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ABSTRACT 

We designed and evaluated a series of teleoperation interface tech-

niques that aim to draw operator attention while mitigating negative 

effects of interruption. Monitoring live teleoperation video feeds, 

for example to search for survivors in search and rescue, can be 

cognitively taxing, particularly for operators driving multiple ro-

bots or monitoring multiple cameras. To reduce workload, emerg-

ing computer vision techniques can automatically identify and in-

dicate (cue) salient points of potential interest for the operator. 

However, it is not clear how to cue such points to a preoccupied 

operator – whether cues would be distracting and a hindrance to 

operators – and how the design of the cue may impact operator cog-

nitive load, attention drawn, and primary task performance. In this 

paper, we detail our iterative design process for creating a range of 

visual attention-grabbing cues that are grounded in psychological 

literature on human attention, and two formal evaluations that 

measure attention-grabbing capability and impact on operator per-

formance. Our results show that visually cueing on-screen points of 

interest does not distract operators, that operators perform poorly 

without the cues, and detail how particular cue design parameters 

impact operator cognitive load and task performance. Specifically, 

full-screen cues can lower cognitive load, but can increase response 

time; animated cues may improve accuracy, but increase cognitive 

load. Finally, from this design process we provide tested, and the-

oretically grounded cues for attention drawing in teleoperation. 
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• Human-centered computing ➝ Interaction design ➝ Interac-

tion design process and methods ➝ User interface design 
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1. INTRODUCTION 
Improved robot teleoperation interfaces for applications including 

the military [38], industrial [42], or domestic tasks [27,29], remains 

an ongoing research challenge. To improve operator efficiency, a 

goal of teleoperation is to enable fewer people to control or monitor 

more robots, increasing the human-robot ratio [31,53], and getting 

more work done faster. Unfortunately, increasing the information 

given to operators, such as simultaneous video feeds from separate 

cameras or robots, results in higher cognitive load and operator er-

ror (e.g., [12,35,36,42]). As such, a primary goal of teleoperation 

usability research is to improve overall operator effectiveness: pro-

vide them with the tools and information they need to perform their 

tasks, without overloading them mentally. We follow this theme, 

exploring tools to increase performance on visual search tasks. 

Emerging computer vision techniques (e.g. [7,47]) can help opera-

tors in visual search tasks by automatically identifying potential 

points of interest, and indicating (cueing) the points for inspection. 

However, it is not yet clear how this information should be cued to 

an operator to effectively gain their attention, without distracting 

from the primary task. This balance is not obvious: cues cannot be 

too subtle, as while attention is focused (e.g., on a search task) peo-

ple may not notice events outside their immediate focus [50]. Cues 

that are too intrusive can be annoying, frustrating, and distracting 

to the point of negatively impacting the primary search task [46]. 

Drawing from psychology literature on human attention, we con-

ducted an iterative design exploration of using visual cues in a 

multi-robot search and rescue context. We iteratively designed, im-

plemented, and evaluated cue variants based on cue proximity (at a 

target point or full-screen) and cue motion (moving or static), while 

measuring operator visual-search accuracy, response time, and cog-

nitive load. Results indicate that moving cues can help operators 

find more lights than static cues. Further, cues located at a light, 

particularly when moving, can be the quickest for operators to as-

sess, but also increase cognitive demand. Well-designed full-screen 

cues can achieve similar task effectiveness while simultaneously 

lowering the cognitive load required on operators. In addition to our 

study results and reflection on these parameters, we present a set of 

tested, iteratively designed cues that aide operators in visual search 

tasks without negatively impacting the impact on cognitive load. 

2. RELATED WORK 
Supporting teleoperation (aiming to increase performance and 

lower cognitive demands) by modifying how video feeds are pre-

sented is an active research area [12,17,27,38]. Much of this has 
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Figure 1. Visually cueing a point of interest on a tiled camera 

feed, e.g., by using a bouncing circle that draws attention to a 

point of interest (green light, red lines indicate circle move-

ment, and are not shown in the interface).  
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revolved around camera location and viewpoint choice, for exam-

ple, egocentric views enable an operator to see the world from the 

robot’s perspective [12,26,27], environmental views provide robot-

in-context information [17], while bird’s-eye and third-person 

views provide this context calibrated around the robot as it moves 

[14,39,40]. When multiple feeds are displayed, research has ex-

plored layout options, such as displaying all screens in a tiled fash-

ion to maximize available information [44], or using picture-in-pic-

ture techniques to prioritize screen real-estate toward more im-

portant views [24]. Feeds can be hidden until requested [15], with 

operators perhaps rotating through them [3] – reducing information 

load and saving screen space [15]. Rather than projecting views or 

representing camera placement, we aim to support teleoperation by 

providing task-specific help: drawing operator attention to points 

of interest while mitigating the negative effects of the interruption. 

The video feed itself is commonly augmented with graphics to rep-

resent relevant information, such as sensor data [22,38], or task in-

formation as with ecological design [17,29,42], including notifica-

tions [9]. We expand on this work, by investigating how to notify 

users of potential points of interest within a video feed. 

In computer vision, saliency detection refers to the problem of de-

tecting image regions that are likely to be salient to a human viewer. 

