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Figure 1: Elbow-Anchored facilitates casual seated postures for mid-air input. We observed users primarily anchoring their

elbow either on a fixed surface or close to their body when sitting or resting in a casual posture. Based on this observation, we

systematically explore the arm bio-mechanics involved in such a motion. We design mappings from motor (blue region) to

screen space, implement a self-contained solution using a smartwatch (user’s band), and study the performance and comfort

of elbow-anchored interactions.

ABSTRACT

We designed a mid-air input space for restful interactions on the
couch.We observed people gesturing in various postures on a couch
and found that posture affects the choice of arm motions when no
constraints are imposed by a system. Study participants that sat
with the arm rested were more likely to use the forearm and wrist,
as opposed to the whole arm. We investigate how a spherical input
space, where forearm angles are mapped to screen coordinates,
can facilitate restful mid-air input in multiple postures. We present
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two controlled studies. In the first, we examine how a spherical
space compares with a planar space in an elbow-anchored setup,
with a shoulder-level input space as baseline. In the second, we
examine the performance of a spherical input space in four common
couch postures that set unique constraints to the arm. We observe
that a spherical model that captures forearm movement facilitates
comfortable input across different seated postures.

CCS CONCEPTS

• Human-centered computing→ Gestural input.
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1 INTRODUCTION

Mid-air interaction is moving beyond the lab and becoming avail-
able to consumers in real-world settings through platforms such as
SmartTVs [1], smartphones [3, 5], in-car control systems [2], and
Virtual Reality (VR) headsets [4]. Over the years, HCI researchers
have studied and proposed guidelines for a variety of mid-air in-
terfaces including mid-air pointing [10, 38, 46], mid-air menus
[8, 11, 18, 27] and mid-air text-entry [32]. However, in a lab setting,
experiments often require users to assume a certain degree of phys-
ical and mental attention, such as sitting straight and facing the
system, to suit the technical capabilities of mid-air tracking systems.
This does not reflect how users could interact with such systems in
casual and more relaxed settings, where they may assume postures
different than those evaluated in the lab [16]. If mid-air gestural
interactions are to be integrated into consumer products, designers
need to also consider the ergonomics and bio-mechanics of muscle
and joint movements under casual sitting conditions.

Prioritizing user comfort, we examine how people sit on a couch
(from a Western perspective) in a simulated home environment.
Under casual postures, we ask users to emulate mid-air interactions
with a smartTV, from which we identify their most common arm
motions. We observe a strong preference for using the forearm and
upper arm for such gestures. We also observe that shoulder rota-
tions along with elbow flexion-extension constitute the majority
of the movements across all postures. We refer to these forearm
motions as elbow-anchored motions. These observation align
with users’ natural tendency to attempt to reduce arm and shoulder
fatigue [21], also termed as the “Gorilla Arm Effect”. Given that
anchoring the elbow constrains user motion [10, 23], we systemati-
cally examine the profile of “Elbow-Anchored” movement to enable
efficient casual mid-air input. To identify the suitable parameters
for such an input space we rely on the precision of a motion-capture
system, and devise methods to map the range of such motion from
3D motor space to interact with planar content in visual space.

Based on the bio-mechanical properties of the arm, we modeled
elbow-anchored gestures using a spherical movement, centered at
the elbow. Our first mapping Elbow-sphere, uses the entire forearm
range and maps the Elbow-Anchored motion onto a 2D surface
using an equirectangular projection. The Elbow-plane mapping
takes a subset, namely an inscribed plane within the spherical range-
of-motion, and uses an orthogonal projection to make use of the
largest possible space within this region. Using a target selection
study, we observe that using such parameters to design elbow-
anchored techniques is as efficient as unconstrained mid-air input.
However, as expected, the former significantly reduces fatigue in
comparison to full mid-air interaction. From our results, we are
also able to derive the regions of highest throughput. Unaware
of prior work on mid-air input across varying seated postures,
we implement a self-contained prototype on a smartwatch, and
assess the resilience of our model for elbow-anchored input when
assuming different postures when rested on a couch. We found that
the Elbow-sphere model can be adapted to the different postures
we studied, with small variations in throughput depending on the

posture and the spatial region. We report on such a non-uniform
throughput space to assist designers with the design of elbow-
anchored interactions.

Our main contributions include: 1) an understanding of users’
casual postures for mid-air input, leading to the design of elbow-
anchored interactions; 2) a systematic exploration of the necessary
design parameters for enabling efficient elbow-anchored input; 3)
an examination of our movement model’s throughput and induced
fatigue, in comparison to full arm mid-air input; and, 4) an investi-
gation of our model’s adaptability across different seated postures.

2 RELATEDWORK

Our work lies at the intersection of identifying suitable mappings
from mid-air input space to visual interfaces, and how these are
affected by the ergonomics of constraining the upper limb motions
which result when the user is sitting casually.

2.1 Mid-Air Input Space and Mappings

A key aspect of designing mid-air input concerns the mapping func-
tion for translating the hand motion to the cursor position on the
screen. Myer et al. [37] suggest that directly mapping (ray-casting)
hand motion provides an easy association for the user to keep track
of the cursor. However, it tends to be imprecise. Similar findings
were suggested by Vogel et al. [46] in their comparison of absolute,
relative, and hybrid mappings of hand movements. The absolute
mapping affords efficient input, at the cost of being erroneous, mak-
ing it impractical. Cockburn et al. [14] also compared ray-casting
with large 2D movements and movements in 3D volume. The 2D
movements tend to be more precise and accurate than raycasting.
3D volume mappings are slower, less accurate, and more physically
demanding than others. Solutions to implement natural but precise
mid-air pointing include using a target-oriented approach [9, 13],
velocity-oriented approach [33], or by allowing the user to manu-
ally switch between the absolute and relative mapping modes [15] -
which require explicit mode switching to mitigate erroneous input.

The literature also presents approaches for 2D plane mappings.
Chattopadhyay and Bolchini [12] tested amenu based on directional
movements (360 degrees) that required XY-plane movements of up
to 18.9cms, with a starting position at about shoulder level. The
mid-air keyboard, Vulture [32], was implemented as a plane sized
20 x 5.5cm. Cockburn et al. [14] used a square with sides of one
cubit (a measure based on forearm length, 45.72 cms).

