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ABSTRACT 
We present BezelGlide, a novel suite of bezel interaction techniques, 
designed to minimize screen occlusion and ‘fat fnger’ efects, when 
interacting with common graphs on smartwatches. To explore the 
design of BezelGlide, we conducted two user studies. First, we quan-
tifed the amount of screen occlusion experienced when interacting 
with the smartwatch bezel. Next, we designed two techniques that 
involve gliding the fnger along the smartwatch bezel for graph 
interaction. Full BezelGlide (FBG) and Partial BezelGlide (PBG), use 
the full or a portion of the bezel, respectively, to reduce screen 
occlusion while scanning a line chart for data. In the common value 
detection task, we fnd that PBG outperforms FBG and Shift, a 
touchscreen occlusion-free technique, both quantitatively and sub-
jectively, also while mobile. We fnally illustrate the generzability 
potential of PBG to interact with common graph types making it a 
valuable interaction technique for smartwatch users. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in inter-
action design. 
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1 INTRODUCTION 
Data visualizations are designed to provide an overview of often 
complex collected data [13], by reducing details or simplifying the 
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Figure 1: A: interacting with visuzation on-the-go. Using Par-
tial BezelGlide to intract with bar chart (B), line graph (C) 
and stacked graph (D). 

visual presentation [7]. This simplifcation of data is important 
for smaller screen displays, such as those found on smartwatches. 
However, while research eforts have often focused on designing the 
visualizations appropriately [31], the loss of detail in the data does 
not allow for full exploration. Often times, exploration of collected 
data from a smartwatch requires using an auxiliary smartphone to 
fully explore said data. With the benefts that smartwatches provide, 
due to their always accessible nature, improved data visualization 
interaction techniques could allow users to fully explore their data 
collected while in-situ and directly on the watch. 

Generally, designing any interaction technique for smartwatches 
can be challenging due to the limited display [35] and input space 
[3]. Even common techniques used on smart devices, such as tap-
ping and ficking, can not be performed as efectively on smart-
watches as they are on smartphones [48]. Furthermore, the common 
‘fat fnger’ problem on smartphones is further exacerbated on the 
even smaller watch displays. Moreover, screen occlusion can afect 
the majority of the smartwatch display. When interacting with 
data visualizations on the watch, this screen occlusion can block 
a user’s view of many necessary display elements, making direct 
interaction inefective. Researchers have proposed novel interac-
tion techniques to expand the limited smartwatch input modalities 
[15, 25, 36, 56, 60]. However, such interactive capabilities were not 
specifcally designed for the common task of exploring data on 
smartwatches, including line-, bar-, donut-, and radial bar-charts. 

To mitigate the ‘fat fnger’ and screen occlusion problems on 
smartwatch displays, we explore the use of the bezel to facilitate 
exploration. This focuses the interaction away from the center of 
the screen where the visualization is viewed, and utilizes often 
untouched pixels on smart device displays [42]. We postulate that 
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such a mechanism may mitigate the ‘fat fnger’ and screen occlu-
sion efects, albeit providing only indirect input. While certain 
smartwatches allow physically rotating bezels, soft bezel solutions 
have shown to improve smartwatch input [26, 41, 58], particularly 
when the device is circular, the form-factor we focus on for our 
exploration. We thus guide our investigation with the following 
two research questions: 1) What are the quantifed amounts of 
screen occlusion when interacting with a round smartwatch bezel; 
and 2) how do we then utilize the smartwatch bezel to design ef-
fective interaction techniques for interactive data displayed on 
smartwatches. 

To address these research questions, we frst explore the degree 
of screen occlusion resulting from interacting with a circular smart-
watch bezel. We identifed regions resulting in the lowest degree 
of occlusion. We based our interaction technique on-bezel, around 
the smartwatch, and we designed two versions of BezelGlide: Full 
and Partial. Full BezelGlide (FBG) draws a target line between the 
smartwatch center and the location of the user’s touch location on 
the bezel (see Figure 5). As we understand that FBG does not com-
pletely mitigate occlusion efects, we also created Partial BezelGlide 
(PBG) which further minimizes occlusion by focusing input in the 
region of the bezel with the highest degree of screen visibility (see 
Figure 1). In contrast to FBG, PBG uses a non-uniform mapping 
from pixels in the interactive bezel region, drawing a target line to 
the rest of the screen. In both techniques, the user moves their fnger 
within the bezel region while values are displayed for intersecting 
points with the target line. To assess visualization legibility with 
our interaction techniques, we evaluate FBG and PBG against Shift 
[53] a technique known for its efectiveness in resolving the ‘fat’ 
fnger challenge on smartphones. The result of this value detection 
task shows that PBG is signifcantly more efcient compared to the 
other two interaction techniques with a clear subjective preference 
due to the minimally occluded screen during interaction. 

Our contributions in this paper are twofold: 1) we explore and 
quantify the amount of occlusion on circular smartwatch screens 
while users interact with the smartwatch bezel; 2) we present Bezel-
Glide a novel suite of techniques with two variants (Full and Partial) 
designed to overcome ‘fat’-fnger and screen occlusion problems 
for interacting with data visualizations on smartwatches. Finally, 
we also illustrate the potential for generalizing our BezelGlide tech-
niques to other graph types. 

2 RELATED WORK 
In this section, we summarize relevant work regarding smartwatch 
usage scenarios, data visualizations for smartwatches, mitigation 
of screen occlusion, and smartwatch interaction, including bezel 
interaction. We then describe how our work builds on this previous 
research. 

2.1 Smartwatch Usage 
Due to the always accessible nature of smartwatches, their use is 
often quick and has been shown to occur in under 5 seconds [51]. 
Further, smartwatches have seen increased use while on-the-go 
[40]. Such on-the-go use can be seen when walking to a destination, 
while on a transit system, or performing other tasks. The common 
use cases involve notifcations, checking time, communication, and 

inspecting health data among others [6, 12, 30]. Specifcally, health 
data, which often uses data visualizations to convey information, 
was utilized for two types of interaction. These two types are peek-
ing, as well as physically interacting with the health data which 
occupied 57.3% of the type of interaction [51]. Due to these common 
usage scenarios and knowledge regarding health data interaction, 
as well as the understanding that mobility can afect touch interac-
tion [33, 48], we look to explore our data visualization techniques 
in not only static conditions but also while walking. This will ofer 
an improved understanding of any efects that may occur due to 
mobility, and justify the use of our BezelGlide techniques across 
usage scenarios. 