This is a complex problem which considers physiology of vision as 

well as psychology. Saliency detection has been used successfully 

to shift [52] and predict [7,49] gaze, improve visibility in aug-

mented reality [21], and model analysis of context [10]. It has also 

been used to modify video scenes, and to draw human attention to-

ward objects (e.g. [52]); in this case, the changes were subtle and 

the goal was for impacting viewer tendency to look at areas, not 

direct attention to immediate concerns. For teleoperation, saliency 

detection has been applied only rarely, to inform interface design 

of sensor readouts [9], or to minimize transmission bandwidth [47]; 

here, low-saliency regions use lower resolution, effectively blur-

ring them. We extend this work by investigating how visual cues 

can be designed to appropriately draw operator attention to such 

points identified through saliency detection, while aiming to lower 

operator distraction that may impact task performance. 

Human visual attention, particularly for visual search, has a rich 

history in psychology. Studies frequently focus on static abstract 

images [10,23,25,48], or abstract videos with colors or shapes 

changing and moving against solid backgrounds [1,3,8,21–23]. 

Studies with natural scenes tend to use static images [10,49,50]. 

Some video work in natural scenes focuses on closed-circuit tele-

vision monitors [3,11,20,43]. Robots, unlike CCTV cameras, move 

throughout their environment freely, presenting highly dynamic 

and noisy camera views from constantly shifting perspectives; fur-

ther, increasingly dynamic environments tax users’ attention re-

sources [32,45]. As such, prior attention results must be specifically 

evaluated in the unique, high-demand teleoperation context. 

Notification work for general desktop applications has focused on 

when to draw attention [4,18,19,30], which does not apply to our 

task, where operators must be immediately notified and respond in 

a short time (before a target leaves the screen). Work on how to 

draw attention is much more limited. Some has highlighted how 

interruptions can be distracting or annoying, and has investigated 

how to minimize these problems [52], while (recently) noting the 

lack of solutions to this problem [46]. Further, heavy use of inter-

ruptions can lead to users ignoring them [8]. These results, primar-

ily from web and desktop applications, motivate the need for our 

research in the visually-intense and noisy teleoperation task, ex-

ploring attention-drawing cue design that balances being attention-

grabbing while not being distracting or being ignored due to fatigue. 

3. ATTENTION AND PERCEPTION 
Human visual attention – how people choose what to focus their 

vision resources on – is a well-studied topic in biology, neurology, 

psychology, etc. Attention can be defined as an enhanced response 

to stimuli at an attended location and, as a result, reduced response 

to stimuli elsewhere [50]. Thus, we can expect people to have in-

creased focus on some task elements (e.g., during searching, driv-

ing, reading), and, inversely, difficulty noticing things outside of 

their focus [37], even highly-salient points of interest – this is called 

inattentional blindness [28]. This is especially difficult during noisy 

dynamic tasks, such as teleoperation [41]. We aim to work within 

human patterns of attention to devise visual mechanisms to help 

gain people’s attention and direct it to points of interest, with min-

imal overall hindrance or additional strain on cognitive resources. 

One technique for focusing attention, called goal-based attention, 

cognitively directs attention to known criteria or stimuli, such as a 

known suspect on CCTV [20]. Goal-based attention is relevant to 

teleoperation as operators often have specific, if broadly defined, 

tasks that drive visual search and cognition such as “find and rescue 

all victims in a disaster.” Complicated search goals (multiple crite-

ria, complex shapes) and environments, such as disaster environ-

ments, reduce the effectiveness of goal-based attention [20,37,51]. 

Increasing the number of cameras will also reduce the effectiveness 

of goal-based attention due to the increased search area [43]. Goal-

based attention quickly reaches limitations in complicated tasks and 

environments that may be present in tele-robotic search and rescue. 

Alternatively, stimulus-driven attention draws a person’s attention 

to salient stimuli, such as bright lights, motion, or high contrast 

graphics. Interfaces could have objects appearing [13], elements 

starting to move [1,2], or motion perpendicular to other motion in 

the visual field [13]; not all changes are similarly salient, for exam-

ple, color shift, or motion types such as receding motion or move-

ment parallel to other ongoing motions, have been found to be less 

effective at drawing attention [1,13]. Stimulus-driven design suf-

fers less from fatigue in comparison to goal-based attention, and 

further suffers less from inattentional blindness, important for long-

term attention (vigilance) [11]. As such, we design cues leveraging 

stimulus-based attention to mitigate some of the limitations in-

curred by the operator’s goal-driven attention. 

4. CUE DESIGN PROCESS  
Our investigation into how cue design impacts teleoperator perfor-

mance employed an iterative design process: we drew from percep-

tion and attention literature to inform design, devised a mock urban 

search and rescue task for evaluation, implemented our cues into 

the mock task, and conducted formal experiments to learn of the 

impact of our cue designs. Our results informed the design of new 

cues and conducted more experiments, for a total of one pilot (9 

participants) and two formal studies (with 20 participants each). 

4.1 Cue Evaluation Test Bed 
We developed a test bed that engages participants in mock urban 

search and rescue, performing visual search on teleoperation feeds, 

enabling us to test the impact of our cues on visual search. 

4.1.1 Task 
Participants monitored a collage of four tiled video feeds from tel-

eoperated robots exploring a mock-disaster environment (Figure 1), 

and were asked to search for stimuli that represented points of in-

terest (e.g. potential victims, dangerous equipment). Participants 

tapped the screen near the stimuli to show they had identified it. 

