
 

 

Surround-See: Enabling Peripheral Vision on 
Smartphones during Active Use 

Xing-Dong Yang
2
, Khalad Hasan

1
, Neil Bruce

1
, Pourang Irani

1
 

1
University of Manioba, 

Winnipeg, MB,Canada, R3T 2N2 

{khalad, bruce, irani}@cs.umanitoba.ca 

 

2
University of Alberta,  

Edmonton, AB, Canada, T6G 2E8  

xingdong@cs.ualberta.ca 

ABSTRACT 

Mobile devices are endowed with significant sensing 

capabilities. However, their ability to ‘see’ their 

surroundings, during active use, is limited. We present 

Surround-See, a self-contained smartphone equipped with 

an omni-directional camera that enables peripheral vision 

around the device to augment daily mobile tasks. Surround-

See provides mobile devices with a field-of-view collinear 

to the device screen. This capability facilitates novel mobile 

tasks such as, pointing at objects in the environment to 

interact with content, operating the mobile device at a 

physical distance and allowing the device to detect user 

activity, even when the user is not holding it. We describe 

Surround-See’s architecture, and demonstrate applications 

that exploit peripheral ‘seeing’ capabilities during active 

use of a mobile device. Users confirm the value of 

embedding peripheral vision capabilities on mobile devices 

and offer insights for novel usage methods.  

Author Keywords 

Peripheral mobile vision, mobile ‘seeing’, mobile surround 

vision.  

ACM Classification Keywords 
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INTRODUCTION 

Smartphones are equipped with powerful sensors, such as 

accelerometers, GPS and cameras that facilitate a variety of 

daily tasks. On commercial and research platforms, such 

sensors have been utilized in numerous contexts such as for 

distinguishing user activity [26], for sensing on, behind and 

around a mobile device [5, 41], for context awareness [46] 

and for interactive document exploration [13]. The 

integration of an ever expanding suite of embedded sensors 

is a key driver in making mobile devices smarter [26]. 

However, current capabilities are mostly focused on 

sensing. We distinguish ‘sensing’ from ‘seeing’ in that the 

latter facilitates some higher level of recognition or 

interpretation of objects, people and places in the mobile 

device’s surroundings. What new applications might be 

possible if mobile devices had advanced seeing abilities?   

We explore the above theme of empowering mobile devices 

with enhanced peripheral vision capabilities. Our prototype, 

Surround-See, consists of a smartphone fitted with an 

omnidirectional lens that gives the device peripheral vision, 

of its surroundings (Figure 1). During active use, Surround-

See effectively extends the smartphone’s limited field-of-

sight provided by its front- and back-facing cameras. With 

an ability to ‘see’ the rich context of the region around the 

device, smartphones can trigger environment specific 

reminders and can respond to peripheral interactions, such 

as pointing at a smart-appliance for efficient access to its 

control panel on the mobile device.  

 

Figure 1 - (a) Surround-See enables peripheral ‘sight’ on 

smartphones by means of an omni-directional mirror attached 

to the mobile device’s front facing camera. (b) Surround-See 

image shows the corresponding scene. (c) The unwrapped 

image can be used for recognizing the device’s peripheral 

environment (after removing the user’s body – shaded in red) 

The scenario below captures some of the rich applications 

Surround-See enables. John, a professional is often using 

his mobile device. In the morning, he reads the news on 

Surround-See while his car engine warms-up. Recognizing 

this, Surround-See triggers a reminder on the danger of 

eyes-busy mobile use and driving. Later, as he settles into 

his office while checking email on Surround-See, he points 

at the speakers in the office, which Surround-See 

recognizes and provides a control panel to increase the 

speakers’ volume. Laura, a colleague enters his office and 

asks about his weekend. John picks up his smartphone to 

show Laura pictures on the phone which Surround-See 

reorients as the device is positioned closer to Laura. Finally, 

Laura asks John for directions to the restaurant, which John 

draws using a stylus and his finger to erase, both of which 

are recognized as distinct by Surround-See. Shortly after 

doing some work he decides to step out for only a few 
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minutes. Surround-See recognizes this activity and asks 

whether he wishes to take his device. As he is uninterested, 

he declines by gesturing to the device remotely and 

Surround See sets the mobile into voicemail mode.  

The above scenario captures the various possibilities made 

available when augmenting a mobile device with peripheral 

vision. During active use Surround-See can (a) trigger 

reminders based on an environment it recognizes, (b) it can 

perceive specific objects in the mobile device’s periphery 

(i.e. speakers), which the user can control by (c) pointing at 

them. In idle mode, such as when resting on a table, 

Surround-See can also identify certain activities in the 

vicinity of the device, such as (d) when the user walks away 

from it or (e) if the user is  remotely waving at it to alter its 

state, i.e. setting it to voicemail mode. 

Our contributions include: (a) the concept of enabling 

mobile devices to ‘see’ their surroundings; (b) a 

demonstration of its value through an implementation of a 

self-contained proof-of-concept prototype, Surround-See; 

and (c) a set of applications that demonstrate Surround-

See’s unique capabilities over current smartphone usages. 