Previous work has also examined, to a minimal extent, spheri-
cal 3D input spaces. For instance, joint-centered kinespheres [31]
are spherical 3D input spaces centered at joints. They tested three
joints as the center of kinespheres: shoulder, elbow, and wrist, and
found that wrist offers the highest performance (throughput) and
comfort, followed by elbow and shoulder. Guinness et al. [19] pro-
pose a spherical input space defined by the user. In longitudinal
user tests against planar and hyperplanar spaces, they found no
significant difference in performance, arguing that their LeapMo-
tion implementation which, does not provide precise forearm angle
estimation, may have contributed to the results. Their participants
were seated on an office chair with their elbow rested on a desk.
In our studies, we use a motion capture system and a more eco-
logically valid setup that includes a large display and couch. Both
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Figure 2: Body postures assumed by our participants in the observation study when asked to relax as if at home. Half the

postures feature at least one elbow rested on a surface.

aforementioned works use the ISO 9241-9 “ring of circles” task,
which consists of targets arranged as a ring around the center of
the screen; as a result, the performance at the edges and corners of
the input space was not examined. We consider this to be a signifi-
cant gap, as biomechanical and environment constraints can impact
performance unevenly in the space. In contrast, we devised a proto-
col for capturing performance measurements uniformly across the
available motor-input space. Another example of spherical map-
ping, although not intended as a general-purpose input space, is
Virtual Shelves [28] which projects a menu on a spherical space
around the user. Similar to Virtual Shelves, TickTockRay [24] aims
at providing a self-contained method for mid-air input in VR en-
vironments. But such an approach does not include the necessary
parameters for casual elbow-anchored input.

In summary, researchers have studied a variety of methods that
bound the 2D and 3D input spaces for mid-air interactions, but far
less is known about how these apply to various casual postures.

2.2 Biomechanics and Mid-air Ergonomics

Mid-air interactions can benefit from an assessment of human
biomechanical properties and upper limb ergonomics to offer an
ideal user experience. König et al. [26] note the impact of hand
tremors [45] on mid-air pointing imprecision. Temporal window
averaging [37] or Kalman filter [42] techniques are needed to
smoothen the pointing behavior. Another major issue with mid-air
pointing is the “Gorilla Arm Syndrome” or arm fatigue [21]. Nancel
et al. [39] investigated mid-air pan and zoom techniques for wall-
displays and found that mid-air gestures are less efficient and more
fatiguing than device-based gestures. Several methods have studied
human fatigue in the context of mid-air input [21, 22, 29, 48]. As
with these studies, we use the Borg CR10 tool in our evaluation of
elbow-anchored interactions to assess the degree of fatigue induced
by our approach in comparison to full-arm interactions.

Several studies suggest to limit the interaction time for which the
arm/hand is raised in the air to mitigate fatigue effects [16, 23, 44].
Hincapie-Ramos et al. [21] identified that movements further away
from the user’s waist will lead to higher fatigue and should be
avoided. Liu et al. [30] explored arms-down positions with both
hands at the sides of the body for interacting with a large display.
Despite these suggestions, it is still unclear whether rested elbow

interactions or interactions closer to the body can provide any
significant performance benefits [10].

Nunnari et al. [41] observed subjects performing a 3D docking
task while sitting on a chair and found that muscle load distri-
bution is higher when subjects vary their posture. Their results
suggest that postural variability may prevent over-exertion of key
muscles, such as the shoulder, which is usually identified as the
culprit for fatigue in mid-air gestural input [21]. In touch-based
interaction, shoulder-dominant arm strokes are also known to re-
quire more muscle effort than their elbow counterparts, although
with improved performance in target selection tasks [7]. Gesture
execution and movements tend to change over the duration of an
interaction, as individuals relax and adopt more comfortable posi-
tions [16]. However, certain postures encumber gesture execution.
For instance, the degrees-of-freedom of hand trajectories are lim-
ited when the elbow is rested on a surface. Aslan et al. [6] also
observed variation in gesture patterns. In the domain of virtual
reality, Wentzel et al. [47] measured the maximum reach of an indi-
vidual arm’s and apply a non-linear transformation to extend user’s
virtual reach. Similarly, Ergo-O [34] decouples the physical and
visual spaces and shrinks the physical space so that more objects
lie within user’s reach.

The above studies point at the need to consider system ergonomics
and upper limb biomechanics to facilitate restful mid-air interac-
tions. However, very little is known about the specific parameters
needed to develop such interactions or how the constraints of a
restful posture affect mid-air input. In particular, it is unclear if any
advantage gained from diminished fatigue also negatively impacts
the performance of such type of mid-air input.

3 STUDY 1: CASUAL ARMMOVEMENTS

The primary aim of this study was to analyse joint motions for the
preferred arm movements during casual mid-air interactions . We
presume that such seated postures would be selected by users to
maximize comfort, a critical criteria when lounging on a couch,
at home, for example. We restrict this exploration to postures on
a couch as it is one of the more commonly available furnishings
available in homes (in Western cultures), but also allows one to
assume a number of restful postures.
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Figure 3: Upper limb joint motions used in coding our observational videos.

3.1 Participants and Procedure

Eight (8) participants, including 3 females, from our organization
were invited into a space resembling a common living room and
which included a large couch and TV. We instructed participants to
sit on the couch in their most comfortable posture and perform a
set of three different gestures: Swipe, Wave, and Slap. These three
gesture labels were selected as they involve directional proper-
ties and can be distinguished from one another. The instructions
on these three gestures were kept vague intentionally to support
variability. We avoided using labels solely associated with any UI
interactions such as drag, select, or move to prevent legacy bias
[36]. For example, Swipe has a digital counterpart, but Slap and
Wave gestures do not. While we acknowledge that the meaning of
the term “comfort” may be subjectively distinct to each participant,
we repeatedly asked participants to be relaxed and to assume they
were in their own living room. Each participant performed Swipe,
Wave and Slap gestures 3 times, in four directions (up, down, left,
right) and with each hand. Variation in direction is important be-
cause the interaction of the body with furniture poses constraints to
movement that are potentially asymmetric. These were captured in
two of their most preferred body postures. The participants’ body
postures varied from sitting with their legs on the couch, resting
their body on an arm rest, resting their arm on the back rest or
on a cushion, among other postures they deemed to be comfort-
able (Figure 2). Interestingly, none of the participants chose to lie
down. This could possibly be because the participants were not
comfortable lying down in a professional environment.