For our stimulus, we aimed for an abstract stimulus that would 

more readily generalize to a broad range of tele-operation tasks. As 



such, we avoided being domain-specific, and potentially confound-

ing variables such as shape or pattern. Our design goal was for an 

abstract, generalizable stimulus which is unambiguous once found, 

yet still difficult to find. We chose green point lights as our target. 

Further, we aimed to increase visual search validity by using a vis-

ually noisy scene with realistic robot movement and video quality, 

building on existing fully abstract perception work by investigating 

attention in a more representative visual environment. 

4.1.2 Teleoperation Videos 
We pre-recorded our robot teleoperation videos for consistency 

across participants. As participants only monitored the feeds, and 

did not actually see the teleoperators, this is equivalent to live op-

eration for our evaluation purposes.  

We arranged a room to have furniture, electronics, and debris scat-

tered around (Figure 1), and remotely controlled a NAO H25 robot 

over Wi-Fi traversing the space. The video was recorded from the 

robot’s head camera (640x480 at 17 FPS). 

We recorded five videos, each having a unique room and debris 

arrangement, while maintaining similar visual clutter, layout, light-

ing conditions, and robot movement properties (speed, frequent 

turns, minimal stopping). We compiled five different (but compa-

rable in character) four-tile collages for a repeated-measures study 

design. We modified the video selection and position in the collage 

using incomplete Latin Squares to minimize learning effects. Each 

video and collage lasted six minutes and four seconds long. 

4.1.3 Stimuli (light) Placement and Timing 
We placed several centrally-controlled green LED lights through-

out the mock environment to serve as our stimuli. Light timing and 

placement posed several challenges. First, only one light at a time 

should be illuminated in the entire collage, to avoid confusion over 

which stimulus a participant noticed. As such, lights could not 

simply be left on, and had to be triggered as needed. Second, lights 

should not turn on or off in-scene, as this change itself is a con-

founding stimulus [13], and should change off-camera. Third, there 

should be a consistent minimum delay between the stimuli (but not 

fixed, to avoid predictability), to avoid confusion over which light 

a participant responds to (we used one second). Finally, light oc-

currence between the videos in a collage should be evenly balanced. 

The coordination of lights turning on and off within a video, and 

between videos, was non-trivial, particularly given how videos 

would be combined into various collage configurations. We em-

ployed a master schedule that dictated light timing, and made minor 

imperceptible changes to video speed to ensure all constraints were 

met. Each video was over six minutes and four seconds long and 

had exactly 12 light stimuli. Thus, each collage had exactly 48 light 

stimuli, which showed up on average every 8 seconds. As each 

video had a unique stimuli timing, the relative timing between the 

stimuli changed in each collage due to our Latin Square balancing. 

4.1.4 Cue Integration into Video 
All visual cues were created using post-processing in Adobe Prem-

iere and After Effects. For each experiment, a full set of collage 

videos were made for each cue (each collage had a version with one 

cue type applied) to allow for within-participant counterbalancing. 

Rather than simply attaching cues to all lights in a video collage, 

for improved ecological validity we also included false-positive 

cues (cue without stimuli), false-negative cues (stimuli but no cue), 

and cue misses (a stimulus, but cue at an incorrect location). These 

not only simulate the realities of imperfect saliency-detection sys-

tems [5], but were designed to imbue a sense of diligence in partic-

ipants, as they could not completely trust the cueing system. 

Further, introducing cueing errors into a system, while realistic, can 

have overall detrimental effects on performance: operators can lose 

trust in unreliable cues and overcompensate with increased atten-

tion, introducing additional error [2,13,33,34], potentially more 

than an un-cued case. As such, these standard errors must be part 

of a test bed for comparing cues to an un-cued base case. 

In our case, each collage contained 52 cue instances: 40 correct 

true-positive cues (77%), 4 false-positive cues, 4 false-negatives 

(no cue), and an additional 4 cue misses, for a total of 23% error 

cases. False cue rates were based on prior attention work [33]. 

4.1.5  Instruments 
Participant taps (indicating they saw a light) produced a short beep 

to indicate it was registered, and were recorded and automatically 

processed for response time and accuracy. Accuracy was further 

broken down into correct identification of a light, tapping with no 

light or cue, and tapping the cue and not the light in the mis-cue 

case (cue in wrong location). A tap was correct if it occurred in the 

correct feed within 2 seconds of the light disappearing (a generous 

upper limit based on an expected maximum .5s reaction time [34]). 

After each task (i.e., with one cue), participants filled out a short 

questionnaire to measure subjective cognitive load (NASA TLX 

[16]), and custom 20-point Likert-like items (mimicking the ap-

pearance of the TLX scales) for nausea, trust in the interface, en-

joyability, and self-perception of speed at the task.  

At the end of the experiment, participants answered a free-form 

short answer section on pros and cons of each cue, as well as any 

comments on any motion sickness, or other comments. 

Participants sat in front of a Microsoft Surface 2 tablet, with the 

video collage displayed in full-screen and at max brightness, with 

the minimum tilt setting. Participants were not allowed to pick up 

the tablet or change the tilt. The desk, chair, and tablet displaying 

the collages that participants used were placed at fixed initial posi-

tions, though participants could adjust the chair to be comfortable. 

