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ABSTRACT
Life science research requires critical evaluation of data han-
dling and analytical software usability. We present the re-
sults of semi-structured interviews which provide insight into
the effects of bioinformatics software usability on life sci-
ence research. Results from our study confirm much of the
prior anecdotal evidence of standalone bioinformatics soft-
ware usability. More importantly, we show that usability
issues and life scientists’ lack of expertise in applying com-
putational methods to biological research is limiting their
research objectives and contributing to researchers’ reliance
on computational experts to conduct their research.
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•Human-centered computing → Empirical studies in
HCI;
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1. INTRODUCTION
Researchers in the life sciences, which we define as any

field of scientific research that involves the study of living or-
ganisms (e.g. biology, microbiology, medicine, veterinarian
medicine), are increasingly relying on computational tools
to discover patterns, derive hypotheses, and develop con-
clusions [22]. These computational tools (also referred to
as bioinformatics tools) are enabling significant biomedical
breakthroughs, particularly those involving genomic data,
such as the Human Genome Project [9]. Advances in the
ability to create data have resulted in the quick and cheap
generation of large amounts of data. As a result, analysis of
data has become the bottleneck in genomic discovery [21]
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and life science researchers are increasingly relying on com-
putational tools.

With the increasing popularity of integrating bioinformat-
ics tools into their research workflow, anecdotal usability
issues have been a recurrent topic of discussion in the life
science community. Informal evidence indicates that bioin-
formatics software, such as web-based database search tools,
are difficult to use and result in high user frustration [11,
24, 26]. Common problems range from difficult tool instal-
lation to struggling to efficiently link several tools together
[11]. However, we still do not fully understand how life scien-
tists conduct research and the extent to which bioinformatics
tools are, or are not, supporting their work. Furthermore,
a more focused investigation is warranted that will identify
and characterize the factors that cause use of bioinformatics
software to be a hindrance in life science research, includ-
ing the influence of computational experience on scientists’
ability to conduct work, the extent to which individual tasks
and the overall workflow are or are not supported by exist-
ing tools, and any other usability breakdowns that have yet
to be considered.

The goal of this work is to investigate the role that bioin-
formatics software plays in life science research. To reach
this goal, we conducted a formalized study examining the
use of bioinformatics software by life science researchers.
Results from our study confirm much of the prior anecdo-
tal evidence of standalone bioinformatics software usability.
More importantly, we show that usability issues and life sci-
entists’ lack of expertise in applying computational methods
to biological research is limiting their research objectives and
contributing to researchers’ reliance on computational ex-
perts to conduct their research. Our results also show that
while the reliance on domain experts is resulting in collab-
orative research projects, the computational tools used in
these projects not only do not facilitate collaboration, but
make it more difficult to share data due to the size of the
results returned.

The rest of this paper is organized as follows. First, we
present some related work regarding bioinformatics software.
Next, we describe our qualitative study investigating re-
searchers’ current work practices with bioinformatics soft-
ware. This is followed by the presentation of our findings
including an overview of researchers’ workflow, goals, and
challenges associated with using software in their research.
Lastly, we discuss our findings in relation to research pro-
ductivity, quality, and the need for collaboration.
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2. RELATED WORK

2.1 Computational Workflow of Life Scientists
Given the recent shift to include computation in the life

sciences, various aspects of conducting bioinformatics re-
search have been topics of consideration. These topics in-
clude investigating the development and maintenance of bioin-
formatics software [17, 7]; understanding context-specific
information retrieval, tasks, and workflows [18, 3, 28]; con-
sidering user needs in a related field, clinical translational
science [6]; and developing tools to facilitate bioinformatics
and other life science research [17, 12, 1, 2, 27, 29]. These
studies provide valuable insight into the workings and chal-
lenges associated with bioinformatics research.

