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Abstract
Purpose of Review Research has demonstrated the potential for robotic interfaces to leverage human-like social inter-
action techniques, for example, autonomous social robots as companions, as professional team members, or as social
proxies in robot telepresence. We propose that there is an untapped opportunity to extend the benefits of social
robotics to more traditional teleoperation, where the robot does not typically communicate with the operator socially.
We argue that teleoperated robots can and should leverage social techniques to shape interactions with the operator,
even in use cases such as remote exploration or inspection that do not involve using the robot to communicate with
other people.
Recent Findings The core benefit of social robotics is to leverage human-like and thus familiar social techniques to communicate
effectively or shape people’s mood and behavior. Initial results provide proofs of concept for similar benefits of social techniques
applied to more traditional teleoperation; for example, we can design teleoperated robots as social agents to facilitate commu-
nication or to shape operator behavior, or teleoperated robots can leverage knowledge of operator psychology to change
perceptions, potentially improving operation safety and performance.
Summary This paper provides a proposal and roadmap for leveraging social robotics techniques in more classical teleoperation
interfaces.

Keywords Teleoperation . Social design . Interface design . Survey . Discussion

Introduction

There is an untapped opportunity to leverage social human-
robot interaction techniques in traditional teleoperation inter-
face design as a new way to shape interaction and operator
performance. The field of social human-robot interaction has
highlighted how people can embrace social interfaces as a
natural feeling and easy-to-understand paradigm [1], with re-
sults indicating a broad range of benefits including increased
user comprehension of robot communication [1–3], engage-
ment [4•], motivation [5], and task performance [6]. This fol-
lows the well-established computers-as-social-actors para-
digm [7], recently emphasized by the proliferation and accep-
tance of voice-based digital assistants. In this paper, we high-
light how traditional teleoperation interfaces can likewise ben-
efit from social design.

In teleoperation, the use of social interaction techniques has
yielded similar benefits for supporting robot-mediated inter-
action with other people, such as telepresence [8, 9]. However,
more traditional teleoperation applications such as inspection
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or exploration, where the operator does not interact with other
people through the robot, have yet to see widespread integra-
tion of social robotics methods.

We draw a link to video games, which share similarities
with teleoperation: a gamer (the operator) similarly controls an
avatar (like a robot) using a computer interface [10•]. In
games, social techniques relating to controlling the avatar
are widespread as a means to increase engagement, elicit so-
cial responses from the user, and encourage behavior patterns;
game designers explicitly manage these techniques to shape
user experience and action [10•] (Fig. 1). For example, there
may be virtual co-pilots, on-board AI, or other techniques to
facilitate social communication, shape empathy, and influence
behavior. Pragmatically, and relevant for our application,
these methods can also be used to support operator awareness,
sustained motivation, performance, and more [11, 12]. Given
the similarities between controlling an avatar or vehicle in a
video game and remotely operating a robot [10•], we note that
the success of social techniques in video game avatar control
motivates the investigation of their use in teleoperation.

This paper establishes a link between potential benefits of
social robotics approaches and application to inherently non-
social teleoperation tasks. We develop a clear vision for how
social robotics techniques can be used pragmatically to

support teleoperation and operators, via shaping operator per-
ceptions, emotions, and behavior. We present design avenues
for social robotics in teleoperation: positioning the robot itself
to be seen by the operator as an agent, including a virtual agent
co-pilot, and having the robot monitor and model the operator
mental state and mood to inform its social interactions.

Why Social Interfaces for Teleoperation?

Human-robot interaction has established a range of potential
impacts of social interfaces. Of particular relevance to
teleoperation is improved communication and shaping a per-
son’s mood and behavior.

Improved Communication

To successfully teleoperate a robot, an operator needs to mon-
itor and understand a great deal of information while provid-
ing complex commands, all in real-time [12–14]. One design
theme used to mitigate these issues is to create abstractions
and easy-to-interpret visualizations and widgets to reduce cog-
nitive effort (e.g., [15–17]). Relating to this, a standard ap-
proach in social robotics is to leverage the human capacity

c)  A computer-controlled agent brings the player’s 
attention to a nearby objective (StarFox, Nintendo, 
1993). 

b)  A health indicator face reacts to injury to 
build empathy and shape player behavior 
and engagement (Kingdom Hearts Series, 
Square-Enix, 2002-2019). 

a) Two agents engage in a heated exchange, emphasizing the weight of the player’s next decision 
(Mass Effect 2, BioWare, 2010)