4.1.6 Procedure 
Before beginning the experiment, participants are briefed on the 

task before reading and signing an informed consent form. They 

were then given a 30-second practice collage to watch, and shown 

how to indicate where in the collage a light appeared (by tapping). 

They were told that the videos were pre-recorded using real robot, 

and were informed of, with examples, of how the cueing system 

sometimes made mistakes (false cues). 

Before starting the tasks, participants are shown example collages 

containing all visual cues in the order they would appear in the ex-

periment. Participants were told (and reminded before each task) to 

act as quickly as possible as time was being recorded. 

The experiments used within-participants design, with participants 

completing the task with all cue designs; cue orders and cue-collage 

mapping were counterbalanced using incomplete Latin Squares. 

Before each task we displayed the cue to refresh the participant’s 

memory, and the task started when the participant touched the 

screen). Between tasks, before moving on to a new que, there was 

a mandatory three-minute break to mitigate the impact of fatigue; 

during this time, participants filled out the post-task questionnaire. 

After all tasks were complete, participants completed the post-ex-

periment questionnaire, and were debriefed on the experiment. 

4.2 Cue Design  
Our cue-design methodology was based on our background explo-

ration in human attention literature, as summarized in Section 3. As 

motion is highly effective at drawing attention [1,2], it is a strong 



candidate for cue design. However, motion can be distracting [46], 

and may have a negative impact on primary task performance. Fur-

ther, in our search and rescue application, the visual field is already 

noisy: constantly changing as the robot navigates; we need to in-

vestigate if motion cueing is still effective in this scenario, or, if the 

combined motion of the cue and robot becomes even more distract-

ing. We investigate cue motion as a design variable: cues that move 

(moving cues), and cues that do not move (static cues). As the light 

is always moving in the visual field of the robots, we defined static 

cues to be fixed relative to the moving light. 

On-screen cue location is important as it impacts the cue visibility: 

an operator may be focusing elsewhere when a light appears. Cues 

located near a light encode the location of the light and thus reduces 

the search space once noticed [43]. Therefore, we may expect these 

cues to elicit fast response times, as once a cue is seen, an operator 

does not need to search for the light. However, due to inattentional 

blindness, operators may not notice even highly salient cues outside 

their current attention [41], and so we examine full-screen cues 

(visible everywhere at once). These should be easy to notice, no 

matter where an operator is focusing, which indicates to the opera-

tor that a target is currently on screen. Therefore, we investigate the 

cue proximity as our second design variable: cues at the light (at-

light cues) and cues over the entire visual field (full-screen cues).  

We use these two design variables, cue motion and cue proximity, 

to drive our cue design as well as evaluation. 

5. INITIAL CUE DESIGN AND PILOT 
We conducted an initial pilot study as a broad exploration into cue 

design for supporting teleoperation visual search, using our two de-

sign variables: cue motion, and cue proximity. In the pilot, our full 

protocol was not followed: we only measured accuracy, and we 

used an earlier and rougher video collage that was longer, had less 

rigorous light spacing, and had all cue types intermixed. 

5.1 Initial Cue Design 
We designed and implemented an initial set of nine cues based on 

our perception literature exploration and our two design variables. 

Our initial at-light (cue proximity variable) cues were red circle and 

grey circle, simple outlines, and exposure, a disc of increased ex-

posure, over the stimulus. These were chosen to explore the impact 

of visual contrast, a known factor in salience [11,20].  

For investigating movement, we animated the grey circle to bounce 

one cue radius either left to right (vertical cue) or top to bottom 

(horizontal cue). Motion direction, either parallel to or orthogonal 

to visual flow, can impact salience [1,13]; given that our robots turn 

often but do not look up or down frequently (except when they fall), 

horizontal is parallel and vertical is orthogonal. 

For the full-screen component of cue proximity, we aimed to im-

pact the whole visual field, to be difficult to ignore, while simulta-

neously trying to indicate where the light is. We tried blurring (blur 

cue) or darkening (exposure reduction) the entire screen except for 

a disc around the light. Both changes in clarity and exposure have 

been shown to be salient [6,52]. These cues cannot trivially be made 

dynamic, as simply animating them would not be effective as both 

the blur and darken effects would not show change as they move. 

For our full-screen, moving cue, we drew from video-game design 

and implemented a common targeting animation: target was a cir-

cle approximately the size of the screen that appeared and rapidly 

shrank towards the target. While the shrinking motion should at-

tract attention, particularly as a shrinking circle has orthogonal mo-

tion to all visual flow directions [1,13], a risk is that it may appear 

as a receding motion, which has been shown to be less salient [1]. 

For all moving cues, the animation lasted for 1 second for con-

sistency across cues; horizontal and vertical bounce cues and target 

cues all became static grey circles until the light left the screen.  

5.2 Pilot Study 
Our primary focus of the pilot study was to direct our exploration 

for more formal study by evaluating our test bed, testing our design 

variables, and obtaining an initial sense of our cue design successes 

and failures. As such, we ran our pilot with all eight initial cues (red 

circle, grey circle, exposure, horizontal bounce, vertical bounce, 

blur, darken, and target) and compared their impact on how many 

lights participants correctly identified (accuracy). While we com-

pare data across all cues, of particular interest to us was which cues 

performed best in each design configurations: at-light static, at-

light moving, full-screen static, and full-screen moving. 