RELATED WORK 

Mobile ‘sensing’  

Researchers have investigated the possibility of embedding 

sensors on mobile devices to facilitate tasks in the 

background. An extensive review on mobile sensing is 

available in [36]. We briefly discuss state and context 

awareness enabled by mobile sensors. Hinckley et al.’s [25] 

seminal work on sensing techniques for mobile interaction 

opened a new wave of interfaces that exploit a mobile 

device’s state, such as its orientation. Such capabilities, 

among others, have enabled a significant suite of 

interactions including the ability to control virtual objects 

on a mobile screen [47], for automatically reorienting 

images [25], to support navigation in applications [15], or 

to facilitate different gesture based interactions [28]. Many 

of the sensors proposed in these earlier systems are now 

common on commercial mobile devices, and have been 

used to create a wide ecosystem of applications that depend 

on sensing a device’s state.  

Researchers have also demonstrated methods to sense a 

mobile device’s environment to alter the state of the device. 

Schmidt et al. [46] augmented mobile devices with tilt, light 

and heat sensors to identify if the device is resting on a 

table, is in a pocket, or is being used outside. Such sensor-

based information can be used for automatically changing 

the device state such as lowering its volume. Context 

information is also possible with geo-locating sensors that 

incorporate information about the user’s location to provide 

more relevant and targeted services [15, 34]. 

Beyond sensing a device state or context, researchers have 

introduced novel sensor-based interaction techniques to 

facilitate input outside the device’s physical space, in its 

periphery. Single finger interactions around a device are 

possible with SideSight [5] and HoverFlow [35] which use 

IR distance sensors to capture gesture-based interactions 

above and to the sides of the device. Similarly, Abracadabra 

[21] facilitates input by activating states of a magnetic 

sensor and maps these to menu and cursor control. This 

results in occlusion-free input on small devices such as 

watches. For the most part, sensor-based interaction 

metaphors are confined to a specific suite of tasks.  

Camera-based mobile interaction   

On mobile devices, vision-based systems have advanced to 

the point of complementing basic sensing mechanisms in 

real-time. Self-contained mobile-based augmented reality 

(AR) applications have flourished [50]. Examples include 

Wagner et al.’s [50] marker-based AR system, Paelke et 

al.’s [41] hand-held AR soccer game and Hansen et al.’s 

[20] camera-equipped mobile device to establish a spatial 

relationship between a virtual environment and the physical 

space to form a mixed reality space.  

Camera based input also been shown to work for 2D [51] 

and 3D navigation [19], for tracking the user’s face for 

zooming/scrolling documents [48], for detecting where 

users are standing and reorienting the screen accordingly as 

the device is placed closer to them [8, 9] or for generating 

input events (e.g., click, double-click) in real-time [31].  

In general, most camera-based interactions require that 

interactive features be used in exclusion of other tasks, as 

the user has to explicitly point the front- or back-facing 

camera at the object of interest. Ideally, vision-based 

methods on mobiles can include the devices’ periphery 

which contains rich context information. This can open new 

possibilities for integrating users’ interactions naturally into 

the ecosystem of daily mobile applications facilitating a 

broader range of implicit interactions that build on Buxton’s 

vision for foreground/background interaction [6]. 

Peripheral vision 

Researchers have explored methods for extending a 

camera’s limited field-of-view without significantly 

changing its form factor. For example, omni-directional 

cameras have been applied to robotics problems to give 

robots ‘sight’ of their periphery. Applications include 

estimating a robot’s motion [16], revealing a robot’s 

location [10], recognizing its surroundings [45], and 

navigating around obstacles [33]. Very little work has 

considered the applications of embedding peripheral vision 

on smartphones for advanced interactions.  

Walking User Interfaces 

There is a growing trend toward building interfaces to 

support walking user interfaces (WUIs) [17], including 

methods to improve text-entry accuracy to user safety. 

Surround-See, is particularly of value for WUIs, as it allows 

users to perform additional actions while using the device. 

HARDWARE DESIGN OPTIONS 

To enable a smartphone with peripheral vision capabilities 

during active use led us to explore different hardware 



 

 

options. We frame our exploration in terms of the level of 

‘sight’ enabled by various sensing technologies, from 

coarse to fine. Coarse ‘seeing’ can detect the presence of an 

object, with limited ability to detect its motion. Finer 

‘seeing’ involves recognizing different objects and the 

ability to detect changes in the smartphone’s surroundings.  

Sensor Options 

We first considered sensors that can fit on current 

smartphones. A second requirement was to implement and 

explore use-cases with a self-contained prototype. 

Proximity sensor 

Proximity sensors (capacitive, infra-red, or ultrasound) 

detect the presence and distance of objects away from it 

(giving them coarse ‘sight’). Multiple proximity sensors in 

a sensor array can detect the motion of an object in a 2D or 

3D space [5]. However, such sensors cannot distinguish 

between different objects or detect the changes in their 

surrounding environment. The placement of proximity 

sensors is also challenged by how users hold the device 

without occluding them. 

