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Abstract. Multi-omics datasets are very high-dimensional in nature and have
relatively fewer number of samples compared to the number of features.
Canonical correlation analysis (CCA)-based methods are commonly used for
reducing the dimensions of such multi-view (multi-omics) datasets to test the
associations among the features from different views and to make them suitable
for downstream analyses (classification, clustering etc.). However, most of the
CCA approaches suffer from lack of interpretability and result in poor perfor-
mance in the downstream analyses. Presently, there is no well-explored com-
parison study for CCA methods with application to multi-omics datasets (such
as microbiome and gene expression datasets). In this study, we address this gap
by providing a detail comparison study of three popular CCA approaches:
regularized canonical correlation analysis (RCC), deep canonical correlation
analysis (DCCA), and sparse canonical correlation analysis (SCCA) using a
multi-omics dataset consisting of microbiome and gene expression profiles. We
evaluated the methods in terms of the total correlation score, and the classifi-
cation performance. We found that the SCCA provides reasonable correlation
scores in the reduced space, enables interpretability, and also provides the best
classification performance among the three methods.
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1 Introduction

Datasets comprising of multiple feature sets from different omics sources (e.g., geno-
mics, proteomics, microbiomics etc.) measured on the same subjects are known as
multi-omics (or multi-view) data. Integrated study of the multi-omics data has the
potential to reveal more information about a disease as it may tell us about the indi-
vidual associations, interactions among the factors and the flow of information from
cause of the disease to consequences [1]. However, most of the omics datasets are very
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high dimensional in nature and combining them usually results in a unique represen-
tation where the numbers of features are very large (e.g., tens of thousands) compared
to the number of available samples (e.g., hundreds). These large number of features
create challenges in applying most of the statistical methods. Moreover, a large subset
of these features may represent redundant or irrelevant information. Therefore, prior to
learning any objective functions or finding associations among the omics datasets, the
feature sets need to be reduced to a lower dimensional subspace.

Most often, researchers want to investigate the relationships between two omics
datasets. Canonical correlation analysis (CCA) - based approaches, which finds the
linear combinations of features from two datasets and tries to maximize the correlation
between them, are common ways to find such relationships [2]. In addition, CCA also
reduces the dimensionality of the original high-dimensional omics datasets, making it
suitable for fusion and downstream predictive analysis. However, in a setting where the
numbers of features outnumber the number of samples, the basic version of the CCA is
not effective. To deal with this situation, regularized versions of the canonical corre-
lation analysis (regularized canonical correlation analysis or RCCA) have been
developed [3, 4]. To learn non-linear combinations of the features while calculating the
correlations, deep neural network based parametric version of the CCA (named as deep
canonical correlation analysis (DCCA)) has been proposed too [5, 6]. In biological
applications, researchers also seek to trace the original features that correspond to the
resulting correlations, which is hard to achieve with either RCC or DCCA. Hence,
sparse versions of the canonical correlation analysis (SCCA) methods have been
developed [7–9]. However, there exist no study which highlighted the comparison of
the approaches with application to multi-omics datasets specially datasets consisting of
microbiome and gene expression profiles.

Our contribution in this paper includes a detailed comparison of the canonical
correlation methods (RCC, SCCA, and DCCA) in terms of correlation score and
classification performance with applications to a multi-omics dataset consisting of
microbiome and gene expression profiles. To the best of our knowledge, this study is
the first to investigate the CCA approaches for microbiome and gene expression data
together.

2 Preliminaries

2.1 Canonical Correlation Analysis (CCA)

Having two datasets X1 and X2 with (n� p1Þ and (n� p2Þ dimensions measured on the
same subject i ¼ 1; 2. . .; n, CCA finds linear combinations of the features from the two
datasets which are maximally correlated [2]. In other words, CCA finds the linear
projections wT

1X1 and wT
2X2 which have a maximum correlation between them, where

w1 and w2 are the canonical coefficients. Let
P

11, and
P

22 be the covariances of X1

and X2, and
P

12 be the cross-covariance between the features of the datasets, then the
objective of the CCA method is to maximize the following:
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2.2 Regularized Canonical Correlation (RCC) Analysis

When the number of features (p1 or p2) become larger than the total number of samples
(n), the basic version of the CCA doesn’t work as the first n canonical variates possess
larger values while the rest of the canonical covariates becomes zero [10]. To deal with
this, regularization parameters (k1 and k2) can be added with the covariance matrices in
the following manner (Ip1 and Ip2 are identity matrices) [3, 4].

X0
11

¼
X

11
þ k1Ip1 ð2Þ

X0
22

¼
X

22
þ k2Ip2 ð3Þ

2.3 Deep Canonical Correlation Analysis (DCCA)

DCCA finds complex nonlinear projections of the input features which are maximally
correlated [5]. DCCA is a deep neural network (DNN)-based approach, where two
densely connected networks (Network 1 and Network 2 in Fig. 1) are separately trained
on two views of the dataset. These two networks learn nonlinear feature combinations
and use a correlation maximization objective function.