Investigations focusing on the development and improve-
ment of computational pipelines [1, 2] and depiction of
methods to improve the reproducibility of bioinformatics re-
search [22] revealed that bioinformatics data analysis often
includes using multiple software applications in succession to
transform gigabytes or terabytes of raw data into concrete,
comprehensible results [1, 2, 22]. These applications are
typically strung together in a pipeline with custom scripts
using the output of one tool as input for the next [1, 2, 22].
A pipeline may begin with enforcing quality control on raw
data and then performing calculations, validations, and sta-
tistical analyses before displaying summarizations and visu-
alizations of results [22]. While the contributions of Abouel-
hoda et al. [1, 2] and Preeyanon et al. [22] provide insight
into the use and usability of these pipelines, neither shed
light into the role and importance of pipeline software within
life scientists’ overall workflow. This is necessary to under-
stand how they conduct research and determine the extent
to which bioinformatics tools are supporting their work.

Although life scientists typically follow strict, written pro-
tocols when performing wet-lab experiments [27], research
indicates that data analysis is less likely to be conducted
while following a strict procedure [18]. Previous studies
indicate that bioinformatics experts follow different home
grown strategies when using data analysis applications [3,
28]. This is exacerbated by the observation that many life
scientists do not keep a record of computational analysis pro-
cedures in the way they record wet-lab experiments [22, 28],
which can cause researchers to lose track of the parameters
used with analysis software and the order in which appli-
cations were ran [22]. These findings notwithstanding, no
study reveals why life scientists are or are not documenting
their workflow, what information is included in documen-
tation, and the full extent to which the support or lack of
support provided by existing tools affects documentation—
although some tools have been created to assist in taking
notes [27, 29].

Studies confirmed that life scientists possess a wide range
of computational skills [7, 28], with a widespread lack of
computer expertise leading to difficulties using bioinformat-
ics software. They frequently do not understand the tools
they are using and as a result, they make mistakes—such as
failing to run programs on known test sets before use on ac-
tual data and using default parameters that may not be opti-
mized for their data [22]. It has also been observed that they
frequently lack awareness of existing analysis software [28]
and fail to select the correct tools for their needs [22]. It
is unsurprising, then, that many life scientists require pro-
gramming experts to perform computational analyses on

their data [17]. Unfortunately, while Tran et al. [28] ex-
amined the effect of inadequate computer proficiency on
individual research tasks, and Chilana et al. [7] and Mas-
sar et al. [17] considered the ramifications of varying exper-
tise on the process of developing bioinformatics software, no
study has investigated the influence of computational ex-
perience on life scientists’ overall workflow. In addition, no
formal study has characterized the factors contributing to re-
searchers’ difficulties using bioinformatics software—which
may include insufficient support provided by existing tools.

2.2 Analysis of Bioinformatics Software
Various software has been created to support bioinfor-

matics research by facilitating the creation of pipelines to
integrate tools [13, 11, 2, 14, 19], simplifying development
of software for bioinformatics [17, 16, 25], and providing
assistance for conducting wet-lab work and recording lab
notes [27, 29]. However, more information is needed to deter-
mine which bioinformatics tasks are being ignored or insuf-
ficiently supported by existing tools, and how current tools
support or fail to support researchers’ overall workflow.

While developing these software tools, researchers identi-
fied a number of problems that have yet to be fully recti-
fied. Although many existing tools make an effort to hide
complexity and streamline use, software still frequently re-
quires a high level of computing or programming experience
to set up and use effectively [14, 20, 19, 11] which many
bench life scientists’ lack [20]. Tools commonly require a
significant amount of effort to set up [14, 19, 11] and com-
bine with other tools [3, 19, 13, 11]. Without this strong
background in computing, users typically struggle with the
command line user interface that the majority of these tools
employ [22, 20]. It has been noted that users often wres-
tle with difficult to understand or missing documentation
[19, 13] but lack support from the tool’s creators [22, 19,
13]. Unfortunately, while these problems have been recog-
nized by various researchers, none have been fully investi-
gated to identify opportunities for improvement or the ex-
tent to which life scientists’ workflows are affected. Lastly,
we note that it is possible that additional problems have
yet to be characterized since no study has been conducted
with the specific purpose of identifying and evaluating us-
ability issues concerning bioinformatics tools in the context
of typical use.

3. METHODS
Our goal was to characterize the workflow of life scientists

conducting research and examine how bioinformatics tools
are supporting this workflow. We did so by identifying and
evaluating specific issues concerning bioinformatics software
in the context of typical use.