Magnetic Sensor 

Magnetic sensors detect the presence and angular location 

of a magnet, such as on a ring, in an emitted field (giving 

them coarse ‘sight’). A magnetic sensor array can detect the 

2D or near surface 3D motion of an object [38], but like 

proximity sensors, they do not distinguish specific objects 

or content changes in the environment. 

Image Sensor 

Image sensors (CCD or CMOS) are standard on 

smartphones. They sense an optical image, which can be 

processed using computer vision techniques to detect the 

presence of an object in the image, the motion of an object 

in either 2D or 3D (with a 3D depth sensing camera), or 

recognize different objects in the surrounding environment.   

Sensing Range 

Sensors’ limited range can be alleviated by forming an 

array of multiple sensors (e.g. proximity sensor array or 

camera array). The increased field-of-operation however, 

comes with a size tradeoff which makes such solutions 

impractical for mobile devices. Other more practical 

methods for enlarging the field-of-view consists of using a 

wide-angle or omni-directional lens, which can capture a 

good portion of the 360° around a device’s periphery.  

Sensor Installation and Form Factor Implications 

Proximity or magnetic sensor arrays can be placed above or 

under an open surface on a smartphone [5, 38]. This allows 

them to sense the entire space around the smartphone 

without significantly impacting the device’s form factor. 

However, during active use, these become unusable as the 

user’s hand occludes these sensors.  

While the built-in smartphone cameras can be used for the 

purpose of ‘seeing’, during active use, the front and back 

cameras face the sky and ground, respectively. The narrow 

field-of-view of such built-in cameras (43˚-56˚ on the high-

definition smartphone camera we used), does not allow 

these to capture the smartphone’s surrounding space 

(Figure 2). This limitation can be addressed by mounting a 

wide-angle or omni-directional lens on the built-in cameras.  

 

Figure 2 – (a) the environment where Figure 1b was taken 

from; (b)-(c) images taken from the phone’s back and front 

facing cameras respectively.  

SURROUND SEE HARDWARE 

To explore the interaction space for peripheral vision on a 

smartphone we create a self-contained proof-of-concept 

system, Surround-See. The prototype is a HTC Butterfly 

smartphone with an omni-directional lens from Kogeto [1] 

mounted on its front-facing camera (Figure 1a). The front 

was chosen as placing the lens on the back may make the 

phone unstable at rest, thus precluding a significant number 

of interactions.  

The smartphone runs the Android operating system on a 

Quad-core 1.5 GHz Krait CPU with 2GB of RAM. The 

front camera has a maximum resolution of 2MP. For real-

time image processing, we down-sampled the resolution to 

960×720. The omni-directional lens has a 360˚ and 56˚ 

field-of-view in the horizontal and vertical planes, 

respectively. The final prototype captures a real time RGB 

image of the 360˚ surrounding view of the device. 

Figure1b-c shows an omni-directional image captured by 

the prototype, and its unwrapped counterpart. 

SURROUND-SEE CAPABILITIES 

We implemented three primary capabilities with Surround-

See: 1) to recognize the device’s peripheral environment; 2) 

to recognize objects around the device; and 3) to recognize 

user activities in vicinity to the device. We implemented 

these features using OpenCV4Android, a JAVA wrapper 

that allows the OpenCV library to be used on Android 

platforms. It is worth mentioning that there are many 

choices for computer vision algorithms for implementing 

Surround-See features. We used and present those that have 

shown effective results in the literature and that can be 

implemented on a self-contained mobile device prototype.  

Recognizing the Device’s Peripheral Environment 

Recognizing the users’ peripheral environment was 

implemented using Local Binary Patterns (LBP) [40] and a 

machine learning classifier [7]. Before the recognition 

process starts, we pre-processed the raw omni-directional 

image by un-wrapping it to a panoramic image using the 

method described in [11]. While not technically necessary, 

unwrapping the image makes the rest of the processing 

easier. Once unwrapped, the bottom of the panoramic 

image was cropped so that it did not contain the body of the 

user (about 1/4 of the panoramic image). The resulting 



 

 

image from this pre-process contains only a wide view of 

Surround-See’s surrounding environment (Figure 1).  

We then used LBP to describe the image using a unique 

feature vector. LBP detects microstructures inside an image 

(e.g. lines, edges). The histogram of the microstructures 

forms a feature vector of the image. LBP is orientation and 

luminance invariant, making it robust in describing images 

taken from different angles and different lighting 

conditions. The algorithm was originally proposed to 

classify textures (e.g. cloth). It has, however, been shown to 

be effective in detecting landmarks too [23]. The feature 

vector was used to train a machine learning classifier or to 

recognize a peripheral environment. We collected 20 

samples for each of the 5 peripheral environments we 

recognized (lab, office, desk, hallway, and car). We took 

ten images for each, the morning and afternoon, with the 

phone in active use position. To train the classifier, we used 

Chang and Lin’s LIBSVM library using the Support Vector 

Machine (SVM) [7]. We used a RBF Kernel with 

parameters that gave the highest 5-fold cross-validation 

scores (e.g. 96%). The trained model was loaded when the 

system starts. For every 60 seconds, the system sampled an 

image of the peripheral environment for recognition. The 

recognition process runs in a background thread, causing no 

interference to the phone’s normal activities. 