2.2 Data Visualization on Smartwatches 
Interacting with and viewing data visualizations on small displays 
can be challenging due to the limited screen real estate [2]. To 
gain insights from monitored activities by smartwatches, such as 
ftness targets [2], sleep quality [39], and health bio-markers [50], 
smartwatch users rely on the available visualizations. In an explo-
ration by Amini et al. [2] they demonstrated that general users are 
growing reliant on the visualizations conveyed to draw meaningful 
conclusions from their hidden/raw data. To address challenges of 
visualizing content on small screen displays, designers draw in-
spiration from space-efcient and micro-visualizations, two very 
common space-preserving techniques [10, 17, 37]. However, when 
the smartwatch user desires further insight from the data (e.g., the 
exact value of data points), interactive controls for data exploration 
becomes critical. Our work is motivated by the need to provide users 
access to efective graph interaction capabilities, with consideration 
for the arising challenges on small display sizes. 

To assess the legibility of such visualizations, researchers resort 
to a set of canonical data exploration tasks [4, 8, 9, 22, 32, 38]. For 
example, data value detection, in which the user is exploring the 
exact values of data points, is one of the most common visual queries 
in several studies [21, 22, 27]. Data point comparison is another 
task [4, 32], in which the user must look for the exact diferences 
between two or multiple data points; or the user has to identify 
which of two data points has the higher or lower value. Since 
this task involves the comparison of values at two or more data 
points, it can be appraised as a more onerous version of the single 
value detection task. Trend detection and pattern recognition are 
two other commonly used tasks across diferent studies examining 
chart legibility [11, 18, 24, 29, 57]. Users perform these two tasks 
for seeking particular patterns and trends in charts. Such tasks are 
more closely associated with the specifc data being represented and 
the ability to perform these can largely depend on the visualization 
used. Given that value detection is fundamental to all of these data 
exploration tasks, we adopt it as the primary task in our work. 

2.3 ‘Fat’ Finger and Screen Occlusion 
Considerations During Interaction 

The limited input and output space on smartwatches results in 
the display being largely occluded when interaction takes place 
[1, 44, 49, 64]. Two main problems arise. First, the ‘fat fnger’ efect, 
is a result of the width of the fngertip blocking the exact touch 
location and contents underneath [47]. For example, selecting a 
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point on a graph results in occluding both that segment of the 
graph, but also the value that would commonly be displayed aside 
it. Second, screen occlusion occurs when the interaction blocks 
content of interest on other areas of the screen due to the body of 
the fnger across the screen. This may force the user to move their 
head or adjust the interacting point to better examine the display. 
This can occur on a smartwatch, when a right handed fnger is 
interacting with the upper left corner of a smartwatch display on 
the left wrist, blocking the content on the upper left corner of the 
display [59]. 

Due to these efects seen when interacting with smart displays, 
Vogel and Balakrishnan explored screen occlusion from the hand 
when interacting on a a large touch display [52]. Because of the 
issues that arise from these problems many interaction techniques 
and adaptive methods [16, 25, 44, 53, 59] have been created to 
overcome these issues. While many of these techniques mitigate 
the ‘fat fnger’ and screen occlusion problems, on smartwatches 
they often utilize external hardware or are input modalities that are 
not common to users. Further, these techniques are not designed 
to interact with data visualizations, rather focusing on smartwatch 
interface navigation and control. 

Shift, as an input technique, was designed such that content 
directly under the fngertip moves, or shifts away for better legibility 
[53]. Shift is highly efective in a number of settings, including on 
smartwatches [28, 46], but also in comparison to techniques such 
as ThumbSpace[23], TapTap or MagStick [43]. 

What is unknown in research, is the degree to which interaction 
with the bezel of a smartwatch occludes the smartwatch screen 
itself. Measuring the degree of screen occlusion can help further 
determine the optimum positioning of information on the display, 
and to provide more suitable interaction techniques. Moreover, 
these interaction techniques must also aim to provide control of 
visualizing data represented on the smartwatch. 

2.4 Bezel Interaction Techniques 
One such interaction method that has been explored on smart-
watches, is to utilize the bezels. These bezels can be used for mul-
tiple forms of interaction. This includes rotary movement [5, 62], 
bezel taps [63], bezel initiated sequential tapping [45], bezel press-
ing [61], edge based interaction [1, 16, 41], bezel initiated swiping 
[16, 58], and bezel to bezel [26]. Of note, is edge based interaction, 
as seen in [1], which gives the user an indirect form of interaction 
with content, as the point of interaction is at the edge, while the 
actual display may be in the screen centre. However, ‘square watch 
interaction’ (SWI) techniques proposed by [1] are specifcally de-
signed for smartwatches with square displays and require additional 
sensors. Although SWI techniques were designed to cover various 
tasks, they are not specifcally designed for visual exploration on 
smartwatches. Furthermore, edge plus screen interaction proposed 
by [1], with which the user needs to interact directly on the screen, 
can block a considerable portion of the display. 

Similarly, in ‘EdgeTouch’ [34], an array of touch sensors were 
used to detect around-the-display touch points. Since the accuracy 
and performance of this interaction technique relies heavily on 
the resolution of the array of sensors around the display, using 

EdgeTouch to interact with dense charts and graphs on a smart-
watch display could be challenging. Moreover, if the ofset of the 
interaction area is considerable in EdgeTouch, this may afect the 
user’s performance. 

Interestingly, smartwatch bezels have been used in commercial 
smartwatch applications1 and on some devices is embedded in the 
hardware2. Even without embedded hardware, bezel techniques 
only need to consume an eighth of the width of the screen [58], 
pixels which are often unused [42]. This is an important fact, in 
that bezel interaction may allow for data visualizations to occupy 
the majority of the small screen display on smartwatches while still 
providing a means of interaction. 

Many interaction techniques have been created for smartwatches 
utilizing the whole touch screen, the bezel, and external hardware. 
While these techniques improve the navigation of smartwatch in-
terfaces, they do not explore their use for interacting with data 
visualizations. This interaction is crucial, as smartwatches are con-
tinuously collecting data and providing feedback for quick and 
in-situ exploration. 

3 STUDY 1: SMARTWATCH OCCLUSION 
The goal of this study is to explore the amount of screen occlusion 
resulting from interacting with diferent areas of the smartwatch 
bezel. The results of this study enabled us to design an interaction 
technique with minimal screen occlusion. 

3.1 Experimental Design 
In this experiment, we divided the smartwatch bezel into 24 equally 
sized segments. In each trial, one of these 24 segments was ran-
domly highlighted in green and participants had to touch the target 
with their fngertip. To make sure that participants were pressing 
the correct target, we provided them with auditory and vibratory 
feedback. Thus, they had to try and hit the target until they heard 
and felt feedback. We segmented the bezel into 24 units (15 degrees 
each) based on the results of the optimal touch target size for smart-
watches [19]. Using 24 segments provided sufcient granularity, as 
smaller segments would not be accurately interact-able. 