In addition, we added a case with no cueing (just the light stimuli): 

this was to measure the overall impact of cueing (e.g., can possibly 

make performance worse), as well as to test the task itself, to ensure 

that it was sufficiently difficult to benefit from cues. 

5.2.1 Results  
We conducted our pilot with nine participants recruited from our 

general university population. A one-way repeated measures 

ANOVA showed an effect of cue type on accuracy (F8,64=5.71, 

η2=0.42, p<.001, Figure 2). Post-hoc comparisons (with Bonferroni 

correction) comparing all cues to each other revealed the best per-

forming cue for each design parameter set. While Target was the 

only full-screen moving cue, it was validated by performing statis-

tically better than four other cues. If there was not a clear winner, 

we simply picked the cue with the highest mean. 

In the no-cue case, operators found on average 66% of lights (std. 

dev 17%). This was comparable to some of the worse cues (expo-

sure, horizontal bounce). This indicates that our test bed and visual-

search task are sufficiently difficult, where the addition of cues can 

potentially improve on the success rate. However, some cues seem 

to perform at least as badly as having no cue at all (Figure 2).  

6. FIRST DESIGN ITERATION 
The results of our pilot study gave us initial representative candi-

dates for each design parameter combination: grey circle performed 

best as our at-light, static cue, the full-screen dark effect as our full-

screen, static cue, the vertical bouncing circle as our at-light mov-

ing cue, and the video-game inspired targeting as our full-screen 

Figure 2. Mean accuracy of our initial cues. Error bars show 

95% confidence intervals. 
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Table 1. Representative cues for testing our cue proximity and 

movement design parameters.  

   cue proximity 

   at-light full-screen 

cue movement static circle dark 

moving bounce target 
 



moving cue. We refer to these as circle, dark, bounce, and target, 

respectfully, as summarized in Table 1 and shown in Figure 3. 

We employed the full test-bed protocol as a within-participants ex-

periment: each participant completed the task with each of the four 

interfaces. We counterbalanced cue and collage order. 

The purpose of this iteration was to more formally and rigorously 

test our design variables, cue proximity and movement, using our 

candidate representative cues developed through the exploratory 

pilot study. We again included the no-cue case to more rigorously 

test the overall impact of cueing in comparison to the un-cued base 

case (e.g., cueing may possibly hinder performance). 

6.1 Results 
We recruited 20 participants (8 female) from the local university 

population. The mode age (collected in ranges) was 26-30, at 35%.  

Repeated-measures ANOVA comparing all cue against the no-cue 

case) showed an effect of cue type on response time (Figure 4b, 

F2.8,52.3=41.9, η2=.69, p<.001, Greenhouse-Geisser correction), ac-

curacy (Figure 4c, F2.0,38.3=30.8, η2=.62, p<.001, Greenhouse-

Geisser correction), and cognitive load (Figure 4a, F2.2,41.8=6.5, 

η2=.26, p=.003, Greenhouse-Geisser correction). Planned contrasts 

against no cue showed all others to be more accurate and to have 

lower cognitive load (p<.002), while circle, bounce, and dark had 

faster response time; no response-time difference was found against 

target (p<.01). While Figure 4 shows overall means and confidence 

intervals, the within-participants statistics uses relational scores. 

We performed 2-way repeated-measures ANOVAs (cue proximity 

X motion) on operator accuracy, response time, and cognitive load 

(Figure 5). Bonferroni-corrected post-hoc tests were performed 

(with main effects) to investigate the effect for each of the levels. 

We found a main effect of cue proximity on operator response time:  

at-light was faster than full-screen (Figure 5b, F1,19=107.3, η2=.85, 

p<.001, 95% CI [-232ms, -154ms]). Post-hoc tests revealed that cir-

cle was faster than dark (p=.021, 95% CI [-153ms, -14ms]), and 

bounce was faster than target (p<.001, 95% CI [-353ms, 252ms]). 

We also found a main effect of cue movement on response time 

revealing that static was faster than moving, (Figure 5b, F1,19=4.9, 

η2=.20, p=.04, 95% CI [-113ms, -3ms]). Post-hoc tests revealed that 

dark was faster than target, p < .002, 95% CI [-235ms, -98ms]; 

static circle versus moving bounce was n.s. There was an interac-

tion effect between the two parameters (F1,19=24.3, η2= .56, 

p<.001).  

We found a main effect of cue proximity on operator accuracy, re-

vealing that operators found more lights with at-light cues than with 

full-screen cues (Figure 5c, F1,19=4.4, η2=.19, p<.05, 95% CI [0 

lights, 1.15 lights]). Post-hoc tests showed circle to have better ac-

curacy than dark (p=.42, 95% CI, CI [-.23, -2.8 lights found]). 

We also found a main effect of cue motion on operator accuracy: 

operators found more lights with moving cues (F1,19=6.5, η2=.26, 

p<.05, 95% CI [-1.773, -.177 lights]). Post-hoc tests were all n.s. 

We found a main effect of cue proximity on cognitive load, reveal-

ing that participants rated full-screen cues as demanding lower cog-

nitive load (Figure 5a, p<.01, F1,19=8.4, η2= .31, 95% CI [-9.087, -

1.463] NASA TLX points). Tests for main effect for cue move-

ment, and interaction effects were all non-significant. 