We videotaped the sessions and recorded participants’ comments.
Sessions on average lasted an hour long.

3.2 Movement analysis

Two authors independently annotated each of the performed ges-
tures based on the frequency of upper limb joints using Anvil [25],
a video annotation tool. Video annotations were grouped into seven
categories: motion joints, elbow position while rested, elbow posi-
tion at the start of gesture execution, posture, gesture, gender, and
hand. We define rested position as the neutral position of the joints
when the participant is not doing a gesture and starting position as
the position of the joints just before carrying out the gesture.

First, each gesture is characterized in terms of joint motions that
are utilized in the movement. The movements are characterised by
six joint motions [40]: shoulder horizontal abduction/adduction,
shoulder flexion/extension, elbow flexion/extension, shoulder me-
dial/lateral rotation , wrist flexion/extension, wrist deviation (Figure

3). One gesture can have annotations corresponding to multiple
joint motions. For example, a swipe-left motion with the right hand
may involve shoulder horizontal abduction/adduction, shoulder
medial/lateral rotation as well as elbow flexion/extension. In the
majority of cases participants brought their hand to a common
starting position that was usually higher than the resting position.
Since this motion is meant as an accomodation, and is not part of
the gesture semantics, we did not count it.

The joint motions are associated with different upper limb seg-
ments. Combined, wrist deviation and wrist flexion/extension move
the hand, shouldermedial/lateral rotation and elbowflexion/extension
has an effect on the forearm, and finally shoulder flexion/extension
and shoulder horizontal abduction/adduction move the upper arm
[40]. Figure 3 depicts these joint motions and their effect on the
upper limb segments.

3.3 Results

In Figure 4 we present a summary of the distribution of the joint
motions for participants in each of the two postures in our study.
We observed that the majority of movements involved participants
lifting their elbow in order to bring the hand to a higher initial
position for gesture execution. Those who anchored the elbow were
either seated with the elbow rested on the arm rest, for example, or
were interested in executing the gestures without affecting their
seated posture.

We also observe that full arm motions are dominant in our obser-
vations, followed by forearm and hand movements (Figure 5-top).
We note that a full arm motion is the one where we observed a
major movement of the shoulder, while the other joints may also be
moving simultaneously. Movements of the wrist were particularly
high for the ‘Wave’ gesture, which dominated the counts presented
in Figure 5-bottom. Users interpreted the ‘Wave’ motion in their
actions literally.

We further examine joint motions across each of the postures
assumed by the participants. We observed that vertical movements
usually involved shoulder flexion/extension, which is a relatively
strenuous joint motion. However, whenever the arm was rested at
a high surface (e.g., backrest, armrest) shoulder medial/lateral rota-
tion, a less demanding motion, prevailed. We also find that across
all postures, elbow flexion-extension was involved, as well as shoul-
der medial/lateral rotation in all but one user posture. Horizontal
movement was dominated by shoulder medial/lateral rotation for a
majority of the participants. Some male participants also engaged
in high-amplitude shoulder horizontal abduction/adduction, which
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Figure 4: Frequency of all joint motions according to each of two postures assumed by participants. Horizontal gestures are

those that imply lateral limb motion, such as "swipe left". Vertical gestures imply vertical limb motion, as in "swipe up".
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Hand
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Figure 5: Frequency breakdown by limb segment(s) (top),

and by joints (bottom).

is associated with high fatigue. Unlike female participants, who
executed wrist motions more often than full arm movements.

We summarize our findings as a set of general observations from
this study:

• The majority of upper limb motions involved the full arm
and the forearm. The hand was primarily used in the ‘Wave’
gesture, but otherwise mostly accompanied the above two
actions.

• Whenmovementwas annotated on joint, shouldermedial/lateral
rotation (forearm) and shoulder flexion/extension (upper
arm) were the most frequent.

• All users engaged in shoulder medial/lateral rotation (fore-
arm movement) at least once (or more) across all postures,
making it a common motion to explore.

• Male participants engaged in full arm motions whereas fe-
male participants executed smaller arm movements.

• In the vertical direction, users primarily engaged in shoul-
der flexion/extension (upper arm), while in the horizontal
direction, users engaged in shoulder medial/lateral rotation
(forearm).

• Posture alone is not a sufficient predictor for arm motion
given a specific gesture. We observed variability in arm mo-
tion across participants that chose similar postures, which
suggests personal preference is a major factor.

In contrast to full arm motions, we define elbow-anchored mo-
tions as those primarily involving the forearm (shouldermedial/lateral
rotation and elbow flexion/extension) as seen from this study. We
next explore the necessary parameters to characterize elbow-anchored
motions (section 4 and section 5) and then investigate the through-
put and induced fatigue for such type of mid-air input (section 6).
Finally, we examine the potential for forearm motions across differ-
ent seated postures.
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Front Side
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Figure 6: Top: Motion capture data showing the reachable

hand positions when the elbow is anchored (N=8), spherical

coordinates. The data was collected for the right hand, with

the origin (0,0) at the elbow location. Bottom: The same data

in cartesian coordinates. The horizontal color gradient re-

veals the asymmetry of the reachable space, with a larger

range of motion towards the body.

4 OBSERVATION ON ARM RANGE OF

MOTION

The main objective of this exploration was to determine the full-
coverage of the volume reachable by the palm when primarily
engaging the forearm. Eight participants (average age 31.87, 2 fe-
male) volunteered. We asked participants to repeatedly move the
hand from left-to-right and right-to-left using their forearm all
while gradually increasing the elbow flexion. We asked participants
to do so until the top of the hand reaches the maximum flexion that
could be comfortably achieved using the elbow. By “comfortable”
we emphasized that participants should not overextend their arm
beyond their natural limits. We also asked participants to anchor
their elbow on the available armrest to obtain the most accurate
movements with an origin at the elbow. Participants completed
these movements on average within 3 minutes.