We used a helmet with a mounted camera to capture images 
from the smartwatch screen. Any approach will create an ofset, but 
we aimed to minimize this efect based on prior methods used. Our 
camera setup was similar to that of prior work [54, 55] to measure 
screen occlusion. Vogel et al. showed that the captured images from 
the head mounted camera lineup closely with the users’ line of 
sight (LOS) [55]. Similar to the approaches of Vogel et al. [54, 55], 
we ensured our mounted camera was centered with the eyes (Fig 
2-left), without interfering with their LOS or disrupting them from 
performing the main task. In this experiment, participants had to 
perform the task three times for each segment. In total, we captured 
3 (repetitions) × 24 (segments) × 11 (participants) = 792 images. 
Each experiment session lasted approximately 30 minutes. 

1https://www.samsung.com/global/galaxy/galaxy-watch-active2/
2https://www.samsung.com/us/mobile/wearables/smartwatches/samsung-gear-s3-
frontier-sm-r760ndaaxar/ 

https://2https://www.samsung.com/us/mobile/wearables/smartwatches/samsung-gear-s3
https://1https://www.samsung.com/global/galaxy/galaxy-watch-active2


CHI ’21, May 8–13, 2021, Yokohama, Japan Ali Neshati, Bradley Rey, Sharif AM Faleel, Sandra Bardot, Celine Latulipe, and Pourang Irani 

3.2 Apparatus 
We used a smartwatch Galaxy Watch Active 23, which has a 44mm 
diameter display with a 360 pixel × 360 pixel resolution. We made 
sure that participants were not distracted during the study by dis-
abling all notifcations as well as the notifcation pane on the watch. 
To implement the experiment, we created a web app using HTML 
and JavaScript which was deployed natively on the smartwatch. 
Participants wore a helmet with a GoPro Hero3 camera mounted 
to the front side, to capture the images from the participants’ view 
point, see Figure 2. We used these images to compute the degree 
of occlusion resulting from interacting with the watch bezel. We 
captured the images remotely for each trial via a smartphone re-
motely connected to the mounted camera. The research assistant 
conducting the experiment captured stills on the smartphone as 
soon as the trial feedback was audible. 

3.3 Participants 
In total, we had 11 participants (9 males, 2 females, Maдe = 29, SD = 
5.39) complete the study. None of our participants were color blind 
as per the Ishihara color blind test4 we administered. Participants 
were compensated with a $15 gift card for their time. 

3.4 Procedure 
This study was conducted during the COVID-19 pandemic. As such, 
special permission from the university ethics board was obtained 
for in-person human subjects data collection, and up-to-date health 
guidelines were strictly followed before, during, and after the exper-
iment. Upon their arrival, participants were asked to follow these 
guidelines: pass a set of COVID-19 related health and travel screen-
ing questions, sanitize their hands, and wear a mask, see Figure 2. 
Participants were given a consent form to read, and a chance to ask 
questions about the study before signing the consent form. 

During the study, participants were seated and wore the smart-
watch on their left hand, interacting with their right index fnger. 
We forced this aspect of the study (regardless of hand dominance) 
to avoid mixed results regarding the screen occlusion. This does 
not impact the results as screen occlusion characteristics would be 
mirrored across the vertical centre of the watch, and results are 
not reliant on time performance of participants. Participants were 
then given the helmet, with the camera mounted to it. We made 
sure the helmet was steady from the start and remained steady 
throughout the study, such that the camera did not move relative 
to the participants’ point of view. 

Participants were allowed to practice tapping the segments of the 
bezel until they felt comfortable, thus ensuring they could complete 
the task appropriately. We asked all participants to land on the 
targets as comfortably and naturally as possible. Participants were 
not instructed to perform fast since our focus was to capture the 
degree of screen occlusion. We did not inform participants of the 
experiment goal, and as such we did not ask them to minimize 
fnger occlusion. Once participants were comfortable, we began 
the data capture phase. In this phase participants were randomly 
presented with a target and had to touch the target to end the trial. 
Each segment was presented as the target 3 times, for a total of 72 

3https://www.samsung.com/global/galaxy/galaxy-watch-active2/specs/
4https://enchroma.com/pages/color-blind-test 

trials. There was a 1 second pause between each trial in which the 
bezel cleared during which the participant was instructed to move 
their fnger away from the watch. 

Figure 2: Screen occlusion study setup. A camera was 
mounted to the front side of a helmet to capture images of 
the fnger on a region of the bezel from the user’s vantage 
point. Images were then processed to compute the degree of 
occlusion. 

3.5 Image Processing 
To detect the amount of screen occlusion experienced by partici-
pants on the smartwatch when interacting with the bezel segments, 
an image processing algorithm was implemented in Python. We 
frst cropped all the images to a fxed size such that the smartwatch 
screen was fully within the cropped region. Since the screen of 
the smartwatch was relatively bright and white, the visible screen 
region was extracted, converting the RGB image to a binary image 
and removing the noise using erode and dilation. To approximate 
the complete area of the screen, including the occluded part of the 
screen, the border of the screen was extracted. This was done by 
distinguishing the edges formed in the binary image between the 
skin from visible screen edges and the edges formed with the border 
of the smartwatch screen. These edges were computed using Canny 
edge detection, and for each edge pixel, the neighbourhood pixels 
in the RGB image were extracted. The edge pixels were identifed 
to belong to the edge of the smartwatch screen if the red channel of 
the respective neighbourhood was not diferent from the average of 
the blue and green channels of the neighbourhood. This followed 
from the observation that the edges that the visible screen forms 
with the skin has a higher diference between the red channel and 
the other two channels. Once pixels belonging to the edge of the 
screen were identifed, they were used as coordinates for the ellipse 
ftting algorithm [14]. Since the experiments were conducted under 
controlled conditions, with the data that was collected, the color 
between skin and the screen edge was distinguishable when the 
neighborhood of a pixel was considered. The algorithm and the 
parameters were defned specifcally for this environment and data 
collected. The results of the algorithm were verifed by authors; 
ensuring the ftted ellipse matched the screen edge on a sub-sample 
of the complete dataset. 