Fig. 1 Video games leverage
social communication techniques
to shape gamer (i.e., operator)
experience, mental state, and
actions. a Two agents engage in a
heated exchange, emphasizing the
weight of the player’s next
decision (Mass Effect 2,
BioWare, 2010). b A health
indicator face reacts to injury to
build empathy and shape player
behavior and engagement
(Kingdom Hearts Series, Square-
Enix, 2002–2019). c A computer-
controlled agent brings the
player’s attention to a nearby
objective (StarFox, Nintendo,
1993)
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to quickly and intuitively process social interactions, by de-
signing robots to communicate using human-like social
methods [18•] through visual [19, 20], aural [21, 22], or haptic
methods [23, 24], ostensibly increasing how much the person
can process and understand [25]. While such abstractions may
not fully represent underlying data (e.g., specific error codes),
it provides a quick an intuitive communication channel.

Social robotics has been successful in applications where peo-
ple are collocated with an autonomous robot, for example, where
the person can directly read the robot’s gestures, characteristic
motions, facial expressions, etc., to read information and robot
state [3, 26, 27]. Social signals can further be adapted and per-
sonalized to the user to increase trust and improve communica-
tion over time [22, 28, 29]. We suggest using similar approaches
even when the person is not collocated with the robot and when
the robot is not autonomous, as in teleoperation.

Further, people can use their existing social skillsets to natu-
rally give commands to social robots such as by using gestures,
voice tone, and pointing [19, 30, 31]. This reduces the need for
the person to learn or use an intermediary communication tech-
nique, supporting comfort and ease of use [7, 32, 33]. For exam-
ple, modern digital assistants have helped demonstrate howwell-
designed voice commands can increase accessibility and ease of
use, as well as improve overall experience [34•].

Thus, we argue that teleoperation can and should likewise
use this “social bandwidth” [25] alongside more commonly
targeted cognitive abilities (such as map reading), to increase
the operator’s ability to intuitively understand and control ro-
bots. Only a few initial projects have begun to extend this
approach to social interfaces for teleoperated robots, providing
evidence for our proposed broad approach [2, 35]. However,
we advocate for increased focus given the potential for social
interfaces to mitigate core teleoperation challenges.

Shaping Mental State and Behavior

Operator workload is a core consideration of teleoperation [11,
12], often measured via self-report measures relating to feelings
of work demand (e.g., cognitive and physical) and frustration
(e.g., NASA TLX [36]). We note that such measures are inti-
mately linked with a person’s more general mood, enthusiasm,
engagement, and motivation. These in turn can have effects on
human behavior and performance [37–40].

People have natural tendencies to engage with robots as
social entities, even when the robot is not designed to be
anthropomorphic or zoomorphic [1, 18]; such designs are
used to accentuate and leverage these tendencies. Thus, a
key theme of social robotics research has been to leverage
related social interaction techniques [2, 18, 41], social struc-
tures, and constructs [42, 43] to influence a person’s thoughts,
mood, and even their behavior. Example results include in-
creasing a person’s task engagement (e.g., [44, 45]), perfor-
mance (e.g., [46, 47]), motivation (e.g., [48]), comfort (e.g.,

[49]), willingness to use robots again [1], and more [18•].
Further, social techniques can affect how someone perceives
a robot, including trust in the robot [28, 50–52] and perception
of a robot’s abilities [53, 54]. These are all desirable
teleoperation qualities [11, 12, 55], and we argue it is worth
investigating how to purposefully employ social techniques in
teleoperation design to influence the operators mental state
and behavior, to support teleoperation.

All of this builds on the relationship between operator
stress, engagement, and workload and their ability to sustain
learning and working with a robot in the long term [56]. Thus,
natural user interfaces that are perhaps more comfortable and
intuitive to use [7, 32], such as the recent trend of digital
personal assistants using voice to improve overall experience
[34•], or in-car GPS devices conveying abstract navigational
information in social means [33], can be expected to relate to
operator stress, mental state, and therefore performance.

Challenges and Drawbacks

There are potential drawbacks, dangers, and other challenges
with using social techniques for teleoperation. A simple reality
is that poor social design can be annoying and distracting:
social-focused interfaces in commercial products have some-
times been met with consumer derision, low popularity, and
user performance [57, 58]. In some cases, social interfaces can
increase cognitive load, such as when listening to a social in-
car navigation systemwhile driving [59]. Perhaps the key is to
have social interfaces for meaningful performance and expe-
riential improvements, rather than simply being an engage-
ment “gimmick.”