We used an OptiTrack motion capture system to record par-
ticipants’ forearm movements by placing the tracking markers
on the elbow and at the back of the hand. These repetitive in-air
movements produced a forearm reachable space when the elbow is
anchored as shown in Figure 6.

The 2D projection represents the reachable space around the
elbow joint if rendered directly onto a 2D display panel. It resembles
an asymmetric oval region on the surface of the sphere. The forearm
moves inward, towards the body, by at least 20% more than its
movement outwards, away from the body. It also indicates a smaller
movement space at higher levels of elbow flexion, and vice versa.

The lateral interaction space corresponding to a flexion angle of 0°
is 40% more than the interaction space at a flexion angle of 120°.

5 MAPPING MOTOR TO VISUAL SPACE

Based on the range of motion data we captured, we first define our
3D motor space, then project such a space onto the 2D visual space
of a display.

5.1 Defining the 3D Input Space

Having established that the upper armmovement is more physically
demanding than the forearm movement, we focus our design on
the latter. Since the distance between the hand and the elbow joint
is always the length of the forearm, the hand motion is defined by
the sphere centered at the elbow joint O with radius the forearm
(Figure 7).

Figure 7: The motor space is defined as a subregion on a

sphere, with the elbow at the sphere’s center (top). Only a

subsection of the sphere is accessible due to the range ofmo-

tion of the elbow. The mapping of a spherical region to a 2D

surface produces distortion (bottom). Regions in the top of

the screen are mapped to smaller areas of the input space.

In practice, this leads to a variable control-display ratio.

Not everywhere on the sphere surface is reachable by the hand.
To describe regions on the sphere that are reachable (blue outline in
Figure 7), we consider four planes: OTAD, OTBC , ODPC , and the
plane that crosses A and B and is perpendicular to z. Without loss
of generality, assuming the user is right handed, the plane OTAD
corresponds to the rightmost limit the user is able to move the hand
to, and the plane OTBC corresponds to leftmost limit the user is
able to move the hand to. We observed that our study participants
performed gestures with the hand raised above a certain level,
which we approximate by the plane ODPC for consistency and
simplicity. On a couch this plane may represent the level of armrest.

In the previous section, we estimated the maximum angles for
a person sitting straight and anchoring the elbow on an armrest.
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In this setting, the maximum angle range ∠DOC of the left-right
forearm movement is around 100°, with points C and D being the
bottom left and bottom right corners of the input space. The angle
range ∠DOA, which is same as ∠COB, for the up-down movement
is around 70°. The points A and B are, respectively, the top right
and top left corners of the reachable space. We set a coordinate
system that aligns the x-axis with OP and z-axis with OT .

As an example, we have angles ∠POD = −60°, ∠POC = 40°, and
∠DOA = ∠COB = 70°. This allows any point in the input space
to be specified by two angles θ ∈ [−60°, 40°], and ϕ ∈ [0°, 70°],
which we refer to as azimuth and inclination, analogous to the
longitude-latitude geographic coordinate system on Earth.

5.2 Input-Output Mapping

After defining the spherical input space, we need to define a map-
ping to the output space, which in this paper corresponds to a large
2D display. We know it is not possible to project a 3-dimensional
spherical surface to a 2-dimensional display while perfectly preserv-
ing areas and shapes. This is akin to the problem of map projection.
For example, the shape or the size of the polar regions of Earth are
typically severely distorted in a 2D map comparing to that of the
tropical regions. There are different ways to map the angles (θ ,ϕ)
to the display coordinates. We consider a linear mapping between
spherical and Cartesian coordinates:

θ = arctan
y

x
ϕ = arccos

z

r

where θ is the azimuth, ϕ is the inclination angle, and r is the length
of the forearm. Figure 7, bottom, depicts how input space regions
are mapped to display regions. Note that distortion increases with
inclination angle, with the top part of the screen being mapped to
a small area of the spherical surface. As a result, the spherical input
space has a variable control-display ratio, which would manifest
as the cursor moving at faster in the top than in the bottom. This
could affect motor control and the precision of target selection. In
order to examine these issues, we present a controlled experiment
in the next section.

6 STUDY 2: INPUT SPACE FATIGUE AND

THROUGHPUT

We designed a controlled experiment to assess the effect of input
space on target selection performance and fatigue. In particular,
we examine the position and geometry of input spaces. We com-
pared two input spaces anchored to the elbow with an input space
anchored to the shoulder. At elbow level we tested two mapping
functions, which correspond to different input shape geometries:
plane and sphere.

6.1 Experiment Design

We use a single-factor, within-subjects design. Each participant
experienced three types of input spaces: elbow-sphere, elbow-
plane, and shoulder-plane. To collect meaningful fatigue data, we
controlled the duration of a session instead of the number of targets.
As a result, the number of targets selected in a session varied with
participant performance; likewise, the number of observations for
targets at the end of the study is not uniform. The input spaces are
as follows:

6.1.1 Elbow-Sphere. The spherical input space proposed in this
paper, where forearm inclination and azimuth angles are mapped
to the screen y and x coordination, respectively. The origin for
calculation of these angles was the elbow position at the armrest.
The boundaries of the input space were defined per-individual,
according to a calibration procedure detailed in the next section.

6.1.2 Elbow-Plane. Aplane parallel to the screen and orthogonal to
the armrest is positioned so that its bottom edge is at armrest level.
In a Y-up, Z-forward coordinate system, the x and y coordinates
of the hand are mapped to the screen coordinates, while the z
coordinate of the hand is ignored. This input space was scaled
according to the spherical boundaries resulting from our calibration
step, as in Figure 8. Scaling ensures that the relation between the
dimensions of the spaces under comparison remains constant across
participants.

6.1.3 Shoulder-Plane. Identical to elbow-plane, with the excep-
tion of a vertical offset of 1 forearm length, which positions the
plane at roughly shoulder level.