This ellipse ftting algorithm was then used because the screen 
would not always form a perfect circle on the camera from the users’ 
perspective. The ftted ellipse model approximated the region of 
the binary image that would contain the complete screen of the 
smart watch. The ratio of the number of pixels in this region to the 
number of pixels representing the region of the visible screen on 
the binary image was used as an approximation of the region of the 
screen that was visible to the user. The ellipse-ftting algorithm [14] 
outlines this process. Figure 3 illustrates the result of our image 

https://4https://enchroma.com/pages/color-blind-test
https://3https://www.samsung.com/global/galaxy/galaxy-watch-active2/specs
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processing on three of captured images in this study. Our image 
processing algorithm is provided in the Appendix. 

Figure 3: Using image processing techniques to calculate the 
screen visibility. A: 96%, B: 38% and C: 86% screen visibility. 

3.6 Results 
The average screen visibility across all segments, across all partici-
pants was 76%. The results of this experiment show that interacting 
with segments on the right lower corner of the screen provides the 
highest screen visibility, compared to other bezel segments. The 
indicated area in Figure 4 (denoted by the green arc inside the bezel 
segments) provides an average of 93.1% percent screen visibility, 
with all segments in that area providing over 90% visibility. This 
area ranges from 15◦ ( just above 3:00 on a clock face) to 225◦ 

(7:30 on a clock face). The result also shows that interacting with 
segments on the left upper quadrant of the screen (from 105-175 
degrees) has the worst screen occlusion, allowing only 51% of the 
screen to be visible, on average. 

Figure 4: Left: heatmap from the screen occlusion experi-
ment. The indicated area has screen visibility of at least 90% 
from 15◦ (2:30 on a clock face) to 225◦ (7:30 on a clock face). 
Right: spider graph representing the mean value of screen 
visibility for each segment in the screen occlusion study. 
The indicated bezel segments in green represent screen visi-
bility of at least 90%. 

3.7 Discussion 
The average screen visibility across all segments was 76%, while 
the left upper quadrant is the area with the lowest screen visibil-
ity, and conversely the lower right quadrant provided the highest 
screen visibility. We note that using the entire bezel can be a good 
potential way to interact with the content on the screen due to the 
moderate overall average screen visibility. Moreover, utilizing the 
segments that provide the highest amount of screen visibility may 
also provide an interaction technique that is benefcial. 

In this study we asked participants to wear their smartwatch 
on their left wrist to obtain consistent results. To generalize the 
results of this experiment for left handed smartwatch users (who 
may wear a smartwatch on the right wrist), we could mirror the 
results for each segment, fipped on the centre vertical position. 
Thus, the left lower corner would be the area with the least screen 
occlusion and the right upper quadrant would be the area with the 
most screen occlusion. 

We note that while mobility may afect the performance of in-
teracting with smart devices, this study did not look at this as a 
variable. Participants were given time, multiple chances, and the 
ability to move their fnger on the touch screen until they were 
interacting with the highlighted segment. Thus, we captured the 
screen occlusion, which we expect would remain relatively similar 
across mobility conditions, such as while walking. 

4 BEZEL INTERACTION TECHNIQUES 
To overcome the fat fnger and screen occlusion problems we de-
signed BezelGlide; a novel suite of interaction techniques that can 
be utilized for data visualziations. Within this suite, we created Full 
BezelGlide and Partial BezelGlide. These were designed specifcally 
to enable interaction with graphs, where being able to view the 
visual representation and associated content is essential. In this 
section, we describe how these techniques operate. 

4.1 Full BezelGlide 
From the occlusion study, we observed that across all bezel seg-
ments, an average of 76% of the screen was visible, with over 60% 
the bezel segments providing over 80% visibility and just under 
half providing over 90%. Inspired by existing bezel interaction tech-
niques [1, 41, 62], Full Bezel Glide (FBG) is designed to utilize the 
entire bezel around the watch face to interact with data visualiza-
tions. This technique aims to address the ‘fat fnger’ issue as it 
prevents the user from directly interacting with the content on 
the screen, as well as mitigates screen occlusion due to the bezel 
segments providing high screen visibility being included. 

FBG is represented by a line, connecting the center of the screen 
(starting point of the line) to the position of the fnger on the bezel 
(ending point of the line). By sliding the fnger along the bezel, the 
location of the endpoint changes. As this line intersects with data 
points in the visualization, the value is displayed to the user; See 
Figure 5. Using the entire bezel allows the user to unambiguously 
access the entire screen area in a natural means. 

4.2 Partial BezelGlide 
We designed a second technique, Partial BezelGlide (PBG), to focus 
on the area of the bezel with at least 90% screen visibility, based 
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Figure 5: A demonstration of the FBG technique. Here the 
user can touch down anywhere on the bezel and a line will 
connect their touch location with the centre of the watch. 
The user can then slide their fnger along the bezel, thus 
moving the line. Intersecting data points with the line will 
show the value. 

on the results of the screen occlusion study. These results showed 
that interacting with the portion of the bezel between 15◦ (2:30 on 
a clock face) to 225◦ (7:30 on a clock face) ensures that at least 90% 
of the screen will be visible. Thus, the PBG technique only requires 
interaction to occur on this portion of the smartwatch bezel. 

In PBG, we use the interaction area and the remaining area on 
the bezel, which we call the projection area; See Figure 6. The user 
does not interact within the projection area, they solely interacting 
with the interaction area. Similar to FBG, there is a line with start 
and end points. The starting point of the PBG line is the position of 
the fnger on the interaction area. For each starting point, there is 
a mapping function that calculates the end point on the projection 
area of the bezel, due to the reduced interaction area. The line 
behaves similarly to FBG, in that when the line intersects with data 
points the value is shown to the user. 

Since we are using a smartwatch with a round watch face, frst 
we need to convert the Cartesian coordinates (x and y) of the touch 
point on the interaction area to Polar coordinates. The center of 
the polar coordinate, in our implementation, is the center of the 
display. To calculate the polar coordinates we need to calculate the 
distance of the point to the center as well as the angle of the line 
connecting this point and the center of the screen. We calculate the 
distance using the following formula: q 

r = (x − xcenter )2 + (y − ycenter )2 

We calculate the angle using the following equation: 

y − ycenter 
θ = arctan 

x − xcenter 
After calculating r and θ , we have the polar coordinate of the 

start point of the line which is within the interaction area. A simple 
mapping function can then calculate the polar coordinate of the end 
point based on the polar coordinate of the start point. Notice that 
the interaction area covers 150◦ while the projection area covers 
210◦ of the area of the smartwatch bezel. The following formula 
calculates the end point by scaling the start point from one range 

(interaction area on the bezel) to the new range (projection area on 
the bezel). 