Another aspect of the robots-as-social-actors approach is
that these techniques may be used for manipulation [4•].
Prior work has demonstrated that how a robot is introduced
to people can impact how acceptable they find it (e.g., for a
telepresence robot [60••]), and our own work has applied a
similar approach, demonstrating how information about a ro-
bot can be curated and presented to engineer operator expec-
tations and beliefs about robot capability, irrespective of actu-
al ability [53]. Other examples include how a robot can be
designed to talk in ways to influence how people speak
[61•] or can have authoritative influence over people due to
perceptions in status [43] or style ofmovement [62•].Wemust
consider the potential for social interaction techniques, when
applied to teleoperation, to be used in a deceptive or seeming-
ly “underhanded” manner and influence people toward dan-
gerous or questionable behavior.

Social Robotics for Nonsocial Teleoperation

Social robotics provides a range of potential benefits that we
argue can be useful for traditional teleoperation tasks. In this
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section, we establish a clear vision and detail a range of prag-
matic examples for how social teleoperation can be used to
support and aid operators in teleoperation tasks. We structure
this discussion around three methods we propose for social
teleoperation: designing and presenting the robot itself as an
agent, including a virtual agent “co-pilot,” and monitoring
social cues from the operator.

Teleoperated Robots as Social Agents

We can design a teleoperated robot, its interface, and its inter-
actions in ways that encourage the operator to see the robot as
a social agent. This contrasts with the typical perception of
teleoperated robots as mechanical tools that are considered
first and foremost in terms of their form and capabilities. It
is important to note that designing the robot to be a social
agent does not necessarily imply robot autonomy, but rather
that the operator has the impression that they are directing and
operating an interactive agent.

Designing teleoperated robots, such as for industrial inspec-
tion and repair, to support operators using social techniques,
opens a broad range of interaction possibilities—that is, if the
operator sees the robot as an agent, then the robot can engage in
productive social behavior. For example, a robot agent could chat
and banter with the operator to stave off monotony and boredom,
supporting engagement and potentially improving interaction
comfort (in a video game–like fashion). In face of an important
event (e.g., a warning sensor), the agent can change the mood,
perhaps with an abrupt stop in banter or altering voice tone,
leveraging social contrast to increase saliency and draw the op-
erator’s attention and focus to pertinent information.

Such a personality could help bolster engagement and fo-
cus by congratulating the operator after a difficult task or
offering words of encouragement after a mistake. As the task
progresses, the agent can create a sense of time pressure by
appearing cautious (to indicate that it is okay to slow down) or
impatient (needs to hurry), to encourage related operator be-
havior patterns (e.g., as in [63••]). The agent can further act in
ways that garner operator empathy to influence behavior (e.g.,

as in [35, 64]). For example, upon scraping against a rock, the
robot agent could yell “Ouch!” in surprise or use other social
signals (e.g., Fig. 2) to express pain, creating an emotional
reaction in the operator to encourage more careful operation.
With sustained damage, the agent could, for example, use a
strained voice to provide an ongoing emotional reminder.

Designing the teleoperated robot as a social agent can further
mitigate challenges relating tomixed initiative systems,where the
robot autonomously takes control as needed to aid the operator
(e.g., [65, 66]) and thus needs to clearly communicate why, how,
and when it will take control. Designing the robot as a social
agent provides an embodiment, context, and related social com-
munication to provide transparency and awareness. For example,
the agent could suddenly shout “Watch out!”, looking scared and
backing up, while pointing the camera at a dangerous hole; this
clarifies to the operator why the action was taken.

The mixed-initiative autonomy itself could be purposefully
designed using social interaction techniques to encourage desired
operation behaviors. For example, if an operator unnecessarily
takes control from the robot, the robot could try to encourage the
operator to rely on it more in the future by acting stubborn or
sulky, aiming to ultimately reduce operator workload.

In short, if we can design for operators to view teleoperated
robots as agents—and not just tools—then this agent can use a
wide range of social interaction techniques to support the op-
erator and shape their teleoperation behaviors.

Virtual Co-pilot Agent

We can add a third-party agent to the interface—a virtual “co-
pilot”—for social interaction. The key to this approach is that
the agent is completely virtual and does not represent the robot
(is conceptually disassociated from it), providing increased
range of new complementary interaction possibilities.

As already explained, a social robotic agent can build op-
erator empathy and garner emotional reactions; however, this
may also result in undesirable emotional attachment and guilt
if the robot gets damaged (as in [67•]). This may lead to a
negative mood and anxiety when operating in dangerous sit-
uations where mistakes are inevitable. Operators may also
become too careful, when they instead should be aggressive
and take risks, such as in high-demand time-critical scenarios
(e.g., nuclear reactor inspection), or search and rescue, where
robots should be risked saving human lives. Using an agent
co-pilot instead—disassociated from the robot—can still en-
able myriad social interaction techniques (via the co-pilot
agent) without creating empathy toward the physical robot.