6.2 Tasks and Measures

Participants were exposed to a target selection task based on Fitt’s
Law. Participants’ movements were mapped to a green circular
cursor. The targets, also circular, were displayed one-at-a-time and
were white on black background; they turned red when the center
of the cursor was within their boundaries. The index of difficulty
(ID) of a target was randomly sampled from six preset values (from 1
to 5). Given an ID and the position of the previous target, the target
position was determined randomly. Target size (circle diameter)
was determined according to the Fitt’s Law formula:

ID = log2

(
D

W
+ 1

)
(1)

This generation process was run once, and produced a single list
of targets that were used across participants and conditions. We
recorded (a) movement time as the time elapsed from the previous
selection to the next, (b) correctness as to whether or not the center
of the cursor was within the target at selection time, and (c) the
BORG fatigue level at 30s intervals. Order was counterbalanced.

6.3 Procedure and Apparatus

Participants were seated on a lounge chair positioned two meters
away from a 85” TV. They were instructed to seat comfortably and
place their dominant arm on the armrest. Participants’ movements
were tracked with 10 Optitrack 17W cameras. We attached a small
circular rigid body directly to elbow and large rigid body to the
wrist with a glove.

Before starting any tasks, we performed a calibration step to
determine the range of motion of the participant’s forearm in the
rested position. During calibration, the maximum angles for the
spherical input space were progressively reduced so that an on-
screen cursor controlled by the participant could reach the four
corners of the TV. We did not make a judgement of the difficulty of
reaching these boundaries, as this information will be present in
the selection data; as such, we merely ensured that the boundaries
of the output space were reachable.
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Figure 8: Procedure for scaling planar input spaces. We be-

gin with the gray plane that encloses a full [-90, 90] spher-

ical input space (blue). This plane is then scaled (1) to fit

within the spherical region, while maintaining its aspect ra-

tio. Given arbitrary spherical boundaries (yellow), we fur-

ther reduce the planar boundaries (2), now with free aspect

ratio.

Participants were introduced to the task and presented with
practice runs before each set of trials (one set per condition). They
practiced until they felt ready to begin the task. For each condition,
participants were asked to select circular targets on-screen for 5
minutes or until they were too tired to continue. This led to some
variability in the number of observations per participant but did
not affect our analysis as it does not require balanced samples.
At 30-second intervals, participants were prompted to rate their
level of arm fatigue on a BORG scale. We delayed the BORG scale
appearance until selection of the current target was completed, so
in practice, the length of this interval varied slightly. The 5-minute
threshold did not include the time taken to periodically rate arm
fatigue. Participants were asked to rest as much as possible between
each set of trials.

Selection was done with the non-dominant hand by pressing the
buttons of a bluetooth mouse. While not realistic, this choice of
selection adds minimal overhead, allowing us to clearly measure
the effect of movement. This is important because we are interested
in the relative differences between the input spaces rather than in
a real-world measure of performance.

6.4 Participants

We recruited 9 participants (5 males) within our organization, aged
22 to 35 years old. All participants used their dominant hand.

6.5 Results

Following, we present statistics and significance tests for fatigue,
movement time, and throughput. We are interested in the effect
of input space on these variables. We fit linear mixed models with
random intercepts for participant, and test significance with Wald
t-tests on the null hypothesis that the effect estimates are zero. We
report coefficient estimates as β , along with their standard error, as
well as t-values and p-values. Models were fit using the R package
nlme [43]. In total, we collected 3,332 target selection observations
from 9 participants.

6.5.1 Fatigue. Figure 9 shows a pronounced difference between
the fatigue curves of the elbow-anchored input spaces and that of
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Shoulder-plane. For all nine participants, the maximum level of
fatigue was experienced in the Shoulder-plane condition. 4 out of
9 participants withdrew the Shoulder-plane block before having
completed 5 minutes of task time due to extreme arm fatigue. We
tested the significance of fatigue differences by fitting a linear model
to the normalized BORG data, with input space (dummy-coded) and
time as predictors. Table 1 features the parameters of this model,
with Shoulder-plane as the baseline. The statistically significant
coefficients for Elbow-plane and Elbow-sphere confirm that the
Shoulder-plane input space is indeed more tiring. The interaction
between input space and the effect of time was not significant.

Table 1: Linear model fit to fatigue data with baseline set to

Shoulder-plane. The variable time is ordinal. The model

reveals that elbow-anchored input spaces accounted for a

statistically significant (p < .05) reduction in fatigue.

Std.

Estimate Error t value p value

(Intercept) 2.975 0.441 6.745 0.00
Elbow-plane -2.097 0.610 -3.435 0.00
Elbow-Sphere -1.890 0.610 -3.096 0.00

time 0.292 0.078 3.728 0.00
Interaction (w/ time)

Elbow-plane -0.091 0.104 -0.877 0.38
Elbow-Sphere -0.124 0.104 -1.187 0.24



Elbow-Anchored Interaction: Designing Restful Mid-Air Input CHI ’21, May 8–13, 2021, Yokohama, Japan

6.5.2 Movement Time. We fit a linear model to the data with input
space and ID as predictors of movement time, including a ran-
dom intercept for the variable subject (Figure 9). In this model,
R2(adjusted) = 0.5367, the effect of input space was not significant:
β(Shoulder-plane) = 0.055, SE = 0.05, t3318 = 1.09, p = 0.274,
and β(Elbow-sphere) = 0.019, SE = 0.05, t3318 = 0.40, p = 0.686.

6.5.3 Effective Throughput. Effective throughput is a performance
measure that accounts for the time-accuracy trade-off and com-
puted as:

Te =

(
IDe
MT

)
, (2)

where IDe is the Index of Difficulty calculated with the effective
widthWe . For each of our circular targets,We = 4.133×SDd , where
d is the Euclidean distance between the observed selection and the
previous selection (amplitude). IDe is computed for each target with
data from all participants. Figure 10 shows the throughput means
and 95% confidence intervals computed over the participant means
for each input space condition. These measures were calculated
following the method of Morey [35] for within-subject designs.
We tested the effect of input space on throughput with a repeated-
measures ANOVA, and found no statistically significant differences
(F2,16 = 0.663, p = 0.529).
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throughput.