In contrast to a phone’s built-in GPS, Surround-See can 

detect subtle changes in its location, e.g. movement inside 

or outside of a room or at a specific location in a room. 

When combined with GPS data, Surround-See can detect 

contextual changes happening within the GPS-sensed 

location, e.g. a crowed street vs. an empty street.  

Recognizing Peripheral Items  

Our implementation focuses on two general types of 

peripheral items: surrounding items and the user’s hand. 

Recognizing an Object in the Smartphone’s Environment 

An object in the device’s environment is recognized using 

feature point matching using the ORB algorithm [44]. ORB 

searches each input frame for a desired object using a 

reference image. The reference image contains only the 

object to be searched for (see Figure 3a-b). When the 

system starts, ORB extracts a set of feature points for the 

reference image. A feature vector (or descriptor) was then 

generated for every feature point to uniquely describe the 

characteristics of that feature point. ORB was then used to 

search for similar feature points in the input frames. If an 

object in the input frame contained at least a certain number 

of matching points (e.g. 1/8 of the total matching set), it 

was recognized as the desired object. We used OpenCV’s 

FeatureDetector class for feature point detection, and 

DescriptorMatcher class feature point matching. 

ORB is color invariant. It also performs well with objects at 

different scales. However, we found it to be error prone to 

changes of the device’s orientation. It could fail to identify 

the object if it appears at a different orientation in the input 

frame than that in the reference image. This would require 

the user to hold the device at the same orientation as when 

the reference image was sampled, which is impractical. We 

resolved this using the device’s built-in compass. When the 

system starts, Surround-See loads a list of reference images 

and their corresponding phone orientations when the 

images were taken. These initial orientations were used to 

rotate the input frames during the recognition process. In 

our implementation, we used one sample image for each 

desired object while multiple samples per object at different 

orientations is also possible. Our process however does not 

incur any performance overhead.  

 

Figure 3 - Reference images: (a) speaker and (b) monitor; (c) 

rotated input frame for more precise object detection; (d) 

recognized objects (the blue and green lines indicate the 

locations of the recognized objects – speaker and monitor). 

Recognizing the User’s Hand 

Explicit mid-air user input is possible, in Surround-See’s 

periphery. Surround-See detects the user’s hand using a 

skin color model in YCbCr color space [30, 42]. A skin 

color pixel was detected if its Cr and Cb values fall into the 

ranges [140, 166] and [135, 180] respectively. The resulting 

input frame formed a black&white binary image with its 

white region indicating the skin color pixels Figure 4 top).  

 

Figure 4– Top: binary image of skin-color pixels; Bottom: (a-

b) track fingertip (red dot); (c) detect pinch (red ellipse). 

The user’s hand was detected by looking for blobs that are 

larger than a threshold size. We found this method to be 

effective but also error prone when the background contains 

colors close to that of the user’s skin. We thus dynamically 

filtered out the background noise by removing the blobs 

that appeared in the same location for a certain fixed 

number of frames (e.g. 30 in our application). Finally, the 

hand contour was obtained by approximating a polygon of 

the detected hand blob using OpenCV’s approxPolyDP 

function  (Figure 4 bottom).  



 

 

Tracking fingertips: Upon extracting the user’s hand 

contour, the user’s fingertips were detected by searching 

through the contour points, and identifying those with a 

curvature less than a threshold value (e.g. 50˚) [3] (Figure4 

a-b) In an omni-directional image, the position of the 

detected fingertip indicates the position of the real finger 

around the camera (Figure 5). Surround-See can also detect 

the finger’s up-and-down (vertical) motion. This is 

achieved by calculating the distance from the detected 

fingertip to the center of the omni-directional image, where 

an increase in the distance indicates that the finger is 

moving upward, and a decrease means the opposite.  

 

Figure 5- tracking finger position in the device’s periphery.  

Recognizing hand postures: A hand posture is recognized 

by counting the number of detected fingertips. This method 

is simple and fast. It allows 6 different hand postures in 

total – fist and 1 to 5 fingers. Other methods are also 

possible in cases where more hand postures are needed [12, 

32, 49, 52]. In our implementation, the ‘1’ posture, with the 

index finger is reserved for pointing.  

Detecting ‘pinch’-ing: Pinch is detected using Wilson’s 

method [53], where a pinch is recognized when there is a 

connected blob inside a hand contour (Figure 4c) Pinch can 

be used as a ‘mouse click’ to confirm an action or to trigger 

a command. Once a pinch is detected, the hand posture 

recognition method is disabled until the pinch is released.  