This co-pilot agent could further mitigate operator worry
about the robot, for example, by being reassuring and calming
after mistakes, reminding them that it is “just a machine,” and
encouragingmore aggressive behavior (e.g., as in [35••]). This
agent could alternatively still react in ways to mitigate risks
given over-aggressive operator behavior [35••] (Fig. 3).

Fig. 2 Agents in the interface are used as a representative and summary
of the robot’s state. This leverages operator emotion recognition and
empathy to understand, at a glance, how much attention they need to
give to the robot (from [64••])
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A virtual co-pilot can also be useful when an operator is
responsible for controlling multiple robots and regularly
switches control between them. With each robot designed as
an agent, switching likewise changes which agent the operator
is interacting with. A virtual co-pilot would not change with
this switch, increasing interaction stability. It could even sup-
port the transition by providing state summaries of the new
robot and environment or draw attention to important infor-
mation through action such as focusing intently on a map to
indicate a point of interest the robot discovered while the
operator was controlling another robot.

It may not be trivial to convince operators to see their robot
as an agent (see section Teleoperated Robots as Social Agents).
Giving a robot a social personality may conflict with existing
mental models (and perhaps seem silly), particularly if an oper-
ator has existing interaction experience or technical knowledge.
A disassociated virtual co-pilot may be more acceptable and
thus a more appropriate path for integrating social interaction.

Similarly, a real robot has an existing physical form and
capabilities that may limit the design of social interface. A
virtual co-pilot could be given a face, voice, arms, or any
arbitrary shape, even if no such components exist on the actual
robot, avoiding conflict or inconsistency in how the robot is
presented.

Thus, a virtual co-pilot, that is not associated with the robot
itself, provides a range of complementary methods for inte-
grating social interaction into teleoperation.

Reading Operator Social Cues

An integral component of social interaction is that it is a dialog
between multiple actors; an agent (whether the robot or a
virtual co-pilot) should likewise monitor, interpret, and re-
spond to social cues from the operator. This includes leverag-
ing natural input modalities such as operator voice and

gestures (e.g., [21]) but also includes more subtle cues such
as operator facial expressions (e.g., Fig. 4), voice tone, and
other expressions relating to emotion (i.e., as well established
in affective computing [68]). Thus, the agent should maintain
awareness of the operator [69]; developing a model of the
operator’s workload and mental state, including engagement,
stress, and mood, will enable the agent to more appropriately
when using social techniques to interact with the operator.

An agent that understands if the operator is stressed or has
high cognitive load could, for example, adapt by slowing
down the robot to reduce workload (e.g., [63, 70]) or simpli-
fying visualizations to reduce the amount of information
displayed (e.g., [16, 71]). Similarly, if the agent could know
when the operator starts to show signs of boredom and disen-
gagement, it could more aggressively employ social tech-
niques to increase attention and focus.

Knowledge about the operator state can also be used in
conjunction with sensor data, for example, if an operator is
not reacting despite warning messages, or robot collisions,
indicating a lack of attention, the agent could step up commu-
nication or step in with emergency measures (e.g., contacting
a superior).

While developing a robot as an agent—or having a virtual
co-pilot—is a powerful way to use social interaction to im-
prove teleoperation, ultimately solutions will require a two-
way dialog, with the agent both reading and exhibiting social
behaviors.

Design Strategies to Create Teleoperation
Agents

The prior sections provide a vision of how social robotics
techniques can be used to support teleoperation. However,
the question remains of how exactly to design and implement
the agents themselves. In this section, we briefly discuss tech-
niques for encouraging the operator to see the robot as an
agent, for embedding a virtual co-pilot, and for monitoring
social cues and model operator state.

Fig. 4 An agent should read the operator’s face, posture, etc., using this
information to adapt or take action to promote a safer attitude and reduce
stress and workload (Courtesy of Daniel Rea, from [53••])

Fig. 3 An on-screen “virtual passenger” agent reacts to driving safety,
using emotional dis-plays of anxiety in an attempt to create empathy and
shape operator behavior (from [35••]). A screenshot from a working
prototype, with facial emotion data from [94, 95]
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Design the Teleoperated Robot as an Agent

The straightforward way to encourage an operator to interact
with a teleoperated robot as an agent is to specifically design
the physical robot itself to encourage anthropomorphism. For
example, it could be given arms or a face [72•], or a zoomor-
phic form, which shapes expectations on how it can be
interacted with [54, 73]. Even if the robot itself (which may
be remote) does not have these features, a picture or graphical
representation could depict them (e.g., Fig. 2).