6.5.4 2D Throughput. With participants seated comfortably on a
lounge chair and having their arms rested, it is plausible that perfor-
mance, as measured with throughput, is not distributed uniformly
over the space. In order to examine this hypothesis, we fit linear
models for each input space with throughput as a response variable
and the x and y screen coordinates of the targets as predictors. We
used these models to generate the fine-resolution heatmaps shown
in Figure 11. The heatmaps reveal distinct patterns for each input
space. In Shoulder-plane, the top part of the space has worse
performance, probably for requiring more physical effort to reach.
With Elbow-plane the throughput gradient flows from left to right.
Notably, the spherical input space features a region with very low
throughput in the top left corner, which indicates that participants
had trouble reaching that region.

6.6 Discussion

Our results show a surprising lack of trade-off between perfor-
mance and fatigue. The heightened fatigue of the Shoulder-plane
condition did not translate to worse or better performance. Despite
ensuring that users would not get over-fatigued using pilot studies

(to be compliant with our research ethics), fatigue was high enough
in that condition to motivate four participants to quit before the
end of the 5-minute session. We believe performance time would
begin degrading after such a threshold. This outcome is also not
uncommon as earlier work points at, under some instances, in-
creased fatigue without degrading performance times [19, 21, 23].
The dimensions and position of Elbow-plane and Elbow-sphere
are similar, but these spaces constitute very different interaction
models, due to the non-linear nature of the control-device ratio in
Elbow-sphere; that is, regions at the top of the output space corre-
spond to smaller regions of the input space. In practice, this leads to
the cursor moving much faster in the top. Nevertheless, the overall
performance of Elbow-plane was not significantly different than
that of Elbow-sphere, which is consistent with previous findings
[19]. Upon closer inspection we found that the performance of these
spaces is distributed differently. In particular, we see a bottleneck in
the top-left corner with Elbow-sphere. This issue can be attributed
to a motor constraint: at high elevation angles, it is difficult to move
the arm from right to left when the palm is facing the screen. While
turning the hand sideways makes this movement easy, participants
could have ignored this possibility under an assumption that the
screen needs to see the palm.

The equivalent overall performance of Elbow-sphere and Elbow-
plane suggests that Elbow-sphere compensates in other regions
the poor of performance in the top-left corner, specially in the
bottom-left corner. We consider this factor in our next study, ex-
ploring the impact of posture variances on anchored-elbow input.

7 STUDY 3: SPHERICAL INPUT ACROSS

DIFFERENT POSTURES ON THE COUCH

Having established that a spherical input space anchored at a user’s
elbow potentially supports restful interaction in a variety of pos-
tures, we examine in this section the consistency of the interaction
across postures. Are users able to maintain an acceptable level of
performance and comfort in typical postures? Are there perfor-
mance patterns that could motivate modifications of this input
space? We present an exploratory user study where participants
were asked to select mid-air targets while resting on a couch in
various postures.

We only carry out this exploration with the Elbow-sphere
mapping for two reasons. First, including the Elbow-plane and
Shoulder-plane in study 3 would dilute our study goals. Fur-
thermore, Elbow-sphere can be implemented in a self-contained
manner on a smartwatch, validating the potential for non-reliance
on a global tracker and thus usable under various comfort postures.

7.1 Apparatus and Materials

The spherical input space can be implemented with any wearable
device that provides a rotation vector, such as a smartwatch. By com-
parison, planar input spaces would require an additional piece of
information, the forearm length, for conversion between spherical
coordinates to Cartesian coordinates. We developed a smartwatch
application on Android that allows mid-air control of a remote
cursor. On the host computer, a client establishes a TCP channel
with the watch. The client listens for packets containing real-time
azimuth and inclination values, which are used to move the cursor.
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Figure 11: Multivariate linear models fit to the throughput data. X and Y screen coordinates are modelled as predictors for

throughput.
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Figure 12: We tested the spherical input space in four pos-

tures.

On the smartwatch, the application is a Wear OS Watch Face, an
always-on, readily accessible application responsible for display-
ing the clock. The app reads the Game Rotation Vector from the
Android Sensors API. This vector contains rotation measurements
relative to a fixed reference coordinate system that corresponds
to the device’s default orientation. With the smartwatch attached
to the user’s wrist, this vector gives us directly forearm azimuth
and inclination; however, a calibration step is necessary to adjust
the reference coordinate system. We added a calibration button
to the watch face, which users press while holding the forearm
at rested position, parallel to the ground and orthogonal to the
torso. This method does not require the user to be facing the TV.
For selection, we used mouse clicks with mouse controls in the
hand opposite to the one with the smart watch, however, it could
also be implemented using a rapid index to thumb pinch [17]. We
used mouse device for selection in order to allow user to select
even the smallest of the targets, measuring as small as 12 pixels,
generated from higher difficulty levels. This prevents any possible
confounding errors due to selections made from the same hand
that is used for pointer control, thereby keeping the observations
valid and also isolating the effect of movement from the selection
method.

7.2 Experimental Design

We employ a target selection task to compare mid-air interaction
under four body postures, using a spherical mapping betweenmotor
and display space. The study follows a 4 × 8 within-subject design,
with posture and target position as factors. We define four index of
difficulty (ID) levels (2, 3, 4, 5) and four postures (Figure 12):

• Elbow Rested High - Seated, elbow rested at shoulder level
• Elbow Rested Low - Seated, elbow rested at waist level

• Sideways Seated - Seated sideways (lengthwise), elbow rested
at waist level

• Sideways Lying - Lying sideways

The postures are representative of most postures one can assume
in a common couch and, with the exception of Sideways Lying ,
capture the patterns seen in our observational study. Each posture
presents distinct motor constraints to the arm. People either sit or
lie on the couch. When seated, they rest their feet on the floor or
on the couch (in a sideways orientation relative to the display). In
addition, people can rest their elbow on a lower surface (armrest or
waist) or higher surface (backrest).

The height at which the elbow is rested influences the range of
motion. With the elbow rested low, an upward motion is achieved
via elbow flexion, while with the elbow rested high (e.g., on the
backrest) the same motion is achieved via shoulder lateral rotation.
Likewise, horizontal motion can be achieved through shoulder
medial/lateral rotation or elbow flexion depending on where the
elbow is rested. Furthermore, with the elbow rested low the body
becomes an obstacle. In the sideways postures, the couch backrest
becomes an obstacle.