Detecting User Activities in the Periphery 

We implemented three different peripheral activity 

detection capabilities: whether the user is moving the 

device away from them, whether the user is stepping away 

from the device and remotely gesturing at the device.  

Proximity to User 

During active use, Surround-See uses the user’s upper body 

as a reference point to determine its proximity to the user. 

We demarcated a rectangular region of interest containing 

only the user’s body to detect the smartphone’s 

perpendicular motion relative to the user (Figure 6 left). 

Motion detection was implemented using optical flow [14], 

where the spreading of the motion vectors indicated that 

Surround-See was being placed closer (Figure 6b) to the 

user and the gathering of the motion vectors indicated that 

Surround-See was being moved away from the user (Figure 

6a). We found this method reliable especially in 

differentiating between the perpendicular motion and the 

other motions such as moving left or right. Unlike 

previously proposed methods (e.g. [4]), Surround-See is 

self-contained. It does not need overhead cameras or 

require users to wear sensors on their body. This is 

extremely important for mobility. 

 

Figure 6 – Left: ROI contains user’s body; Right: (a)-(b) 

optical flow vectors showing the phone is moving away and 

closer respectively.  

It is worth noting that sensing user proximity cannot occur 

by simply using the smartphone’s built-in sensors (e.g. 

accelerometer or built-in cameras). For example, the 

accelerometer can tell the direction in which the 

smartphone accelerates but cannot tell whether or not the 

user is moving with the smartphone. Similarly, the 

smartphone’s built-in front or back camera may detect its 

motion but cannot tell whether or not the user is moving at 

the same time, e.g. walking when holding the phone, as the 

user is mostly outside the view of these cameras. 

Detecting User Activity within a Region of Interest 

In idle mode, i.e. when resting on a horizontal surface, 

Surround-See can detect the user’s activity within a user-

defined region of interest (ROI). Surround-See can 

dynamically track the user-defined ROI using the same 

method described in Figure 3. Once defined, the user’s 

activities within the ROI were detected using optical flow. 

In our current implementation, Surround-See detects four 

user activities, including the user’s movement in the 

horizontal and in the perpendicular directions (Figure 7). 

Additional activities, such as rapid or groups movements 

can be detected using sophisticated methods (e.g. [39]).  

 

Figure 7 - ROI at the door (a); user moving from left to right 

(b) and right to left (c); user moving away (d) and closer (e). 

Remote Gesturing 

In idle mode, Surround-See also allows hand gestures to be 

carried out when the user is at a short distance away from 

the phone. This is convenient for situations when the phone 

is left behind on a desk and the user does not wish to walk 

up to grab it to invoke a simple command (e.g. turn on the 

voice mail). Remote gesturing assumes the phone is sitting 

on a stable platform such as a table and that the view is 

uncluttered. This allows us to use background subtraction to 

remove any skin-color noise in the background. This is 

particularly helpful as a hand blob will appear much smaller 

in the camera view when the user is not holding the phone, 

making the blob-size based noise removal error prone. 



 

 

Surround-See uses a real-time adaptive background 

subtraction based on a Gaussian Mixture Model [29] 

(implemented in the  BackgroundSubtractorMOG class in 

OpenCV). The algorithm updates the background 

dynamically such that if a moving object in the foreground 

stalls for several frames, it will be classified as a part of the 

background. This creates an effective mechanism for 

determining the start and end of a hand gesture. For 

example, when standing still, the user is classified as a part 

of the background. When the user starts to wave his/her 

hand, the moving part of the user’s body becomes the 

foreground. This indicates the start of a gesture After the 

user stops moving the hand, Surround-See observes no 

moving object and gradually classifies the user’s body as 

background. If the user does not move the hand again, s/he 

will eventually be classified as the background in several 

frames. This indicates the end of the gesture. 

To track the user’s hand trajectory, Surround-See finds the 

user’s hand in the foreground using the same skin-color 

model described earlier A hand trajectory is composed of 

the temporal and spatial displacement of the center of the 

detected hand blob. In our current implementation, 

Surround-See uses a simple gesture recognition algorithm, 

which identifies hand gestures based on the hand’s moving 

direction, e.g. moving left, moving right, or waving (move 

left then right or vice versa). More sophisticated algorithms 

would increase the remote gesture vocabulary set but could 

also demand higher processing power [37, 54]. 

SURROUND-SEE INTERACTIONS 

We have implemented a number of interaction techniques 

to demonstrate several key Surround-See features. Each 

technique serves as an example of one or more of Surround-

See’s capabilities. Many of the applications are novel while 

a few others show how previously proposed techniques can 

be implemented in a mobile and self-contained prototype.  

Pen vs. Touch Input 

Capacitive stylus is a valuable addition to the user’s finger 

for handwriting or drawing on smartphones and tablets. 