2.4 Sparse Canonical Correlation Analysis (SCCA)

For datasets with large number of features, the interpretation of linear combinations
become impracticable. In such cases, considering a sparse subset of the features is a
viable approach [8, 9]. In this case, the objective function to be maximized takes the
following form:

Fig. 1. Schematic diagram of the deep canonical correlation analysis (DCCA) method
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where w1j jj j2 � 1; w2j jj j2 � 1;P1 w1ð Þ� c1; and P2 w2ð Þ� c2 ð4Þ

Here, P1 and P2 are called penalty functions or sparse CCA criterion. These penalty
functions are chosen in a way to provide sparse feature combinations and also to make
the CCA deal with situations where the feature sets are large compared to the number
of samples. P1 and P2 can be lasso or fused lasso penalty functions. The parameters c1,
c2 are used to control the level of penalization.

3 Experiments and Results

3.1 Dataset

We considered a multi-omics dataset consisting of two views: gene expression and
microbiome profiles [11]. There are 184 samples with 4 disease subtypes. The gene
expression profiles of the data consist of 20,253 features, each of which represents the
level of expression for a particular gene. The microbiome profiles consist of 7,000
features which are sparse, discrete in nature and represent the count of an operational
taxonomic unit (OTU) in the sample.

3.2 Preprocessing and Hyperparameter Tuning

All the features with no variation (such as zero and constant values) across all of the
184 samples were removed from the dataset. The remaining dataset contained 20,251
gene features and 5,443 OTU features which were normalized afterwards. The 184
samples were divided into train (147) and test (37) groups in a stratified manner. We
used R package: CCA for the RCC [10], python implementation from [12] for DCCA,
and the PMA package in R [13] for SCCA. We have also considered a supervised
version of the SCCA approach (we call this SCCA(S)), where the learned feature
projections are also correlated with the output labels. For all the methods, we tuned the
hyperparameters to their appropriate values using the training set.

3.3 Total Correlation Scores

After tuning the hyperparameters, we performed the canonical correlation analyses for
different output dimensions and learned the canonical coefficients (w1 and w2). We
multiplied these coefficients with the original dataset to generate the projections.

Total correlation scores were calculated (using the linear cca method provided in
[12]) from the projections. From Fig. 2, we can see that RCC provides better corre-
lation scores. On the other hand, SCCA, SCCA(S), and DCCA provide almost similar
correlation scores. With the increasing number of output dimensions, the correlation
scores become almost the same for all of the approaches when the output dimension
surpasses the number of test samples. For SCCA, the sparsity nature may correspond to
the compromise in the total correlation score. As deep neural network (DNN)-based
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approaches are always data hungry, the fewer number of samples is the main reason
behind the relatively lower correlation scores of the DCCA method.

3.4 Classification Performance

We performed binary classifications using support vector machine (SVM) on the
projected data from the CCA methods. The classification labels were converted into
binary by keeping one class in one group and all the others in another. Hyperparam-
eters (kernels, C, sigma, gamma etc.) of the SVM method were adjusted.

From Table 1, we can see that DCCA provides the worst classification perfor-
mances. The smaller sample size of the dataset may be the reason behind this per-
formance loss. The RCC method’s performance is also poor which is easily observed
with the low AUC values. Although multi-omics datasets are very high-dimensional,

Fig. 2. Total correlation scores for different canonical correlation approaches.

Table 1. Binary-class classification results using SVM on the output projections from different
CCA methods. Evaluation metrics are accuracy and area under the ROC curve (AUC).

Dimensions Metrics RCC SCCA SCCA (S) DCCA

10 Accuracy 67.56% 72.97% 72.97% 67.56%
AUC 0.5 0.6 0.6 0.5

20 Accuracy 67.56% 75.67% 75.67% 67.56%
AUC 0.5 0.71 0.67 0.5

30 Accuracy 70.27% 75.67% 75.67% 67.56%
AUC 0.54 0.756 0.67 0.5

40 Accuracy 70.27% 78.37% 78.37% 67.56%
AUC 0.54 0.69 0.69 0.5

50 Accuracy 67.56% 70.27 70.27 67.56%
AUC 0.5 0.63 0.6 0.5

Genome-Wide Canonical Correlation Analysis 515



only a handful of these dimensions are actually responsible for a particular phenotype.
Therefore, incorporating all the input features may be the reason for the poor classi-
fication performance of RCC. Finally, it is visible that the SCCA methods provide
relatively better classification performances. The sparse nature of these methods may be
the main reason behind this. However, it is surprising that the supervised version of the
SCCA didn’t provide any better results than the unsupervised one.

4 Conclusion

In this study, we found that sparse canonical correlation analysis provides interpretable
correlation scores and better performance in downstream analysis. The regularized
canonical correlation analysis, although provides good correlation scores, lacks inter-
pretability and provides poor classification performance. On the other hand, the deep
canonical correlation analysis provides moderate correlation scores but lacks inter-
pretability and suffers from poor performance in classification. Therefore, it is advised
not to use DCCA with high-dimensional multi-omics datasets having fewer numbers of
samples. In future, we will run the comparisons using a larger dataset. We hypothesize
that incorporating the outcome variables in the DCCA approach may aid in better
performance in the downstream analyses, which we will investigate in future.
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