7.3 Task and Materials

We used a Fitts Law-style target selection task where eight circu-
lar targets were arranged in a grid (Figure 13a). Each target was
presented one at a time along with a reciprocal target (i.e. same
size) located at the center of the screen (Figure 13b). The role of the
reciprocal target was to establish a common origin for all target
selections and to allow measurement of selection time for each tar-
get, uniformly. Each selection task started with a reciprocal target,
highlighted through an accent filling color, to be selected. Once
the reciprocal target was selected, the actual target to be selected
next was highlighted and the user was required to make a selection
again. This active state switching repeated 5 times for each target
and until all targets were selected in an ID. We manipulated ID
by varying target size. Note that targets with the same ID have
different sizes if they are not equally distant from the center. As we
collected 5 observations per target, a total of 640 observations per
participant were generated (8 target positions × 5 repetitions × 4
ID × 4 postures).
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Figure 13: a) All targets used in our controlled study split by index of difficulty (ID = 2 to 5). b) Each target was presented along

with a reciprocal positioned at the center of the screen. Participants selected each target five times.

7.4 Procedure

Participants were instructed to sit on the couch in the first pos-
ture assigned to them. The order of postures was counterbalanced
using a Latin square design for each participant. The experiment
facilitator described the calibration procedure and the task, then
instructed participants to perform calibration followed by a practice
run of the task. Participants were instructed to “select targets as
fast as possible while keeping the accuracy at a constant level” [7].
During the practice run, participants were instructed to recalibrate
if necessary. This procedure was repeated for every posture. After
the completion of the tasks for each posture, the facilitator adminis-
tered the Raw NASA-TLX (RTLX) questionnaire [20] and enforced
a 5-minute break. The tasks within a posture block were presented
without interruptions, but participants were allowed to rest any-
time. Upon completion of the whole experiment, participants filled
a custom questionnaire.

7.5 Results

We ran the experiment with 8 participants (2 female) aged be-
tween 21 and 38 years old. We collected 5,120 observations (target
selections) in sessions that averaged 1 hour and 46 minutes exclud-
ing the time needed for calibration. After removing outliers with
the interquartile range method, 5,060 observations remained. We
use repeated measures ANOVA for statistical tests, with Tukey’s
HSD for post-hoc analysis. Where appropriate, we plot means and
95% confidence intervals calculated with Morey’s [35] method for
within-subject designs.

7.5.1 Posture and Target Position. The mean effective throughput
was 1.88 bits/s, calculated in the same way as study 2. The frontal
postures (1 and 2) had throughput slightly higher than average (1.92
and 1.89), while the lying posture had throughput slightly lower
(1.84). The aggregate differences in performance by target position
(Zone) were more pronounced. Notably, targets that required hori-
zontal movements (West and East) had throughput much higher
than targets that required vertical movements (North and South);
for instance, West was 30% higher than North (Figure 14).

Our tests revealed an interaction between Posture and Zone
(F21,5021=6.46, p < .001), and post-hoc analysis pointed to statis-
tically significant differences (p < .005) between postures in all
zones but E and S (Table 2). These differences range from -0.3 to
0.28 bit/s. In the NW zone (top-left corner) the best performance
was achieved with the sideways seated posture and the worst with
elbow rested high. However, in both N and W zones performance

with elbow rested high was significantly higher than with other
postures. In zone SW (bottom-left corner), participants seated side-
ways achieved lower performance than under other postures. In
zone NE, sideways lying had the worst throughput. And in zone SE
(bottom-right corner) elbow rested low had the best throughput.

Table 2: Post-hoc pairwise comparisons with p-values ad-

justed with Tukey’s HSD. The estimates are for the differ-

ence in mean throughput between postures within target

zones. Only the statistically significant differences are dis-

played. For all rows, degree of freedom = 5021.

Posture
Zone Diff. Estimate SE t.ratio p.value

NW 1 - 2 -0.252 0.059 -4.30 0.0001
1 - 3 -0.296 0.058 -5.08 <.0001
2 - 4 0.220 0.059 3.77 0.001
3 - 4 0.264 0.058 4.55 <.0001

N 1 - 2 0.231 0.059 3.93 0.0005
1 - 4 0.185 0.059 3.15 0.009
2 - 3 -0.164 0.058 -2.82 0.0249

NE 1 - 4 0.282 0.058 4.85 <.0001
3 - 4 0.172 0.058 2.94 0.0172

Posture
Zone Diff. Estimate SE t.ratio p.value
SE 1 - 2 -0.155 0.058 -2.67 0.0378

2 - 4 0.154 0.058 2.64 0.041
SW 1 - 3 0.155 0.059 2.63 0.0431

2 - 3 0.233 0.059 3.93 0.0005
W 1 - 2 0.281 0.059 4.77 <.0001

1 - 3 0.234 0.059 4.01 0.0004
1 - 4 0.227 0.059 3.87 0.0006

7.5.2 Questionnaires. The NASA TLX data (Figure 15, left) shows
that the spherical interaction with elbow rested high was associated
with higher physical demand, effort, and frustration, while interac-
tion in the seated sideways posture had the lowest physical demand
and effort. Curiously, the 95% confidence intervals show that par-
ticipants’ perception of their own performance in each postures
was not systematically affected by their perception of effort. Our
second questionnaire asked participants to provide two rankings
of the postures: one where they weigh the postures according to
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Figure 14: Effective throughput of postures and target zones (left), and effective throughput for target zones within each

posture (right). We found a statistically significant interaction between target zone and posture.

their experience in the study, and another where they disregard the
experience in the study. Generally, the results show that posture
preference in the study was well aligned with participant’s prior
preferences. This is a positive result for the spherical interaction, as
it did not seem to affect participants’ postural preferences. Despite
this general pattern, one participant stated that mid-air interaction
would motivate them to change posture: “I do sit in what I ranked as
1 and 4 (when TV is in front of me) and 2 and find those comfortable
but if I needed to use a smartwatch to control the screen I would
sit up most likely and not be lying down.” A second participant
reported neck and shoulder discomfort in postures 1 and 4: “In gen-
eral, the calibration and the cursor works well, although posture 1
(elbow rested low) and 4 (sideways lying) cause the tiredness for
my neck and shoulder. The final level is difficult and tricky to do
accurately”. Only one participant reported not using any of the
study postures routinely; most participants reported frequently
being on the couch in at least one of the postures.