However, smartphones’ touchscreens cannot distinguish a 

user’s touch from that of a capacitive stylus. This problem 

can easily be solved with Surround-See as it can recognize 

objects in the environment. Surround-See can easily 

distinguish the stylus from the finger when interacting with 

the touchscreen. We implemented a simple drawing 

application to demonstrate this unique capability. Users can 

use a stylus to draw on the touchscreen and use the finger to 

erase the drawing (Figure 8a). Tracking the pen was 

implemented using the color model similar to the one used 

for detecting the user’s hand.  

Off-screen Pointing 

Accessing off-screen objects is often considered a tedious 

and time consuming task due to the repeated invocation of 

panning or scrolling operations [27]. Recent research has 

shown that such a task can be made more efficient by 

directly pointing in mid-air at the location of the object in 

the around-device space [22]. Limited work exists on 

identifying the most appropriate sensing methods to 

facilitate around-device pointing. We implemented a 

restaurant search application to demonstrate Surround-See 

off-screen pointing potential (Tracking User Finger). When 

a restaurant of interest is located outside the map view, 

users can acquire information about it by directly pointing 

at its off-screen location indicated by an arrow shown on 

the screen (Figure 8b). We developed two selection 

mechanisms, dwell and back-tap (tapping on the back of the 

phone, sensed by the built-in accelerometers). The user can 

then select the restaurant to trigger an action, e.g. to retrieve 

a discount coupon. The user can toggle between off-screen 

objects in the general direction pointed at by the user by 

moving the finger up or down vertically (another 

dimension). In comparison to techniques using infrared 

proximity sensors [5], Surround-See is capable of tracking 

continuous finger movement at the corners of the 

smartphone, which is  difficult for an array of range 

sensors. Furthermore, unlike sensors placed on the side to 

achieve this task [5], Surround-See’s range is not occluded 

by the user’s grip.  

Remote Operation 

Current smartphones can only be used when the user is 

directly interacting and in contact with the phone (e.g. by 

touching the phone’s touchscreen). It is, however, quite 

often that the user may want to operate the phone, even 

briefly, from a short distance. For example, in a meeting 

with clients, the user may leave the phone on the meeting 

table when giving a presentation at the podium. If the phone 

rings during the presentation, the user may want to be able 

to mute the phone without having to leave the podium. 

Surround-See allows the phone to be operated remotely 

(Remote Gesturing). The user can simply wave at the phone 

to mute it. This operation cannot be carried out with 

smartphones’ existing front or back camera when the phone 

is in a natural idle position. In our implementation, we map 

the user’s hand gestures to common  functions, e.g. wave 

right to mute the phone,  wave right-then-left to unmute  it, 

and wave left to turn on the voice mail (Figure 8c).  

Controlling Remote Objects (Physical Shortcut) 

Objects recognized in Surround-See’s periphery can be 

used to carry out contextual actions. We created a remote 

control application, which uses physical objects (e.g. 

speaker or monitor) as a handler to trigger their 

corresponding controller on the user’s smartphone. Users 

can point at a speaker to open a volume controller window 

on Surround-See to remotely adjust the speaker’s volume 

(Figure 8d) (Tracking Finger and Recognizing 

Environmental Objects). Users can also point at a monitor 

to remotely turn it on or off. Here the surrounding objects 

serve as ‘physical shortcuts’ for launching applications on 

Surround-See. Users can also create paper stickers as 

disposable shortcuts [55]. The mapping between the 

commands and the physical objects relies on the semantics 

of the physical objects (intrinsic mapping [55]). This makes 



 

 

learning shortcuts easy, which is often time-consuming 

especially when there is a large number of them [18].  

Posture for Speed-dialing  

Hand postures can be used as an easy and intuitive method 

to rapidly trigger a command on the smartphone. In our 

implementation, we used hand postures to trigger speed-

dialing on Surround-See (Recognizing hand postures) 

(Figure 8e). We mapped 5 phone numbers to the 5 hand 

postures (from 1 to 5). To avoid unintentionally making 

calls, we allow the users to enable or disable Posture 

Speed-dial based on their needs. Unlike the other 

applications we describe here, hand posture is not exclusive 

to Surround-See, and can be carried out using the phone’s 

front or back facing cameras. Surround-See provides an 

alternative, allowing postures to be used when the hand is 

already in the peripheral space. 

Location-based Messaging  

When in active use, Surround-See can perform contextual 

actions based on its location. We implemented a location-

based messaging application, which displays a reminder or 

warning message on the screen (Recognizing Peripheral 

Environment). For example, when the application first 

recognizes that Surround-See is by the user’s office desk, it 

asks whether the user wishes to “Sync your phone?” as a 

reminder. When it first recognizes the phone is being used 

in a shared space, such as a lab, the application asks 

whether to “Mute your phone?”. Finally, it warns the user 

to stop using the phone by showing “Don’t use your phone 

when driving” on the screen when it recognizes the user is 

behind the wheel (Figure 8f). Such reminders can be 

included for safe utilization of the phone while walking and 

texting, for example [24]. Note that location detection based 

on ‘sight’ extends previous approaches using a proximity 

sensor [5], i.e. the system can distinguish car-A from car-B. 