3.1 Interviews
A set of semi-structured interviews were conducted with

ten researchers aged 31 to 46 (µ = 36.37, σ = 5.15, two
females) at a local university who have used bioinformat-
ics software as part of their research activities. Participants
were recruited via an interdepartmental email list. All par-
ticipants had extensive education in the field of life science
at the Ph.D. level or higher, and had first-hand experience
using bioinformatics tools for at least one research project.
The research area and title of each participant is presented
in Table 1.



Table 1: Participant backgrounds.
Participant Position Department

P1 DVM3/Ph.D.
Candidate

Microbiology/Veterinary
Sciences

P2 Faculty Plant Biology
P3 Postdoc

Researcher
Plant Biology

P4 DVM3/Ph.D.
Candidate

Clinical Sciences

P5 Faculty Immunology &
Microbiology

P6 Postdoc
Researcher

Microbiology

P7 Postdoc
Researcher

Immunology &
Microbiology

P8 Faculty Genetics
P9 Faculty Biology
P10 Faculty Epidemiology

The use of a semi-structured interview technique allowed
us to cover additional topics as they were encountered, re-
ducing the likelihood that important issues were overlooked
[15]. Interviews took place at each of the participant’s pri-
mary workspaces (offices or labs), providing opportunities
for us to photograph their work environments. This also al-
lowed us to review and photograph samples of relevant work
materials. Interviews were approximately 45 to 60 minutes
in duration and were recorded in audio format. In an ef-
fort to mitigate privacy concerns, interviewees were given
an option to allow us to photograph their work provided
that these photos were not disseminated, although one par-
ticipant requested that photographs not be taken for reasons
of privacy. All photographs collected during the interviews
were taken at the request of the interviewer (as opposed to
being at the participant’s suggestion).

More generally, the participants were asked to educate us
about their research practices and how they performed their
daily work. Our interviews sought to answer the following
interview questions:

• What is this researcher’s goal? What is the product
of his or her work?

• What characterizes the researcher’s workflow? How
is his or her work accomplished?

• What tools are used in problem solving, at what
point during the work process are they used, and
why?

• What types of tasks are best supported by the dif-
ferent tools and why?

• What preferences does the researcher have with re-
spect to tools and media?

Lastly, participants were asked to walk through specific ex-
amples of conducting recent research in order to reduce re-
call bias and ground the interviews. We asked participants
to discuss which computational method(s) were used to ac-
complish each specific task, and why they were chosen dur-
ing this exercise.

3Doctor of Veterinary Medicine

3.2 Data Analysis
We analyzed participants’ responses to the interview ques-

tions, the observations of software use, and the photographed
work material by creating an affinity diagram as described
in [4]. This construction revealed common themes in their
work practices and research goals.

4. RESULTS
Participants’ answers to interview questions and our ex-

amination of their software use provided insight into some
of the key challenges that researchers working in this area
face—both in terms of the specific computational tools they
use and in finding access to, and coordinating with, collabo-
rators. Before describing these challenges, we provide some
context by summarizing what the researchers are trying to
achieve, and how they go about doing so.

4.1 Participant Goals
In their research, our participants indicated that they seek

to answer a variety of biological questions, which can be
broadly categorized as follows:

Variation Discovery: identifying the presence of variation
on the genetic (DNA) or transcriptomic (RNA) level for
one or more species, and relating that variation to a par-
ticular trait.

Genome Assembly and/or Annotation: discovering
the genetic make-up of a species; i.e., determining the
sequence of nucleotides in the DNA of a species.

Evolutionary History: ascertaining how species have ev-
olved or how they relate to each other.

Gene Regulation and/or Transcription: determining
the conditions in which a gene is transcribed into RNA.

4.2 Workflows
Our participants described similar workflows despite di-

verse end goals. The following outlines our understanding
of their workflow.

Collection. Organism(s) of the species of interest (e.g.,
plants, domestic cats, West-Nile virus, worms) are either
captured or accumulated in their natural habitats and then
brought to their research labs, or purchased from a labora-
tory supply company.