7.6 Discussion

Differences in performance due to postures were relatively small
and dependent on target location. Our results point to difficulties
with straight vertical movements towards the edges of the display.
This problem may stem from a potential asymmetry in the cali-
bration of input spaces; that is, the central axis of the space is not
necessarily aligned with what participants identify as the central
position of their forearm. Consider the case where the elbow is
rested on the armrest of an office chair: a user may think that the
center of the space is aligned with the armrest, but depending on

the calibration, it may be offset towards the torso, since the acces-
sible area in front of the body is larger than the area on the other
side of the armrest. While the cursor may have helped participants
identify such central axis, the motion may not be intuitive.

Posture 1 (elbow rested high) is unique in that shoulder me-
dial/lateral rotation and elbow flexion control vertical and hori-
zontal movements, respectively, while in the other postures it is
the inverse mapping. In addition, the physical input space is much
larger, as participants had access to the lower hemisphere. Curi-
ously, this mapping was beneficial for targets in the North and
West zones. This finding strengthens the central axis hypothesis
(aforementioned), as in elbow rested high the horizontal range is
mostly symmetrical. In fact, in this posture nearly the entire ranges
for elbow flexion and shoulder medial/lateral rotation are available,
which may explain the increased physical demand that participants
reported.

8 GENERAL DISCUSSION

8.1 Further Design Considerations

One design consideration revolves around scaling the motor move-
ment to larger or small displays. For example, if needing to interact
with a large wall display, Elbow-Anchored motions would still
support such environments without any changes to the mapping
function form—the output dimensions are just a parameter of the
mapping. The same applies to when we need to scale down to in-
teracting with a smaller display, such as in an AutoUI. We are not
advocating for the replacement of remote-controlled devices. In-
stead, Elbow-Anchored input, as other mid-air interactions, offers a
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Figure 15: Responses to questionnaires. On the left, Raw NASA TLX administered after each posture was completed. On the
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viable alternative to the solution of seeking a lost remote, or having
to sequentially interact with an interface, such as with a directional
pad (DPAD). Future design iterations of our proposed layouts will
be necessary to ensure cross compatibility with both restful and
device-based interactions. Furthermore, additional consideration is
needed to intelligently assume the user’s posture and provide an in-
teractive model without needing to calibrate for each posture. One
approach might be to use the available cameras on such displays to
interpret the posture and adjust the input model accordingly.

8.2 Applications

Anumber of applications, aside from our demonstration on SmartTV
input, can benefit from Elbow-Anchored interactions. For example,
mid-air text-entry keyboards [32] can be mapped to the movements
we demonstrate. Our throughput results indicate regions to be
avoided for placing characters, and instead could be used for pre-
senting text or other feedback. While we currently use mouse click
for selecting an item, when designed to operate using a smartwatch,
additional approaches such as pinching the thumb and index [17]
could instead be leveraged to make input efficient.

As mid-air interactions gain prominence in Automotive UIs, we
can imagine interacting with such systems using Elbow-Anchored
input. In many cases, with the presence of an arm-rest, the user’s
elbow has an available support for enabling comfortable and poten-
tially less fatiguing input, than if the arm was held in mid-air. How-
ever, for such UIs, additional consideration is needed for providing
suitable feedback, such as relying on audio or mid-air haptics.

Finally, emerging AR/VR platforms could benefit from such mid-
air interaction capabilities, provided that a method for resolving
depth ambiguity is applied, given that our mapping only supports
2D output spaces. Many video games are played in VR while sit-
ting. As such, an available arm rest could be employed for lengthy
interactions. We note from our results that there is no loss of perfor-
mance in comparison to a shoulder-based mid-air input allowing
gamers to reap the benefits from using an anchored elbow during
long gaming sessions.

8.3 Limitations

Our results were derived from mostly right-handed participants,
and additional work is required to ensure that Elbow-Anchored
input is agnostic to hand-specific operations. For the majority of
cases, we can assume that range-of-motion, shoulder medial/lateral
rotation and elbow flexion-extension, operate in a mirrored and
symmetrical fashion [40]. Additional work is needed to ensure that
all users can benefit from Elbow-Anchored input. We demonstrate
that elbow-anchored input is possible under a variety of postures.
However, such postures are not exhaustive. Additionally, as there
was no significant performance difference between between the
postures, these minor differences may not warrant a redesign of
the input space or the UI. However, for VR interactions, it may
be necessary to research for ways to mitigate the inefficiencies
we found, as VR users would likely interact with systems for a
longer period of time and with smaller targets.Furthermore, we use
the couch as it constitutes a central furnishing in homes (in most
cultures), however, elbow-anchored should also be examined for
postures when seated on the floor or in alternative arrangements.
Finally, the spherical mapping enables input using a self-contained
system, such as when the user is wearing a smartwatch. However,
additional work is needed to decouple the device from the user, and
instead use more generic capture methods, such as cameras in cars
or on smartTVs, to understand the user’s postures and apply our
input model accordingly.

9 CONCLUSION

Posture is an important factor in user interaction at home. Users
adopt a myriad of postures in the couch, and we have shown that
posture influences which arm and hand motions are activated in
common mid-air interaction, which in turn may affect performance
and comfort. The availability of resting surfaces in common home
furniture constitutes an opportunity for restful interaction, as many
users’ preferred posture involve a rested elbow. Traditional vision-
based, planar input spaces, do not adapt well to users’ postures.
Instead, users are required to reposition to make their hand visible
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to the camera, and lift their elbow to accomplish axis aligned hand
movements. We have shown that an elbow-anchored spherical
input space has overall performance equivalent to that of planar
input spaces, whether planar input spaces are anchored at the elbow
or not. However, we have identified weak spots within spherical
spaces that are related to the non-linearity of the mapping and
motor constraints. Spherical input spaces defined relative to the
body “follow” the user regardless of posture, and can be leveraged
for posture-agnostic interaction. We have shown that, in practice,
such spherical input spaces are relatively stable across postures,
but that the spatial weak spots vary as a function of posture. We
suggest such variations are only important in applications where
the user is expected to interact for long durations and where target
size cannot be easily controlled.
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