Proximity-based Screen Rotation 

Showing others the content of the screen of a smartphone 

can sometimes be cumbersome because the user needs to 

reorient the phone to fit the viewer’s field-of-view. The 

existing approach reorients the content when the phone is 

tilted. This method is error prone as it does not distinguish 

between tilt towards and away from the viewer. It is, 

however, natural for the user to stretch their arm to place 

the phone closer to the viewer so that the content on the 

screen can be clearly visible. Based on this observation, we 

created an image browsing application, which can 

automatically rotate the orientation of the image by 180˚ 

when it detects the phone is being moved away from the 

user (Proximity to User) (Figure 8g). It can also rotate the 

image back to its initial orientation when it detects the 

phone is being moved back to the user.  

Notify to Take the Phone 

Occasionally, users may forget to take their cell phone 

when leaving their home or office. We created a 

notification application to notify the user when this 

happens. When Surround-See is idle, e.g. sits on a desk 

(Recognize Peripheral Environment), the application is on. 

It monitors users’ activities around the door of the user’s 

office (Detecting User Activity within a User-defined 

Region of Interest), by detecting the motion of the moving 

object within the door region. Upon detecting that the user 

is moving out of the door (implemented using the same 

optical flow algorithm as described in Detecting Proximity 

to User), it plays a voice message “Did you forget your 

phone?” to notify the user (Figure 8h). The user may 

choose to go back to the desk to take the phone or make a 

hand gesture to turn on the voice mail (Remote Gesture).  

ELICITING USER APPROVAL 

We conducted a user survey as an initial step towards 

assessing users’ approval of Surround-See as a concept that 

can co-exist with common smartphone usage. Our goal was 

to examine the value proposition of Surround-See’s 

capabilities, our interaction techniques and users’ privacy 

Figure 8 – (a) Left: use pen to draw; Right: use finger to erase; (b) Picking restaurant stored in the off-screen space; (c) Remote 

gesture to turn on voice mail; (d) Point at a speaker to open a volume controller window; (e) Hand posture for speed-dial; (f) Show 

a warning message when the user uses the phone behind the wheel; (g) Auto screen rotation based on the proximity to user; (h) 

Remind the user to take the phone when detects that the user is moving out of the door. 

 



 

 

concerns. We adapted the feedback method introduced in 

[43] and participants made judgments by watching a video 

showing the Surround-See prototype (same video as the one 

included in this submission).  

Participants 

Seventeen computer science students (15 male, ages 

between 21 and 35) participated in our survey. All of them 

were smartphone users. Seven participants have used a 

smartphone for more than 3 years.    

Procedure 

The participants were shown a video presenting the 

prototype and all of Surround-See’s capabilities. They were 

also shown the interaction techniques one at a time. For 

each interaction technique, they filled out a 7-point Likert 

scale questionnaire (1: strongly dislike and 7: strongly like), 

and gave reasons to justify their answers. After ranking the 

interaction techniques, the participants were asked to rank 

overall how useful they think the techniques are. Finally, 

they ranked their level of comfort about smartphones that 

had ‘seeing’ abilities and held by others, such as family, 

friends or strangers.  

Overall, participants welcomed the idea of making the 

smartphone more ‘sight’ enabled during active use. They 

mostly like the intelligent features (Notify to Take the 

Phone and Location-based Messaging) that could help them 

with common daily slips such as forgetting to take the 

phone, to mute it in a classroom and features to support 

remote operations (Controlling Remote Objects and Remote 

Operation). These 4 features were ranked amongst the 

highest with an average score higher than 6. Three 

participants commented that they always forgot to mute 

their phone and another commented that Location-based 

Messaging is a useful feature because “it could take control, 

when you forget to do something”. People like the 

convenient features that allow them to control objects at a 

distance and indicated that these should become standard on 

smartphones. A participant commented that Remote 

Operation is “good because most of the time I leave the 

phone away and need to return briefly only to set it”. User 

reports suggest that even when users are not holding their 

smartphones they still wish to maintain a link with their 

devices, even at a distance.  

Three features (Proximity-based Screen Rotation, Posture 

for Speed-dialing, and Pen vs. Touch Input) received 

weaker approval scores between 5 and 6. Most participants 

agreed that these are handy features to have on top of the 

phone’s existing functions but they also felt these features 

are limited to a small set of applications. For example, one 

participant said Pen vs. Touch Input is “useful for drawing 

apps on my phone. I’d like to see how else it could be used 

though”. Finally, participants gave a neutral score (4.7, s.e. 

0.37) to Off-screen Pointing. Most participants did not see 

high value for this feature in their daily smartphone usage.  

Overall, participants did not complain about privacy issues 

when other people use Surround-See. They felt most 

comfortable when Surround-See is used by people they 

know. The user’s level of comfort decreases when 

Surround-See is used by people they know less. They feel 

neutral (4.3, s.e. 0.24; with 7 being strongly comfortable) 

when Surround-See is used by a stranger but also expressed 

a demand for feedback to show that Surround-See is turned 

on (5.3, s.e. 0.52) (Figure 9). Interestingly, participants 

wished to also receive feedback if family members had 

devices with peripheral vision (4.18, s.e. 0.5). This needs to 

be considered in the design of such devices.  