Extraction. Biological material (DNA or RNA) is ex-
tracted from the organisms over one or more time periods
using wet laboratory methods.

Preparation. This biological material is then prepared
for the next step by fragmenting the samples into smaller
pieces. This is necessary since state-of-the-art instruments
that accept biological material as input (DNA or RNA) and
return the genetic sequence corresponding to that sample
can only handle very small segments of biological material at
one time. For example, genome sizes are typically within the
range of 4.5 million to 3 billion nucleotides long, the instru-
ments can only sequence between 100 and 150 nucleotides
at a time (billions of small pieces are sequenced in parallel).

Sequencing. Prepared samples are then converted into
the data for downstream analysis by way of sequencing.
Since sequencing is typically performed off-site at a dedi-
cated facility (referred to as a sequencing core), the physical
samples have to be sent to the facility.



Transferring. Output from the sequencing stage is trans-
ferred from the sequencing facility to the participant’s com-
puting via SFTP, Windows Remote Desktop, and/or a port-
able hard drive. This output is a one ore more data files
(FASTQ) that contains the sequence of nucleotides corre-
sponding to each small fragment of biological material, and
a quality score that corresponds to a likelihood that each
nucleotide was read correctly by the machine. Hence, the
FASTQ file(s) contains millions of short (100 in length) se-
quences of nucleotides (called reads) and their sequence of
quality scores.

Analysis. The participants begin their analysis once they
have their data files. In this stage, participants reported
using bioinformatics software and methods for a range of
purposes, including:

Genome assembly: building large contiguous regions (con-
tigs) corresponding to the genome from the sequenced
data.

Genome annotation: using the sequence data correspond-
ing to RNA to identify the start and end of each gene in
an assembled genomes.

RNA transcript assembly: using the sequence data cor-
responding to RNA to assemble or build the RNA tran-
scripts.

Read alignment: aligning the sequence data to a reference
genome or a draft genome.

SNP detection: determining all single-nucleotide polymor-
phisms (SNPs) for a genome or gene.

Large variant detection: determining all large genetic va-
riations (e.g., a large deleted region in a gene) for a
genome or gene.

The results of this bioinformatics analysis is sometimes visu-
ally inspected for correctness, and other times be validated
through further wet-lab experiments.

4.3 Challenges
Our participants expressed a number of challenges when

conducting analysis. Some of these frustrations relate to
specific usability issues associated with the bioinformatics
tools, confirming previous anecdotal reports [24, 26, 10], and
others pertain to more complex issues, such as handling the
data volume, finding the right collaborators, and coordinat-
ing large-scale collaborative projects.

4.3.1 Working with Big Data
The sequencing of the genetic material results in very large

data sets (in the magnitude of 100s of GB for each sample).
As a result, our participants often expressed issues transfer-
ring, working with, and visualizing data sets.

Transferring. Researchers typically used file transfer
protocol (FTP/SFTP) software to transfer raw data from
sequencing facilities over the internet. However, datasets
frequently were too large for this method of transmission to
be feasible. In these cases, as described by P2 and P5, data
is often stored on a hard drive that physically mailed to the
researchers:

“Sometimes datasets get so big that it’s actually faster to
snail mail it on a hard disk than it is to transport it over
the internet.” (P2)

Storing. The size and number of files produced for a
single experiment can be massive—up to terabytes in size.
P7 describes the challenges associated with storing data of
this size:

“So we got to here and this is just a thing to try to save
space on our server we don’t have a lot of space so I am
getting rid of sample files [. . .] I think we got 12 terabytes.”
(P7)

While a single experiment can result in large amounts of
data, the issue is compounded by the fact that certain life
science research requires the analysis of thousands of exper-
iments.

Working with the data. The majority of bioinformat-
ics tools are created for Linux servers with high performance
computing facilities due to the volume of data. For example,
state-of-the-art genome assemblers require up to 512GB of
RAM to run on moderate-sized genomes. Often the partici-
pants had insufficient computational memory to run the soft-
ware, which lead to slow processing times, software crashes,
or inability to run.