In summary, the 2x2 ANOVAs indicated that participants were 

faster and found more lights with at-light cues than full-screen cues, 

although the full-screen cues demanded lower cognitive load. Par-

ticipants further were faster with static cues than moving cues, alt-

hough they found more lights with moving cues. 

No effects were found on nausea, trust in the interface, cue enjoya-

bility, preference, or self-perception of task speed. Further, data on 

miscues and misclicks (when no light was present) were all n.s. 

6.2 Analysis of Participant Feedback 
To gain insight into strengths, weaknesses, and differences between 

cues, we performed open coding on short-answer feedback. 

Motion cues (bounce and target) were seen by some as attention-

grabbing (positive, 16 participants for bounce, two for target), 

while distracting by others (11 for bounce, seven for target), de-

scribing them as being “tiresome,” and “stressful to eye,” (bounce) 

or “breaking visual concentration,” and “very distracting” (target). 

Some participants simultaneously praised the attention-grabbing 
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Figure 3. Our four interfaces for the first design iteration: 

dark (top-left), circle (top-right), target (bottom-left), 

bounce (bottom-right). Red markup indicates motion and 

are not shown in the interface. 



properties of Bounce while commenting that it was too distracting. 

Static cues had fewer comments on distraction: four participants 

made comments such as the dark cue being “somewhat distracting,” 

but seven noted that it was “minimally distracting.” 11 participants 

noted that circle was “not easy to locate,” and “not very distract-

ing.” 

Participants commented that full-screen cues positively affected 

their comfort. Eight participants mentioned that the dark cue was 

“very relaxing,” induced “less dizziness,” and was “easy to visual-

ize,” and target cue had five comments about reduced stress “it 

highlights and easy to see. Less effort.” Circle had six comments 

note it was “calm with a smooth motion” and that “appearing with-

out a sense of movement diminished the urgency.” No similar com-

ments were given for bounce, but 11 participants complained it was 

tiring: “made me feel dizzy,” “have to cautiously monitor four 

screens. Stressful” and, “heightened the sense of urgency.” 

Unique to the target cue, participants complained about its speed: 

five participants mentioned frustration: it was “too slow to capture 

the light,” and “took focus off other screens for extended periods.” 

No other cue had comments about speed.  

Some participants noted the light-position information encoded in 

the full-screen cues. 10 mentioned that the target cue “helps you to 

target your focus on one [robot’s video]” and that it “can tell me 

directly where the green light is when it’s shrinking.” While four 

people mentioned that with the dark cue the “increase light-to-back-

ground contrast made it easier to detect,” eight participants con-

versely mentioned that it only “darkens the whole screen to let you 

know something has been captured” and required participants to 

“waste time by locating the image that is less darkened.” There 

were no such comments found for the at-light cues. 

Related to comfort, 14 participants complained about some level of 

nausea from the study. This was not linked to a specific interface, 

but was attributed by the participants to the simultaneous and often 

not coordinated movements of the robots. 

6.3 Discussion 
As with the pilot, our results confirm the validity of our test bed, as 

well as our cueing technique: all cues increased accuracy and low-

ered cognitive load, and all but the target cue increased response 

time (though Target was not found to be worse), when compared 

with no cue. Therefore, at the least, cueing may be useful to help 

participants in urban search and rescue tasks. Further, the benefits 

of our cues, for the results we measured, offset any detrimental ef-

fects that may be introduced, such as too much distraction [46]. 

The analysis of our two design parameters detailed important 

tradeoffs between design choices. Full-screen cue proximity ap-

peared to demand lower cognitive load than at-light cues. It is not 

entirely clear why this may be, but participant feedback indicates 

that some found full screen cues more comfortable and readable, 

with target specifically being helpful for directing attention to a 

light. As well, bounce’s motion (quick bounces up and down) is 

different from target’s (smooth shrinking) which may also be a fac-

tor. Further, full-screen cues may reduce stress of potentially miss-

ing a cue, as they are much more difficult to miss. 

At-light cue proximity resulted in operators finding more lights, 

and more quickly, than full-screen cues, despite the increased cog-

nitive load. This can be explained in part by how at-light cues ef-

fectively make the stimulus larger. Further, at-light cues immedi-

ately indicate where the light is (once the cue is noticed). This can 

be contrasted with dark where participants complained they had to 

take time to search for it, or target, where they complained of the 

slow speed of our moving full-screen target cue which took an en-

tire second to home in on the light. 

Note that moving cues had slower response time. This is supported 

by our planned contrasts on response time: all interfaces except for 

Target were faster than None. Further, Figure 4b and Figure 5b sug-

gests Target is the driving force behind the response times, per-

forming worse than other cues, except for the no cue case.  

For the cue motion design parameter, participants found a few more 

lights with moving cues in general, and overall were finding the 

lights faster than with static cues, although the specific results were 

mixed (the static dark was faster than the moving target). Partici-

pant feedback indicated that the moving cues were more salient, 

which explains the improved accuracy. The attitudes were again 

mixed, however, with some framing this positively as attention-

grabbing or negatively as distracting, although the negative com-

ponent was not reflected in performance or cognitive load scores. 