(θInteraction − θOldRanдeMin ) × (NewRaдe)
θProject ion = 

OldRanдe 
+ θN ewRanдeMin 

Notice that we just need to use the formula to calculate the 
angle, since the distance of the projected point to the center does 
not change. For the next step we calculate the Cartesian coordinates 
of the projected point. 

Through this process, the interaction line will connect the start-
ing point (touch point) and the calculated projected point on the 
projection area on the bezel. Similar to the previous technique, the 
intersection of the interaction line and data points will show the 
value of data points. 

Figure 6: Left: shows how the mapping extends a touch point 
from the interaction space to the projection space. Middle 
and right: As the user glides their fnger along the bezel 
the projection is updated and the intersecting points are se-
lected on the graph. 

5 STUDY 2: TECHNIQUE COMPARISON 
Our second study investigates the performance of the two new 
techniques, comparing them with the baseline Shift technique [53]. 
Due to commonly interacting with smartwatches while on-the-go, 
we assessed our interaction techniques while standing (static) and 
walking. Ideally, interaction techniques on smartwatches can also 
generalize to mobility conditions [48]. 

5.1 Shift Technique 
To evaluate our techniques we chose the Shift [53] technique as 
our baseline. It is a standard and well-known interaction technique 
designed to overcome the ‘fat fnger’ efect on small displays. Using 
the Shift technique, the user can interact directly with the informa-
tion on the screen by showing the content underneath the user’s 
fnger, in an ofset miniature window. As the user moves their fnger 
over the display, the ofset window’s position also changes to avoid 
occlusion. In our implementation of the Shift technique, the size 
of the ofset window was 70 × 70 pixels. Pilot studies revealed that 
this size has optimal to display content. 

We chose the Shift technique for a few reasons. 1) For increas-
ingly dense data visualizations (e.g., graphs with pixel size data 
points), discrete tapping of data points becomes more difcult and 
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requires additional steps each time a user wants to view a chart 
value. Thus, 2-step techniques do not aford continuous graph ex-
ploration, a highlight of our technique. 2) Shift was specifcally 
designed for fnger occlusion, and has shown promise on smart-
watches [28, 46]. Shift has shown optimal performance under a 
number of contexts, including back-of-device input [20]. 3) Multi-
stage tapping may not mitigate occlusion as the user would still 
be required to precisely tap each time. Continuous gestures, such 
as ours and Shift, aford the ability to adjust the fnger position to 
quickly read out data values. 

5.2 Experimental Design 
For this experiment, we followed a 3x2 within-subjects study design, 
with the interaction technique (Shift, FBG, PBG) and mobility con-
ditions (Standing and Walking) as factors. Evaluating PBG against 
FBG was necessary to identify if our consideration for occlusion 
mattered when browsing a graph. Although PBG is designed to 
minimize the ‘fat fnger’ efect, it is not clear if the performance of 
FBG, as a more natural bezel interaction technique, is slower, faster 
or equal to PBG. 

In this experiment, all participants performed all three interac-
tion techniques in both mobility conditions, leading to 6 combina-
tions in total. We counterbalanced only the order of the techniques 
(half of the participants performed FBG before PBG and vice versa). 
Participants started with the standing condition and then did the 
walking condition. 

Stimulus. We generated random line-graphs with 24 data points 
as the visualization in our study. We focused on the interaction 
of line-graphs as this technique is commonly used for health data 
[7, 32]. We used 24 data points as per prior smartwatch studies 
[4]. This number also follows the number of hours in a day to 
mimic data collected and represented at hourly intervals. A block 
(including one interaction and one mobility condition) consisted of 
50 line-graphs, the same used across all participants, and randomly 
ordered for each participant. For each line-graph presented to the 
user, one of the 24 data points was randomly selected to be the 
target prior to the study. We used a range between 0 and 100 to 
generate data point values. For all graphs, lines as well as data 
points are drawn in blue. We used red dots to highlight the target 
data point. We chose blue, red, as well as a white background, to 
ensure good contrast and legibility. 

Task. Data detection tasks are one of the most commonly used 
tasks across research exploring various data visualization tech-
niques [21, 22, 27]. In this task, the main goal is to interact with the 
line-graph to detect the value of a highlighted data point, among 
all other data points. Selection occurs on a lift-of, and to cancel 
the user simply slides their fnger past the ‘active bezel’ region to 
dismantle the intersecting line. 

5.3 Participants 
We recruited 12 new participants (9 males, 3 females, Maдe = 22.2, 
SD = 5.62) in this experiment. All of the participants were right 
handed and none of them were color blind as per the Ishihara color 
blind test we administered5. Participants were compensated with a 

5https://enchroma.com/pages/color-blind-test 

$15 gift card for their time. None of the participants took part in 
Study 1. 

5.4 Apparatus 
As in Study 1, we used the same Samsung Galaxy Watch Active 2 
smartwatch. All three interaction techniques were implemented 
as web apps, by using HTML, JavaScript and CSS and which run 
native on the watch. All data and graphs were made in Microsoft 
Excel and exported for use in the implementation. Furthermore, to 
simulate the walking condition, a treadmill was used, see Figure 7. 

Figure 7: Apparatus of the study. Left: Standing condition; 
Right: Walking condition on a treadmill. 

5.5 Procedure 
Similarly to Study 1, this study was conducted during the COVID-19 
pandemic. As such, proper health guidelines were strictly followed 
before, during, and after the experiment. Upon their arrival, par-
ticipants were asked to follow these guidelines: answer COVID-19 
related health and travel questions, sanitize their hands, and wear 
a mask; See Figure 7. After going over the ethics protocol with 
each participant, we provided the general information regarding 
the study. 

First, we explained the interaction technique and we let partic-
ipants practice until they felt comfortable to perform the task in 
that condition. Participants were informed that we were measuring 
their response time and we asked them to perform the task as fast 
as possible. We informed participants that they could take a break 
at the end of a block. At the end of the experiment, we asked par-
ticipants to fll out a questionnaire to share their opinions on and 
rank the three interaction techniques. 

To start the trial, the participant tapped the smartwatch screen. 
Immediately a graph was shown and the timer would start. As soon 
as the participant reached the indicated data point in the graph, we 
fagged this event indicating the participant had actually crossed 
and seen the desired data point. Once this fag had been set, the 
time of the last touch up event stopped the timer and this was the 
response time for that trial. We did this so that participants could 
touch up and down as many times as they liked, while ensuring 
the desired data point had been crossed. Aside from response time, 
we had the participants tell us the value of the data point before 
moving to the next graph. This was done to validate that they had 
correctly seen the desired data point. 

https://5https://enchroma.com/pages/color-blind-test
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For the walking condition, we asked participants to walk on the 
treadmill and to adjust the speed to their Preferred Walking Speed 
(PWS) [48]. In addition to allowing for a safer experimental proto-
col, this ensured participants were comfortable with the mobility 
condition. 