“I have problems with [the genome assembly software’s]
memory intensivity (sic).” (P4)

Even with reasonable computing resources, the size of the
data can have a large impact on how long some bioinformat-
ics software takes to run. For example, state-of-art genome
assemblers will take three to four hours to run on a small
genome (e.g. E.coli) but will require days or even weeks
to run on a significantly larger genome (e.g. bonobo) [31].
The uncertainty in predicting when the program will com-
plete or require further researcher input can be confusing
and frustrating:

“. . .sitting here and waiting for the next step, or knowing
when it’s done with that stuff so you can enter the next
one can be a problem.” (P1)

As a consequence, researchers periodically check if a pro-
gram is done running, usually by manually checking whether
or not the command line has returned to a prompt or by us-
ing a command such as “htop” to check the status of their
program. Although notification via email is possible when
researchers run programs on servers that employ a job queu-
ing system, researchers must rely on the maintainers of the
server to support this feature.

Visualizing. Participants also described relying on visual
inspection to verify the output of their analysis and data,
searching for specific data features (e.g., gaps) or taking a
general, “bird’s-eye” view of their data in order to determine
accuracy:

“Sometimes when I run this, it’s just very clearly by eye
not properly aligned.” (P6)

This seems to be particularly important with large datasets,
as indicated by P8:

“So, being visual really makes a ton of difference for me.
Especially with these big datasets. So the other software
that are out there . . . they may put out a table that can be
very difficult to read. The same data, the same information
is there and you could reach the same research conclusion
with the two tools, but one of them requires you to learn a
lot more about how these things are done on the inside of
the box whereas this one I like it a lot and I think it’s good
because it shows me directly what I need to see, visually.”
(P8)



In some instances, participants expressed that information
was impossible to obtain without visualization:

“I could not do this part without being able to visualize it
because I have to see, at some point, the actual alignment.”
(P1)

4.3.2 Computational Tool Transparency
Due to the size of the data, most bioinformatics research

is focused on translating a specific biological problem into
an algorithmic framework for which efficient heuristics can
be conceived of and implemented. The majority of param-
eters for bioinformatics software correspond to parameters
in the underlying algorithmic problem. Unfortunately, our
interviews revealed that setting these parameters in a prin-
cipled way is a serious concern for our participants. Coming
from life science backgrounds, our participants frequently
described not understanding the usage of the parameters or
how they should be set:

“I don’t necessarily know enough to make sure I’m picking
our [settings correctly].” (P1)

Our participants reported using a variety of parameter
setting strategies, including consulting the web, attempting
to consult with experts (which we discuss further in the next
section), using their own personal experience—such as ex-
tensive prior knowledge about the process, known rules of
thumb, and educated guesses—or beginning with the default
settings and using a trial-and-error approach. The descrip-
tion from P1 of how “key parameters” were incrementally
adjusted in order to converge on an optimal analysis exem-
plifies the last strategy. This lack of transparency of the
parameters, and how they should be adjusted, has two spe-
cific effects: they have a significant effect on the output of
the programs [22], and they greatly affect software use. The
participants’ general discomfort with parameter setting was
reported as a factor influencing their selection of tools, with
participants expressing a preference for changing as few pa-
rameters as possible:

“. . .it comes with very accepted default settings that come
with the program but it’s fully customizable if I am capable
of doing that. It doesn’t require me to do it, but I can
change it if I want to. And then if I mess it up I can just
click ‘go back to default’ and it’s like it never happened.”
(P8)

Participants also expressed confusion over the nature of
the algorithms themselves and what types of problems could
be addressed with the different types of bioinformatics soft-
ware. For example, Velvet [30] is a genome assembler that
builds a de Bruijn graph from the set of reads and traverses
that graph to build the sequences corresponding to the as-
sembly. However, P6 believed that the tool could not handle
this type of analysis:

“They’re de Bruijn graph assemblers so I think that’s dif-
ferent from, like, Velvet and stuff, and I don’t really know
the specifics.” (P6)

Unfortunately, current software tools are doing little to
make their algorithms and parameters accessible to those
without extensive computer science training. As an exam-
ple, P1 expresses frustration regarding the readability of user
manuals:

“I can’t understand a damn thing most of them say. Now,
it’s a little bit better now that I’ve gone through it, but

Figure 1: Examples of physical work artifacts. On
the left, a lab notebook outlines the exact command-
line statements used to complete analysis of a spe-
cific data set. On the right, a sticky note lists a few
commonly used commands.

when I was trying it was impossible. I just wish that they
would speak like humans and not like robots.” (P1)

Thus, the current software does not provide sufficient al-
gorithm transparency or accessibility to those without com-
puter science training.