Static cues were in general the poorest performers, with higher cog-

nitive demands, and slower response times, and some participants 

noting that they were not easy to locate. This implies that Dark was 

specifically worse in Accuracy. Participants commented that they 

could easily see the Dark cue, but had to quickly look for the light 

itself: there was no position information encoded in the cue. This 

can be compared to Target which directly led the viewer to the light 

by the end of the animation.  

6.3.1 First Iteration Summary 
While the circle cue was better than no cue, and helped operators 

find the most lights, it appears to have one of the highest cognitive 

load demands, and did not perform well in response time (except or 

being faster than target) or accuracy. The dark cue similarly only 
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performed well for speed in comparison to target, and had the low-

est accuracy. Bounce was one of the strongest performers, with one 

of the fastest response times and best accuracies, but had com-

plaints about distraction and fatigue, with improvements to be made 

in cognitive load. Target, while having speed issues, had one of the 

stronger cognitive load scores and was comparable on accuracy. 

One important component of our analysis was the interaction effect 

found on response time (Figure 5b), which appears to be driven by 

the slow target cue. Target’s poor speed was also reflected in it be-

ing the only cue that did not perform faster than no cue. Thus, we 

need to be careful about interpreting the response time main effects, 

as the specific target cue may need design improvements. 

7. SECOND DESIGN ITERATION 
We draw on our study results to develop a new set of cues to be 

tested. Some of these are iterations on our previous designs, while 

others are new designs based on our results from the first iteration. 

Our main goal in the second iteration was to develop hybrid cues 

with both static and moving elements, as well as full-screen and at-

light elements to see if combining our cue design parameters could 

improve operator performance. 

While the bounce cue was a strong performer, the weak point was 

the fatigue and cognitive load. We iterate on bounce by adding a 

full-screen element to try and mitigate these issues, to embed the 

comfort and cognitive load gains associated with our other full-

screen cues. Specifically, we add a border to the video feeds for the 

duration of the cue, without changing the bounce itself (Figure 6). 

We hypothesize that this framed bounce will have improved cogni-

tive load scores over the previous bounce, without negatively im-

pacting response times or accuracy. 

Participants commented on the benefits of full-screen cues encod-

ing the location of the stimulus as well as providing an alert. We 

designed a new full-screen cue that statically encodes the light po-

sition; we hypothesize that avoiding moving elements can reduce 

frustration (and help with cognitive load), while maintaining the 

accuracy and cognitive load benefits of the full-screen design. Spe-

cifically, we used a greyscale radial gradient (linear, dark at edges, 

light at center) centered over a light (Figure 6). We anticipate that 

eyes can quickly follow the gradient from anywhere on screen to-

ward the light as if looking through a tunnel. This encodes location 

similar to the target cue, but without the time constraint. We hy-

pothesize that this tunnel cue will improve the cognitive load and 

accuracy over bounce, while achieving similar with response time. 

As a secondary agenda, we directly iterate on our target cue. We 

believe that the animation that target uses to shrink toward the stim-

ulus could be much faster, and still maintain its positive character-

istics (low cognitive load and strong accuracy). As such, we devel-

oped a fast target variant which animated three times faster (0.33s 

instead of 1s). We hypothesize that this improved target cue will 

maintain the accuracy and cognitive load of target (not do worse), 

while improving on the response time. 

We conducted our full protocol using five cues: framed bounce, fast 

target, tunnel, regular target (to compare against fast target), and 

regular bounce (to compare against framed bounce, and tunnel). We 

keep target and bounce in the procedure to re-test for consistency 

and improved comparability with within-participants.  

7.1 Results and Discussion 
We recruited 20 people from around the university campus. Partic-

ipant ages were collected in ranges; the mode was the 18-20 range, 

at 55%. We analyzed our data using t-tests given our targeted hy-

potheses, and did not use more exploratory methods. We summa-

rize these results in Figure 7. 

When comparing framed bounce to bounce, we found a trend for 

framed bounce to improve cognitive load (t=1.6, p=.064, 95% CI 

[-1.582, 11.682], one tailed). While no difference was detected be-

tween response times (t=-1.7,p=.11,[-96ms, 10ms]), framed bounce 

had better accuracy (t=-2.5, p=.021, 95% CI [-2.290, -.210 stimuli]). 

Comparing tunnel to bounce, we found a trend for tunnel to im-

prove cognitive load (t=1.5, p=.08, 95% CI [-1.771, 9.971], one 

tailed), with no difference found on accuracy (t=1.0, p=.16, 95% CI 

[-.725, 2.125 stimuli], one tailed). We found tunnel to be slower 

than bounce (t=-3.6, p=.001, 95% CI [-162ms, -43ms]). 

We found that participants had a faster response time with our fast 

target, than regular target (t=7.6, p<.001, 95% CI [205ms 361ms], 

one tailed). We did not find difference for accuracy (t=0, p=1.0) or 

cognitive load (t=-0.9, p=.19, 95% CI [-8.503, 3.303]). 

In this study, we successfully demonstrated how hybrid cues can be 

developed to integrate benefits of cues throughout our design space. 