Lastly, we logged all participants interactions with the smart-
watch display during each trial. This included touch points and the 
number of times they touched up and down. In total, we collected 3 
(interaction techniques) × 2 (mobility conditions) × 50 (line-graphs) 
× 12 (participants) = 3600 trials. 

5.6 Results 
In this section, we report both quantitative and qualitative analyses 
from the data collected in the study. 

5.6.1 Response Time. For the data analysis, the results of a Shapiro-
Wilk test showed that our data was not normally distributed. There-
fore, Kruskal-Wallis and Mann-Whitney U tests were conducted to 
identify signifcant diferences between interaction techniques. To 
reduce Type I error, Bonferroni correction was applied. 

The results of the Kruskal-Wallis test showed that there is a 
signifcant diference between three interaction conditions across 
the two mobility conditions (χ2 = 597.62, p < 0.001, d f = 2). To 
identify the location of signifcant diferences, we conducted Mann-
Whitney U tests, and we found signifcant diferences between all 
condition pairs: FBG and Shift (U = 831936, p < 0.001, Shift; Mdn 
= 2944ms, FBG; Mdn = 2148ms), PBG and Shift (U = 941740, p < 
0.001, Shift; Mdn = 2944ms, PBG; Mdn = 1920ms) and PBG and FBG 
(U = 770018, p < 0.001, FBG; Mdn = 2148ms, PBG; Mdn = 1920ms). 
Figure 8 summaries the results. 

Figure 8: Left: Overall average response times (ms) for Shift, 
FBG, and PBG. Right: average response times for each inter-
action technique, separated out by mobility condition. 

We further analyzed response time for each interaction technique 
by dividing the watch-face into 24 even pie segments. We labeled 
each target in our graphs to belong to one of these 24 segments. We 
calculated the average response time for each technique for targets 
within each segment. Figure 9 (a) summarises the results. The aver-
age response time for targets in each segment is represented using 
a spider graph wherein the points closer to the center represent 
faster response times. We observe the following. We note that for 
PBG, the response time is the fastest for almost all segments. This 
demonstrates that PBG is the most efcient technique when targets 
appear in each of these pie segments on the smartwatch. The FBG 
technique also does well for some segments on the watch, but is 
slower for targets that appear near the right side (segments 23, 24 
and 1-6). For the Shift technique, we note that while windowing 

mitigates the fat fnger problem, response times are higher in the 
upper left corner. This may be due to the fact that the body of the 
fnger still occludes the screen, and thus the window. In general, we 
observer larger fuctuations in response times around the diferent 
watch segments with the Shift and FBG techniques. In contrast, 
PBG shows the most consistent pattern. 

Figure 9: Response times divided by the location of the data 
point within pie segments (a) and concentric classes (b). 

We also classifed the targets on the all line graphs into 4 concen-
tric classes based on the location along the smartwatch radius. We 
calculated the average response time for each of these four classes 
for the diferent interaction techniques. For this comparison, we 
only consider PBG and FBG, as users clearly perform faster with 
these than the Shift technique. See Figure 9 (b). For both PBG and 
FBG, as we start from the center segment, and move towards the 
smartwatch edge, the response times increase. While these tech-
niques utilize the bezel of the smartwatch, slight occlusion still 
occurs even in the highest visibility segments of the bezel. Thus, 
for points near the edge of the screen, these can still take slightly 
more time to acquire. 

5.6.2 Touch Points. To gain a better understanding of the interac-
tion itself we further analyzed the touch points collected during the 
participant’s interactions. We explored both touch down locations 
as well as the overall distance travelled during the interaction. 

Figure 10: Touch point results for both (a) touch down lo-
cations and (b) average touch interaction distance travelled 
(with 95% confdence intervals denoted by the red bars). For 
touch distance travelled we note the circumference of the 
watch is 1131 pixels. 
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Touch Down Locations. First, we wanted to explore the locations 
in which participants landed, and thus started their interaction 
from. Figure 10 (a) shows the results of the plot, with notable results 
for the FBG and PBG techniques. As can be seen, the PBG touch 
down position is relatively condensed within the interaction area, 
although slightly skewed to the right. Surprisingly, the touch down 
locations for the FBG technique also tended to start in the bottom 
and bottom right bezel areas. 

Touch Path Distance. Due to the interesting results regarding the 
FBG touch down locations, we next aimed to explore the distance 
travelled during interactions by participants. The average distance 
travelled for each condition can be seen in Figure 10 (b). These 
show signifcantly reduced distances travelled for the only the PBG 
technique. We also note that mobility did not have an efect on this 
distance in both the BezelGlide interaction techniques. 

5.6.3 Mobility Conditions. We were interested in seeing if there 
would be an interaction efect on response time between the two 
mobility conditions (standing and walking) and the three inter-
action techniques (Shift, FBG, and PBG). The result of our data 
analysis showed that there was no interaction efect. We also did 
not fnd any signifcant diference between the walking and running 
conditions for each interaction technique. 

5.6.4 Participant Preferences. At the end of the experiment, partic-
ipants flled out a questionnaire regarding their technique prefer-
ence. We also asked them to provide reasons for liking or disliking 
a particular interaction techniques. 10 participants preferred the 
PBG technique compared to the two other interaction techniques 
(Shift and FBG). 

Many participants pointed out that PBG is better than the other 
techniques because it fxed the screen occlusion problem. For in-
stance, P1 mentioned “ my fnger wasn’t blocking the view and I could 
fnd the point easier.”., P7 commented “Your hand is not in the way 
of seeing the number. ” and P10 noted that “it only covers a tiny part 
of the screen so your fngers are not covering the whole screen as you 
move your hand around.”. With respect to screen occlusion, some 
participants mentioned that moving their head to adjust their view 
in the FBG technique made it harder to interact with, compared to 
PBG. For instance, P8 mentioned “With FBG, sometimes your hand 
is in the way of the screen so you can’t see the number.”. 

Some participants mentioned that they liked having to move 
their fnger less in the PBG technique to interact with graphs. For 
example, P2 pointed out that “smaller area that interacts making it 
easier to get to a number ”. Also, P11 mentioned that “Limiting the 
area in my opinion made if faster to target the point and read the value 
and also the fnger was not blocking the view.” As a disadvantage of 
PBG, some participants mentioned that it took time for them to get 
used to this technique. 