4.3.3 Access to Expertise
The participants reported lack of access to appropriate

expertise as being a major concern in their research. At the
basic level, some participants had difficulties working with
Linux-based tools, which tend to assume a high degree of
computer literacy. Out of the participants we interviewed,
some had learned some basic Linux skills and programming
on their own, but this was also limited:

“I didn’t even know how to change a directory without a
click of a mouse. I didn’t know a single thing. [The system
support person at the university] came over and wrote the
ten essential [Linux] commands. (sic)” (P1)

Contrary to the results of Preeyanon et al. [22] and Tran
et al. [28], we observed participants referring to notes doc-
umenting previous computation procedures. In fact, par-
ticipants were observed relying heavily on personal notes
or “cheat sheets” to run bioinformatics programs. These
notes were typically used to store Linux commands that were
copied and pasted directly into the terminal, but were also
used to keep a record of previously completed steps. We ob-
served participants using a combination of digital notes (e.g.
text files, OneNote documents, saved emails) and physical
notes (e.g. work artifacts such as sticky notes and lab note-
books, shown in Figure 1). Documenting research method-
ology is an established aspect of research; however, the ob-
served level of reliance on cheat sheets to perform virtually
all tasks indicates that bioinformatics tool use is complicated
and consists of difficult-to-remember steps.

Other participants would purchase commercial software
packages that offered extensive support services. One par-
ticipant (P8) considers availability of this software support
to be of such importance that he regularly purchases soft-
ware (e.g. Nexus Copy Number [5], CLC Genomics Work-
bench [8]) that costs over $20,000 per year in order to have
guaranteed 24/7 support.

“It costs a ton of money and it’s very hard on my budget
for the lab. . . [Even though] I’ve had problems with it, I’ve
had outstanding support. . .This company, to me, is great,



partly because their product is great, but their product
support is super excellent.” (P8)

While the above findings suggest obvious usability issues
with existing bioinformatic software in that they are diffi-
cult for their target audience to use, they also suggest that
facilitating access to technical and procedural help deserves
further consideration. We return to this point in our discus-
sion.

This participant—as well as others—expressed the impor-
tance of access to bioinformatics expertise and the difficulty
of finding this expertise:

“Someone like me relies heavily on finding a collaborator in
bioinformatics who will have the time and the interest to
put my project ahead of the other 250 projects that people
around campus are proposing to them. It’s not that you
have to find a collaborator; you have to find a collaborator
who thinks that your project is the coolest one on their
table. And that’s the hardest thing.” (P8)

“. . .so there’s one guy at the Bule Lab, Michigan state, and
there’s another informaticist we know at Erie, so that’s
basically who we go to, our two connections. But you
know, they are very busy so sometimes we are on our own.”
(P5)

“I always acknowledge the people who help us . . . right in
the middle of the slide. I couldn’t have done this without
these two human beings because it was terrifying and they
saved our life.” (P1)

Despite the importance that bioinformatics researchers
play in life science research, easy access to their expertise
is not guaranteed. This high demand for bioinformaticians
results in the inability to find collaborators. Without access
to such expertise, the participants have to restrict the prob-
lems that they tackle and questions that they can answer to
what their current bioinformatics software can answer:

“I try to plan things out and I generate data such that the
highest question that I ask is something that I can answer
with this tool. If I can’t answer it, I don’t even try to go
there.” (P8)

“I could ask much more sophisticated questions, but the
reason I don’t is because I know I’ll hit a bottleneck in the
bioinformatics analysis.” (P8)

Further, participants expressed that the lack of access to
bioinformatics and domain expertise also required them to
put a lot of faith in the output of the software they use,
which they justified with the idea that the tools they were
using had been validated by the scientific community:

“. . .If you’re not a bioinformaticist, you have to go on the
expertise of being widely used, and it’s been validated and
in that sense it seems that people really are getting useful
data out of it then that’s what you make your call on.”
(P7)

“[At] the end of the day, you just have faith that the pro-
gram’s working or not.” (P2)

This practice is a cause for major concern since it suggests
that the results of the analysis are not necessarily properly
verified.