Our full-screen plus at-light framed bounce cue had better accuracy 

Figure 6. Our two new cues (from the left) framed bounce, 

and tunnel. Red lines indicate the animation 
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than the regular bounce, comparable response times, and poten-

tially improved cognitive load (a trend, requiring further study). At 

the same time, the failure of the tunnel cue, which may slightly im-

prove cognitive load but harms response time, highlights the non-

trivial nature of designing effective cues. It is likely our position 

encoding failed somehow, as it is a core concept in target, which 

performs well. Finally, we have demonstrated how our target cue 

can be improved simply by making it faster, negating many of the 

problems encountered with this cue in earlier study though our data 

points to a potential small effect of increased cognitive load. 

8. Discussion 
Looking across both studies (Table 2), motion and full-screen cues 

seem to be effective at improving accuracy, response time, and cog-

nitive load. We also made at-light with good accuracy and response 

time, implying that, at least in our experiment scenario, people are 

good at searching for local cues as long as they stand out in some 

way e.g. animation. In both studies, there were still moving (origi-

nal target) or full-screen cues (dark, tunnel) that did not perform 

well, which hints at the complexity of the design space; we cannot 

blindly trust a single or pair of our design variables. We did not see 

any cue perform worse than no cue, implying that adding visual 

cues to teleoperation poses little risk, and can add many benefits. 

Our process, choosing design parameters and iteratively exploring 

implementations through performance and user feedback helped us 

design our best visual cues (fast target, and framed bounce). This is 

to say, iterative design processes applied to two parameters yielded 

useful results. Further, studying multiple parameters at once (our 

2x2 design) also revealed interaction effects due to design parame-

ters we did not explicitly study (speed). This leads us to recommend 

avoiding classic single-variable studies, as much richer results can 

be achieved in a complicated scenario such as teleoperation. 

Our work used a scenario that was close to a complicated, real-

world task. While the lights our scenario could even be considered 

more obvious than other urban search and rescue search targets, the 

no-cue case proved difficult and the results from the perception lit-

erature was still effective. The experiment procedure was also a 

success as the video monitoring method removed the experimental 

complications involved with controlling multiple robots, while en-

abling us to easily swap different scenarios (videos) or trying new 

cue types. We stress, however, our belief that using real robots to 

record the video is an important ecological consideration. While 

our study was still “in-lab,” we believe our results further validates 

the attention literature in “messier” ecological scenarios. 

False cues were a core component of our scenario design, mimick-

ing previous work, as well as more realistically portraying how real 

cues in search and rescue would work. A large risk we anticipated 

was that false cues would undermine trust in the interfaces, and af-

fect performance. Nowhere, however, did we see the false cue rate 

impact performance enough to counteract the benefit from cueing. 

Further, no-cue accuracies were low (66-80%) even in our con-

trolled scenario with spaced-out stimuli. This should embolden ro-

bot designers to use modern computer vision algorithms to augment 

their interfaces even if they are moderately unreliable. This tech-

nology can improve robotic teleoperation right now. 

9. Limitations and Future Work 
While we demonstrated that changing our two design parameters 

could affect operator performance, we did not explore the full con-

tinuum of these dimensions. For example, our motion cues were 

only animated for a short time. Similarly, target was a full-screen 

cue, but after converging on the light, it was an at-light cue. It may 

be that different positions on the dimensions of cue-proximity and 

motion, may have different results and complex interactions. Ex-

ploring these and other design cues in the context of urban search 

and rescue, such as color, animation speed, length, and even non-

visual cues such as sound, will help future interfaces for teleopera-

tion. 

We introduced miscues into our data, but no statistical results were 

found. We believe this is due to low numbers (20% of our stimuli 

were miscues). In response-critical situations where operators must 

correctly identify regions of interest that need additional resources 

(e.g. life-saving medical personnel), missing or mistakenly seeing 

a stimulus may incur great cost. While we focused on performance 

measures, future research could target these miscues specifically by 

longer experiments or greater participant numbers that allow 

greater data to be collected, extending the existing visual attention 

research on miscues to teleoperation. 

Another theme that emerged was that cues that grabbed attention 

could be perceived as either helpful or distracting, similar to previ-

ous work [46]. Our experiment hinted that the positive or negative 

association may be linked to cognitive load – not task performance 

– and how a cue could be ignored after it was noticed. This is an 

important balance to achieve with multiple stimuli on-screen at 

once (a more realistic scenario than ours), as a cue may be so dis-

tracting it distracts from other cued stimuli. Investigating perfor-

mance with multiple concurrent stimuli and stimuli densities would 

better illuminate how cues can draw attention away from multiple 

video feeds.  

Finally, this research was in the context of teleoperation, but no ro-

bots were actually controlled. Single robot teleoperation remains a 

challenging open problem that will take much of an operator’s cog-

nitive resources, so exploring visual attention while actually con-

trolling a robot is important future work. Moving away from tele-

operation, our work may be further generalized by comparing vis-

ual search with a still camera and moving target as opposed to our 

moving camera with still targets. 

10. Conclusion 
In this paper, we introduced our investigation of the effectiveness 

of visual attention drawing cues in multi-robot control context. To 

explore cue proximity and cue motion, we designed and evaluated 

seven different visual cues through an iterative design process. In 

our mock-disaster scenario, participants found our search task dif-

ficult and our cues useful. Our design parameters had tradeoffs in 

performance and cognitive load, and our results indicated that full-

screen and animated cues can improve accuracy, response time, and 

cognitive load if they are designed well. Our research provides a 

baseline for more research to understand cueing visual attention in 

teleoperation. 
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