Another way to build a perception of social agency is to
introduce or describe the robot to build expectations (e.g.,
[53••]) of its social abilities to encourage social interaction
[54]. For example, one could simply call the robot an agent,
talk about it using anthropomorphic language, or inform the
operator that the robot has a personality.

The graphical interface itself could be modified, for exam-
ple, with visual representations of the robot being altered to
appear more anthropomorphic or animated (e.g., [64••], Fig.
2). Alternatively, the robot could be given a voice, perhaps
disembodied if no on-screen representation is given.

Another strategy, well established in social robotics, is to
modify otherwise mechanical motions to encourage anthropo-
morphism. How a robot moves (e.g., its path on a map) or
performs actions (as shown via an on-screen 3D model of the
robot) can bemodified to convey emotion and personality [74,
75].

Finally, any actual robot autonomy, such as with semi-
autonomous [76, 77] or mixed initiative [65, 66] systems,
can be expected to promote a sense of robot agency. That is,
when the robot acts autonomously, operators will naturally
assign agency and related concepts (e.g., intelligence [78]) to
those actions [55]. This autonomy could also extend to haptic
interaction. For example, haptic feedback used for communi-
cation such as through the joystick [79, 80], a vibrating chair,
or other types of equipment [81, 82] could be attributed to the
robot’s perceived autonomy (such as haptics in social human-
robot interaction [23, 24]), further increasing the sense of
agency.

How to Design Virtual Agent Co-pilots

Creating a virtual co-pilot is as simple as creating an on-screen
character avatar, leveraging the large body of work from the
Intelligent Virtual Agents community (e.g., [83, 84]). This
agent could alternatively be disembodied, for example, speak-
ing as a remote companion talking over radio. The agent
should be designed to emphasize its disassociation with the
robot, for example, by referring to the robot in the third per-
son, such as saying “The robot’s tire is punctured.”

A co-pilot agent could instead leverage a physical embodi-
ment, such as by being a robot companion robot sitting near
the operator. This would allow similar freedom of design (not

linked to the form of the operated robot) but leveraging social
interaction possibilities of physical embodiment [85].

The virtual co-pilot does not need to be a fully interactive
agent and instead can simply leverage one or more social
interaction components, for example, using multiple on-
screen facial expressions to visualize a high-level summary
of operator driving safety [35••] (Fig. 3). Such amultiple agent
or social display design can enable the designer to select the
social modality based on what is most effective, instead of
forcing a design to match an already existing virtual co-pilot.

How to Read an Operator’s Social Communication and
Signals

A wealth of technologies and research exist for sensing and
monitoring a person’s state and social communication (e.g.,
see [86–89]). Further, this has been broadly explored for use
in HCI; for example, the use of gestures [90] or a person’s skin
conductivity [91•] can be used in a classroom to understand
learner engagement, preferences, personality, and more.
These techniques are still evolving and are quite complex
(e.g., [87]); however, even simple approaches such as com-
paring response time against known typical values, or haptic
inputs on the joystick or leaning on the chair or desk, can be
used to gain insight [16, 92]. How social robots can leverage
this input in their behaviors, however, is still not clear [87, 93],
and this remains an open problem.

Given the specific task of interactive social agents for
teleoperation, we envision that reading operator’s signals will
focus primarily on measures of workload, stress, and atten-
tion. As such, monitoring skeletal pose (and change over time,
e.g., with a Microsoft Kinect [90]), voice tone [88•], facial
expressions or eye gaze (and thus attention) through a web-
cam or eye tracker [93], and simple biometrics including EEG,
heart-rate, and galvanic skin response are all feasible given a
static seating configuration.

Conclusion

We argue that nonsocial teleoperation tasks (e.g., exploration
and inspection) have a largely untapped potential to leverage
established techniques from social human-robot interaction.
By designing teleoperation to employ social interaction, the
interface can better support the operator: it can shape their
mental state, perceptions, and overall experience, leading to
improved performance. As demonstrated by recent research,
we can achieve such results with only simple design tools, and
this approach does not require advanced learning or sensing
methods still being developed.

In this paper, we motivated this approach and painted a
detailed picture—including a wide range of concrete
examples—of how teleoperation can use social interaction
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techniques to improve teleoperation. We envision that this
exploration will serve as a springboard and call to action for
increased exploration of social interaction techniques for
teleoperation.
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