 

Figure 9 – Left: average user rating for Surround-See’s 

interaction techniques; Right: average user ratings for 

potential privacy concerns. 

DISCUSSION AND LIMITATIONS  

In this section, we discuss the lessons we learned and 

insights we gained from our experience. We also present 

limitations of our approach. 

Omni-directional lens: the omni-directional lens we used 

provides a 360˚ view of the peripheral space but presents 

pixel loss. First, the image from an omni-directional lens is 

distorted, especially towards the center of the concentric 

circles. During our implementation, we did not observe 

major issues caused by this distortion. However, the degree 

of distortion may vary from lens to lens. Calibration may be 

considered (e.g. checkerboard calibration) when 

implementing with different lenses. Second, the object seen 

from the omni-directional lens is smaller than what can be 

seen with a normal lens. Smaller objects have fewer pixels 

to describe their characteristics. This has made object 

recognition harder. These issues might be resolved by using 

wider angle omni-directional lenses.   

Field-of-view: we believe Surround-See’s capabilities can 

be further extended if its field-of-view went beyond the 

phone’s peripheral space, ideally covering the entire 360˚ 

spherical space around the phone. With our current 

prototype, peripheral objects may not completely fall into 

the camera’s view, an issue that can be addressed with 

different omni-directional mirror styles and capabilities.  

A wider field-of-view allows the system to gain a better 

‘picture’ of its surrounding environment. For example, 

when the phone is in active use, the user’s face is mostly 

invisible. A complementary top view may allow Surround-

See to run face detection on the missing pixels and check if 

it is the authorized user who is using the phone. This can 



 

 

also allow the users to use the original function of the front 

facing camera, which we had to sacrifice in our current 

prototype. Equally important is the wide-angle view from 

the back camera. It complements what is seen from the 

front camera, and completes the knowledge of the phone’s 

surrounding space. With more advanced image sensing 

technologies, we may see true 360˚ cameras such as [2] that 

could be mounted on mobile devices. 

Depth sensing: Surround-See can also benefit from depth 

sensing. With knowledge about peripheral objects’ distance, 

Surround-See can alert the user about incoming people or 

traffic not only in the front [24] but also from the side 

during eyes-busy interaction. A stereo omni-directional 

image may be obtained by using 2 sets of cameras and an 

omni-directional lens. This setup is mainly used on larger 

platforms, e.g. robotics. Further work is needed to explore 

this possibility.  

User recognition: user recognition could be a useful 

addition to Surround-See capabilities. Recognizing who is 

using the phone can be helpful for increasing its security. 

Knowing who is in the periphery also allows richer 

interactions to be carried out, e.g. multi-user input. Future 

work will explore different ways to recognize users. It is 

worth noting that beyond a certain distance from the phone, 

complex pattern recognition tasks are challenging due to 

inadequate pixel resolution. The set of interactions possible 

will only increase with improved technology. 

Computer vision: the performance of Surround-See relies 

on several factors, including the mobile devices’ computing 

power, the quality of the camera (including lens), and the 

choice of computer vision algorithms. Given that 

smartphone cameras don’t typically offer nearly the sensor 

sizes that appear in more traditional vision applications, and 

also have a small fixed aperture, one would expect that the 

robustness of most algorithms will suffer somewhat. On the 

other hand, the limitations of processing capabilities of 

mobile devices also places limits on the set of vision 

algorithms that can be used in the proposed applications. 

However, these issues will become less significant with 

advances in mobile imaging and processing capabilities. 

Battery life: mobile devices’ battery life is a concern in our 

implementation as batteries drain quickly when the camera 

is active. This issue can also be less problematic with newer 

ultra-low-power image sensing chips and improvements in 

battery technology.  

Form factor: The form factor of the current prototype can 

be improved. The ‘useful’ lens in our off-the-shelf sensor is 

far smaller than its casing, which can be removed to better 

integrate the lens in a future device. The lens can be further 

engineered to hide inside the smartphone when the front or 

back facing cameras are needed for other tasks. 

System evaluation: Surround-See warrants careful 

investigation of its interaction and recognition techniques. 

This will be helpful for understanding its practical usability 

across different environments and scenarios. 

CONCLUSION  

We introduced the concept of enabling mobile devices to 

‘see’ their surroundings during active use. We created a 

proof-of-concept system, Surround-See, by mounting an 

omni-directional lens on the device’s front facing camera. 

We explored Surround-See’s capabilities, and implemented 

a number of interaction techniques to demonstrate its 

unique features. In an informal setting, users welcomed the 

idea of having smartphones with advanced ‘seeing’ 

abilities. Future work will focus on increasing Surround-

See’s field-of-view to its entire surroundings and enabling 

3D depth sensing. These will include exploring hardware 

options and software applications that integrate seamlessly 

with daily mobile tasks.  
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