4.3.4 Large-Scale Research Collaboration
Problems revolving around the reliance of experts are ex-

acerbated as the size of the research groups becomes large
and/or geographically dispersed. Many recent scientific find-

ings have resulted from the coordination of large research
groups that encompass upwards of 100 researchers with di-
verse expertise. Even smaller projects are no longer per-
formed by individuals but groups of researchers.

“We can have between 40 and 50 people on any project”
(P6)

“The number of collaborators on any project ranges from
2 to approximately 50. The median is around 10.” (P10)

One of the main reasons for having a large number of
collaborators is because the problems studied by our partic-
ipants are multifaceted and require many different types of
data analysis. P10 describes the different types of expertise
required for one of her projects:

“So, like, if we’re doing a study on antimicrobial resistance
on feedlots, which is what we’re doing right now, we have
to have people on there who are on the feedlots, we have to
have veterinarians on there because they know about an-
tibiotics, we have to have animal science people on there
because they know about food safety, we need to have the
some epidemiologists on there because they know about
the ecology of resistance in feedlots, we need the bioinfor-
maticists to help sequence data that we get, we need people
who do the sequencing, we need statisticians to help with
the statistics of the bioinformatics output. So, there’s just
a lot of different parts. So, for some of the grants we also
have education components, so we need education people
on there. So it just gets big really fast.” (P4)

Scheduling and managing the research for groups of this
size and be difficult. Geography seems to have a large im-
pact; our participants described how they“frequently collab-
orate with people who are strong collaborators but are not
co-located” (P10) so they rely on teleconferencing. When
P10 was asked how he manages to remain connected with
everyone on a large research project, his reply was that:

“Well, you’re assuming that I do, so that’s a first thing”
(P10)

implying that it is immensely challenging, if not impossible,
at the current moment. Thus, he and other participants
described that they had resort to focusing on the timeline
of the project and ultimate goal.

“I think we do mostly [connect with collaborators] but [are]
probably goal- and timeline-oriented setup. So what’s the
ultimate project goal and breaking that down into sub-
goals and then looking at the timeline for when the work
has to be done and when the money has to be spent, those
kinds of things.” (P10)

5. DISCUSSION
Results from our study confirmed prior anecdotal evidence

of the usability of bioinformatics software. In particular, it
supports the fact that the lack of documentation describing
the software and its parameters, error messages, assump-
tions made about the data, and how to interpret the output
of the software is limiting the objectives of the researchers.
However, our results also demonstrate that these usability
issues are contributing to researchers’ reliance on compu-
tational experts to conduct their research. More impor-
tantly, when the needed experts are unavailable, they are
altering their research questions to those that they feel they
can confidently answer by running experiments and analy-
ses that match the expertise they gained on previous stud-
ies. This practice is likely resulting in novel findings being



delayed. Our results also demonstrate that life scientists’ re-
liance on bioinformatics experts results from an incomplete
understanding of the underlying algorithmic mechanics of
the software, due to the software’s lack of transparency. To
overcome this, some of our participants suggested abstract-
ing away from the underlying mechanics and algorithms of
the software through automatic parameter selection and/or
graphical user interfaces. Others simply used default param-
eters during analysis which may not be appropriate for their
dataset. Hence, life science researchers are treating bioin-
formatics software as a “black box” where they don’t quite
understand what to put in or what is coming out. This has
two major implications: (1) Resnick et al. stated:

“By building their own instruments, and understanding the
capabilities and limitations of those instruments, scientists
have historically gained deeper insights into the nature of
the phenomena under investigation” [23]

which suggests that life scientists are missing out on gaining
deeper insights that could preclude important scientific find-
ings, and (2) treating bioinformatics tools as black boxes can
result in misinterpretation of the data, as seen by the recent
number of retractions due to non-robust data analysis.