5.7 Discussion 
Our results show that both FBG and PBG are signifcantly faster 
than the Shift technique. We also showed that in PBG, by limiting 
the interaction area on the bezel to the area with maximum visibility, 
we decreased the response time and travel distance signifcantly 
compared to the FBG technique. We attribute this outcome to two 
efects. First, PBG reduces the overall amount of screen occlusion. 

In the Shift technique, participants had to directly interact with 
the screen, which blocked a great portion of the display. The FBG 
technique does not entirely mitigate screen occlusion concerns, 
especially while interacting with the left upper corner of the screen. 
This is resolved with PBG which allows for 90% of screen visibility, 
overall. Second, we observed the need for shorter displacements 
with PBG than with either FBG or Shift. FBG uses the entire bezel, 
and thus choosing the most appropriate landing point to make the 
intersecting segment appear can be time consuming. Further, in 
FBG participants tended to start in a position that allowed for them 
to view the graph before moving to the correct bezel location, and 
thus the data point desired; an already natural aspect of PBG. Shift 
uses the entire display, requiring the user to move signifcantly 
within this space. 

6 DISCUSSION 
We discuss our study 1 and 2 fndings, and present the key take 
away lessons. We also discuss other potential applications of our 
techniques and present limitations of our work. 

6.1 Overall Findings 
From study 1 we learn that we can achieve a high degree of screen 
visibility, if the interaction is limited to a region of the bezel in 
the lower right side (when interacting with the right hand). To 
retain 90% screen visibility, we should only use about 40% of the 
bezel region in the lower right quadrant (encompassing 15◦ to 225◦ 

clockwise). We also fnd that the opposite area, ie. the top left corner 
of the smartwatch bezel, has the least screen visibility. This area 
(105◦ to 175◦ counter-clockwise) has a screen visibility of 60% at 
most. We also found that in the worst case, interacting with the 
smartwatch bezel will yield a 50% screen visibility. Furthermore, 
on average across all segments, we obtain a 76% screen visibility. 
This leaves designers with at least 2/3 of the display to provide 
information. This makes the bezel a useful interactive region for 
mitigating screen occlusion on circular smartwatches. 

In the second study, our results show that our participants per-
formed better while they interacted with graphs using the PBG 
technique. PBG was designed based on the result of study 1 to 
mitigate the ‘fat fnger’ and screen occlusion problems. On average, 
PBG was nearly 34% faster than the Shift techniques and 10% faster 
than FBG. 

Further analysis shows that, for both PBG and FBG, if the target 
data point is close to the smartwatch bezel, it takes more time for 
users to reach and read the value of the data point. Whereas, if the 
data point is closer to the center of the screen, users can access 
them quicker. Figure 9 (b) shows that for all 4 segments (from center 
to the edge), PBG was more efcient compared to FBG. 

Lastly, analyzing the touch points showed that total distance 
travelled was signifcantly reduced in the PBG technique. As well, 
both the BezelGlide techniques had users tending to start the inter-
action in or near the interaction area of PBG. Thus, the argument 
can be made that participants desired to start the interaction while 
being able to view and asses the data visualization before targeting 
the specifc data point. 
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6.2 Potential for Generalizability 
Our experiment used a common graph visualization, the line-graph. 
However, there are many other types of graph visualizations that 
a user may want to interact with on a smartwatch[2, 4]. In this 
section we illustrate how the PBG technique (which had the best 
performance in our experiment and causes the least amount of 
occlusion) can be generalized to other commonly used graph types 
on smartwatches. 

Blascheck et al. [4] showed that donut, bar and radial bar charts 
are the most commonly used visualization techniques on smart-
watches. We thus illustrate the potential of PBG with these charts. 
We also show how PBG generalizes to pie charts, as they are very 
similar to donut charts. 

In PBG, a data point appears when the interaction segment inter-
sects with the line graph. As the segment intersects multiple parts 
of the line graph, we show all the data points intersecting with this 
line. To generalize this interaction technique to other chart types, 
we must modify slightly how we display values. For donut and pie 
charts, this requires showing values for the segments of the chart 
where the interaction line crosses the outer edge of the chart (see 
Figure 11). For bar and radial bar charts, we utilize the top most 
edge of the individual bars. If the interaction line crosses this top 
edge, then we display the value of that bar, Figure 11. 

Figure 11: Using PBG on, A: Bar chart, B: Donut chart, C: Pie 
chart, and D: Radial bar chart 

6.3 Other Applications 
We focus primarily on graph selection. However, our BezelGlide 
techniques can also serve to interact with other content on smart-
watches. For example, PBG (without the interaction line) can be 
used as an interaction tool for menu and list scrolling tasks on 
smartwatches. Currently, the most common way to scroll through 
menus on existing smartwatches is by swiping down or up through 
the menu items. Some smartwatches have used a technique similar 
to FBG for menu scrolling, however through this work we note the 
reduced performance to that of PBG. This is due to the trade-of 
regarding clutching and screen occlusion that can still occur. 

Zooming is a continuous interaction technique with which the 
user directly interacts with the content on the smartwatch display 
(e.g., map, or photo). Our PBG (with no interaction line) could also 
be used as a zoom-in and zoom-out interaction technique. The user 
can swipe to the right, using PBG to zoom-in and swipe left for 
zoom-out. 

To make PBG a more general interaction tool, we can adapt the 
PBG functionality based on the display content. For instance, the 
user can use PBG to scroll through menu items to select a map 

application on the smartwatch. In the map application, PBG will 
change its functionality to zoom-in/-out. Similarly, on the map, the 
user may select a point of interest (such as a restaurant) and then 
PBG may change to navigate through images (e.g., next/previous 
image). 

6.4 Limitations and Future Work 
One of the limitations of this research is the minor diference be-
tween the camera angle and the participant’s line of sight (LOS) in 
our frst study. If the diference between the camera angle and LOS 
is large enough, the captured images would be very diferent from 
the participant’s point of view, which may result in unreliable fnd-
ings. Although there is no known practical way to solve this issue, a 
few papers proposed ways to minimize the diference between the 
camera angle and LOS [54, 55], to make sure the captured images 
are close to participants’ point of view. We followed their guide-
lines and camera setup to capture images from the participants’ 
LOS performing the task in study 1. However, there will always be 
a minor ofset so as not to block the participant’s line of sight using 
this method. 

