4.

36. Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury,

T. & Campbell, A. T. A survey of mobile phone sensing.

CM, 48 (9), 140-150.

37. Li, Y. (2010). Protractor: A Fast and Accurate Gesture

Recognizer. CHI'10. 2169-2172, 2010.

38. Liang, R.-H., Cheng, K.-Y., Su, C.-H., Weng, C.-T., Chen,

B.-Y. & Yang, D.-N.. GaussSense: Attachable Stylus

Sensing Using Magnetic Sensor Grid. UIST'12. 319--326.

39. Masoud, O. & Papanikolopoulos, N. A method for human

action recognition. IVC’03, 21 (8), 729-743.

40. Ojala, T., Pietikäinen, M. & Mäenpää, T. Multiresolution

Gray-Scale and Rotation Invariant Texture Classification

with Local Binary Patterns. PAMI’02, 24 (7), 971-987.

41. Paelke, V., Reimann, C. & Stichling, D. Foot-based mobile

interaction with games. ACE’04. 321-324.

42. Ramakers, R., Vanacken, D., Luyten, K., Coninx, K. &

Schöning, J. Carpus: a non-intrusive user identification

technique for interactive surfaces. UIST’12, 35-44.

43. Rico, J. & Brewster, S. Usable Gestures for Mobile

Interfaces: Evaluating Social Acceptability. CHI'10. 887-

896.

44. Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. ORB:

an efficient alternative to SIFT or SURF. ICCV’11. 2564-

2571.

45. Runschotem, R. & Krose, B. Robust scene reconstruction

from an omnidirectional vision system. ToRA’03, 19 (2),

351-357.

46. Schilit, B., Adams, N. & Want, R.. Context-Aware

Computing Applications. MCSA'94.

47. Seo, B.-K., Choi, J., Han, J.-H., Park, H. & Park, J.-I.

(2008). One-handed interaction with augmented virtual

objects on mobile devices. VRCAI’08. 1-6.

48. Sohn, M. & Lee, G. ISeeU: camera-based user interface for

a handheld computer. MobileHCI’05, 299-302.

49. Stergiopoulou, E. & Papamarkos, N. Hand gesture

recognition using a neural network shape fitting technique.

EAAI’09, 22 (8), 1141-1158

50. Wagner, D. & Schmalstieg, D. First steps towards

handheld augmented realit. ISWC'03. 127 - 13.

51. Wang, J. & Canny, J. (2006). TinyMotion: camera phone

based interaction methods. CHIEA '06, 339-344.

52. Wang, R. Y., Paris, S. & Popovic:, J. (2011). 6D hands:

markerless hand-tracking for computer aided design.

UIST’11. 549-558.

53. Wilson, A. Robust Vision-Based Detection of Pinching for

One and Two-Handed Input. UIST’06. 255-258.

54. Wobbrock, J., Wilson, A. & Li, Y. Gestures without

libraries, toolkits or Training: a $1.00 Recognizer for User

Interface Prototypes. UIST'07. 159-168.

55. Yang, X.-D., Grossman, T., Wigdor, D. & Fitzmaurice, G.

Magic Finger: Always-Available Input through Finger

Instrumentation. UIST'12. 147–156.