While this indicates that developers should instead strive
to make the underlying algorithmic pinnings more transpar-
ent, this approach places the burden back onto the scientists
by requiring them to learn mathematical and computer sci-
ence principles in order to analyze their data. It is the need
for this expertise that has required scientists to depend on
computational experts. The trade-off between abstraction
and transparency is one that needs further examination.

One of the most pervasive themes highlighted by our study
was the importance of collaboration in projects. Collabora-
tion was found to be necessary in our participants’ research
because it provided access to a wide range of expertise that is
required to conduct large and complex studies (e.g., the an-
timicrobial study of feedlots described above by P10). How-
ever, the collaboration between the participants and bioin-
formatics experts, and the collaborations between the par-
ticipants and other life scientists appeared to be unique in
many ways. Collaboration with bioinformatics experts was
a direct result of a lack of understanding how computational
tools should be used in the research workflow. Whereas col-
laboration with other life science researchers tended to fo-
cus on the need to answer complex biological phenomena or
extend previous findings. While participants showed frus-
trations regarding the overhead associated with collaborat-
ing with both groups, the collaboration with computational
experts was the only one mentioned to have a clear effect
on the analysis performed by researcher. For example, as
stated above by P8, it was not uncommon for researchers to
limit the questions they ask explore based on what software
they are comfortable using and their understanding of what
answers the software can provide.

In addition, we found that our participants’ research projects
relied on traditional methods to communicate with their
collaborators (e.g., in person meetings, phone calls, and
emails). This is unsurprising since the computational tools
used through the research workflow are not built for collab-
oration nor offer collaboration facilities. In fact, all of the
software mentioned by our participants is such that sharing
of results and data is difficult due to the size of the out-
put and results. Participants often mentioned it was easier

to share data by physically transporting it through package
delivery services than transfer it over the Internet. In fu-
ture work, we plan on exploring how tools can be designed
to provide life scientists with the computational help they
need while facilitating collaboration among a large number
of geographically dispersed researchers.

Lastly, Preeyanon et al. and Tran et al. previously re-
ported that many life scientists do not keep a record of
computational analysis procedures in the way they record
wet-lab experiments [22, 28]. Our results contradict these
findings. All of our participants had some type of artifact
that recorded the commands used to perform the analyses.
In fact, early researchers often relied on this record to per-
form even simple tasks within the computation environment
(e.g., changing directories). However, unlike with wet-lab
records, none of our participants recorded the outcomes of
the steps, only the procedure needed to replicate the task.
Instead, they often relied on having access to the digital out-
put. Describing the output in detail would be a insurmount-
able task due to the size of the data and output, however, it
isn’t unreasonable to expect them to write at a summary or
overview of the results. A possible avenue of future work is
to explore if previous proposed techniques (e.g., [29]) could
be adapted to this domain to enable scientist to record their
workflow in a more thorough manner.

5.1 Study Limitations
We acknowledge that this study may be affected by prob-

lems inherent to the self-reporting nature of interview data
and a small sample size.

Since this study aims to identify usability issues that are
present during typical use, it is important to ensure that the
population under observation accurately represents the pop-
ulation of typical users. Although interviewees were chosen
from a range of biological research areas and had varying
levels of education, it would have been beneficial to expand
the set of participants to have included more experienced
tool users.

Interview statements that cannot be substantiated by ev-
idence in work artifacts (e.g. lab notebooks and text files)
rely solely on self-reported information that may be im-
precise. Additionally, although participants were asked to
demonstrate specific instances of recent research to reduce
recall bias and ground the interview data, the study could
be strengthened by validating statements with data gath-
ered from observing scientists conducting actual research.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the results of semi-structured

interviews which provided insight into the effects of bioin-
formatics software usability on life science research. Fu-
ture work includes addressing study limitations described
above by interviewing additional participants and conduct-
ing additional studies to observe biological researchers using
bioinformatics tools while conducting actual research. Fur-
thermore, to ensure that our interpretations of qualitative
data are accurate, future work includes conducting follow-
up interviews with participants from this study. Finally,
additional studies can be conducted to explore design rec-
ommendations and evaluate their effectiveness.
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