Another limitation is that we developed our techniques based on 
wearing the smartwatch on the left wrist. While it does not afect 
FBG, PBG would need adjustments. We are assuming that we could 
mirror our interaction area and fip on the centre vertical position, 
however future work should explore it further. Also, for our study 2, 
we asked our participants to walk on a treadmill rather than walking 
outdoors, which is a more realistic situation. We did this to have 
more control on participants’ speed and to prevent adding more 
complexity to our study. Further, our task in the second experiment 
was limited only to a data value detection task. Although, this is 
one of the most commonly used tasks across various visualization 
techniques, evaluating PBG and FBG with additional tasks, such 
as data comparison and minimum/maximum detection, could be 
useful. Finally, while focusing on the interaction techniques, we 
consciously left out additional UI contents and displayed only the 
line-graph trial. We are aware that UIs on smartwatches contains, 
along with graphs, text, icons, and other important information. 
While it was out of the scope of this paper, it would be interesting 
to analyze how PBG and FBG can ft along current UIs. 

While we asked participants in Study 1 to interact as naturally as 
possible, in real-world scenarios users may interact not only with 
the index but possibly other fngers as well. Assessing smartwatch 
input occlusion in a contextual setting may show diferent results. 
Capturing such information can further the design of novel smart-
watch techniques. Our current lab study fndings are limited and 
future work is needed to test more ecologically valid settings, such 
as jogging or running outdoors. Amini et al. also suggests a variety 
of tasks end-users require in such settings [2]. We aim to validate 
our interaction technique with these tasks as well. 

6.5 Take Away Lessons 
Based on the results of our studies, we propose the following key 
take aways: 

• interacting with the entire smartwatch bezel can mitigate 
the ‘fat fnger’ problem, but does not entirely resolve the 
screen occlusion issue. 
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• interacting with the right lower corner of the smartwatch 
display, within a specifc angle range (15◦ - 255◦ clockwise) 
is the most suitable place to minimize screen occlusion on 
smartwatch displays. 

• using this optimal area on the smartwatch, our BezelGlide 
technique can facilitate efective value detection tasks on 
line graphs, in static and mobile conditions. 

7 CONCLUSION 
We present BezelGlide, a suite of interactive smartwatch techniques 
to facilitate interacting with graphs on a small display. Our tech-
nique is motivated by the need to inspect graph contents, in-situ, 
during the activity generating the data, such as a while running. 
BezelGlide is designed to minimize occlusion with the display and 
thus allows using the smartwatch bezel as an input modality. First, 
we examined regions around the bezel that minimize screen oc-
clusion. We fnd that bezel regions in the lower right quadrant 
have optimal screen visibility of at least 90%. This led us to de-
sign two BezelGlide techniques: Full BezelGlide (FBG) and Partial 
BezelGlide (PBG). The FBG technique involves gliding the fnger 
around the watch’s entire bezel to target values using an intersect-
ing segment from the screen centre to the fngertip. PBG uses a 
non-linear transformation of points from a specifc bezel region, 
chosen from our optimal screen visibility results in our frst study, 
to cover the entire screen with a similar segment. We fnd that PBG, 
enables rapid interaction with line-graphs, both while standing and 
walking. PBG also outperforms both FBG and Shift, a technique to 
mitigate touchscreen occlusion and the ‘fat fnger’ problem, in a 
value detection task on line graphs. We demonstrate that PBG can 
be generalized to other graph types, including donut-, bar-, pie-, 
and radial-bar charts on smartwatches. In this work, we ofer one 
of the frst input modalities allowing for improved interaction with 
graphs on smartwatches. This furthers the ability to explore data 
visualizations, all while considering minimal display occlusion on 
small displays. 
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tbinary 235 
knoise 7 

1. t 100canny
2t 200canny 
αcontr ast 1.4 
nnbh 10 
αchannel 2.4 
tchannel 98 

Table 1: Parameter values used in our algorithm 1 

A OCCLUSION ESTIMATION ALGORITHM 
The following pseudo code (Algorithm 1) represents our image 
processing algorithm to calculate the screen occlusion from cap-
tured images in study 1. The RemoveNoise uses dilate and erode to 
remove noisy pixels by a kernal of size knoise . The FitEllipseModel 
model used is from the sci-kit learn library 6. The |.| notation is 
used to indicate the length of a list. The formulation for Contrast 
used is (i − 128) ∗ αcontrast + 128, where i is the pixel value. 

The parameters used for the algorithm during study 1 are listed 
in Table 1. These values were calculated based on our test on a 
sample of images in study 1. 

Algorithm 1: Calculate non-occluded region of an image 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Input: image ← cropped image 
Input: tbinary ← The threshold used for ConvertToBinary 
Input: knoise ← Kernel size for RemoveNoise 

1 2Input: tcanny , tcanny ← Threshold values for Canny’s 
edge detection 

Input: αcontr ast ← contrast value for Contrast 
Input: nnbh ← Neighbourhood size for 

neighbourhoodPixels 
Input: αchannel ← Multiplier red channel when deciding 

smart watch edges 
Input: tchannel ← Threshold value for deciding smart 

watch edges 
Output: ro : approximated non-occluded region as ratio of 

the complete screen 
SW Edдes ← emptylist ; 
binaryImaдe ← ConvertToBinary(imaдe, tbinary ); 
binaryImaдe ← RemoveNoise(binaryImaдe, knoise ); 
visibleScreenPixels ← NonZeroPixels(binaryImaдe); 
edдePixelsList ← 

1 2CannyEdдeDetection(binaryImaдe, tcanny , tcanny ); 
contrastedImaдe ← Contrast(imaдe, αcontr ast ); 
foreach edдePixel in edдePixelList do 

neighbourhoodPixels ← 
GetNeighbourhood(image,edgePixel, nnbh ); 

redChannelAverage ← 
Average(neighbourhoodPixels.redChannel); 

otherChannelsAverage ← 
Average(neighbourhoodPixels.greenChannel) + 
Average(neighbourhoodPixels.blueChannel); 

if redChannelAveraдe ∗ αchannel − 
otherChannelsAveraдe < tchannel then 

SW Edдes .insert(edдePixel); 
ellipseModel ← FitEllipseModel(SW Edдes); 
ellipseReдionPixels ← DrawEllipse(ellipseModel); 
r0 ← |visibleScreenPixels |/|ellipseReдionPixels |; 

6https://scikit-image.org/docs/0.18.x/api/skimage.measure.html?highlight= 
ellipsemodel#skimage.measure.EllipseModel 

https://scikit-image.org/docs/0.18.x/api/skimage.measure.html?highlight=ellipsemodel#skimage.measure.EllipseModel
https://scikit-image.org/docs/0.18.x/api/skimage.measure.html?highlight=ellipsemodel#skimage.measure.EllipseModel
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