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Figure 1: (a): A line graph representing heart rate over six minutes and including 300 data points; (b): we simplify the line
graph in (a) using the Space-Filling Line Graph (SF-LG) technique; (c) & (d): the available space created around the line graph
can be used to fill auxiliary, interlinked information. In our approach, we can provide the algorithm a priority to position the
information. The labels “1”, “2”, ”3” represent the priority assigned to those components which are given the maximal space;
(e) & (f): embedding auxiliary and interrelated graphs that augment the primary line graph becomes possible based on the

reorganization of the available space
ABSTRACT

Multiple embedded sensors enable smartwatch apps to amass large
amounts of interrelated time-series data simultaneously, such as
heart rate, oxygen levels or steps walked. Visualizing multiple inter-
linked datasets is possible on smartphones but remains challenging
on small smartwatch displays. We propose a new technique, the
Space-Filling Line Graph (SF-LG), that preserves the key visual
properties of time-series graphs while making available space on
the display to augment such graphs with additional information.
Results from our first study (N=30) suggest that, while SF-LG makes
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available additional space on the small display, it also enables ef-
fective (i.e. quick and accurate) comprehension of key line graph
tasks. We next implement a greedy algorithm to embed auxiliary
information in the most suitable regions on the display. In a sec-
ond study (N=27), we find that participants are efficient at locating
and linking interrelated content using SF-LG in comparison to two
baselines approaches. We conclude with guidelines for smartwatch
space maximization for visual displays.
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1 INTRODUCTION

Embedded sensors on smartwatches provide users with a variety
of personal time-series data, such as heart rate, breathing rate,
oxygen levels and electrodermal activities. Smartwatch users are
becoming increasingly dependent on such personal data to adjust
their activity levels and behavior [11], also referred to as in-situ
analytics [7] . However, unlike smartphones which can present
multiple interlinked datasets, the small smartwatch displays make
relating different data points difficult, a feature needed for perform-
ing tasks such as "am I running faster than I did yesterday?" or "how
did the change in my walking speed affect my heart rate", among
others. The need for such in-situ queries is becoming more relevant
[3] as users consider adjusting their actions levels in the midst of
activity. However, presenting multiple, interrelated datasets on a
small smartwatch display while maintaining the visualization’s ef-
fectiveness is challenging. Novel visual representations are needed
to maximize the available screen real-estate, not only to show key
visual properties but to also include data from complementary data
sources. Ideally, such systems can aid in complex, yet common,
on-the-go queries.

Recent work suggests that not all visualizations on small displays
are equally effective [5], and thus need to be designed carefully.
Furthermore, it has been reported previously [3] that visualization
could be a tool to respond to many of smartwatch users’ queries
on-the-go, which is not currently supported by smartwatches. Fit-
ness enthusiasts or athletes for example, require such information
to either preserve or modify their activity levels according to the
set goals. One approach could consist of compressing visual char-
acteristics on the small smartwatch display [1, 24, 31]. However,
such an approach can still make it difficult to draw insight from
multiple interlinked datasets that can be very easily collected on
consumer grade smartwatches.

In this work, we explore means to effectively use a small dis-
play for presenting interlinked content. Unlike visual compression
methods [24], we consider how best to segment and fill content
around a line graph in order to facilitate users’ complex time-series
data exploration [35]. We introduce the Space-Filling Line Graph
(SF-LG), which is designed first to simplify a line graph to make
available additional screen space (Figure 1.b), and second to use
the created space to place additional visuals to aid with complex
queries (Figure 1.d, 1.f). In this initial exploration, we restrict our de-
sign of SF-LG to only rectilinear smartwatches as these are known
to provide an optimal arrangement of content [23]. Through two
studies, we find that the SF-LG method enhances users’ ability to
identify key line graph features. Furthermore, reorganizing space
to embed additional charts enables complex visual queries directly
on the smartwatch.

Our contributions include: (i) an algorithm that simplifies line
graphs to maximize display space around it; (ii) a method to embed
auxiliary, interlinked information in the newly available spaces; (iii)
a validation confirming such an approach enables complex visual
queries.

2 RELATED WORK

We present previous research regarding smartwatch visualization
techniques, present common end-users’ line graph queries, and
finally review key line graph simplification techniques which in-
spired our work.

2.1 Smartwatch data visualization

For smartwatches, techniques for accurately collecting data have
outpaced those for visualizing said data. Recent studies have sug-
gested how visuals on such small displays could assist with complex
tasks [11, 15, 42]. Through focus group studies, Amini et al. [3]
identified some of the common queries end-users would desire to
accomplish on smartwatches. They concluded that many of the
tasks users prefer accessing while on-the-go are not supported by
current platforms. With the aid of visual designers, they propose a
range of visualizations, many of which have yet to be designed.

In an elaborate evaluation, Blascheck et al. [5] highlight the need
to carefully choose visualizations on smartwatches. Their investi-
gation compared the three most commonly used data charts (bar,
donut, and radial bar charts), with a task requiring participants to
quickly compare two data point values. Interestingly, their results
suggest that the radial bar chart, one of the most common visual-
izations on smartwatches, is the least efficient for quickly viewing
data on smartwatches. Furthermore, we note that line graphs can
also be compressed to show more content. G-Sparks [24], a method
inspired by Sparklines [36], compresses a line graph to include one
data sample per pixel which can minimize the number of flicks
required to access lengthy time-series data on smartwatches. These
prior works point at the need for renewed guidelines to address the
growing interest towards data visualizations on small form-factor
devices.

2.2 Space-efficient data presentation

Space-efficient visualization techniques take up a minimal footprint
[24, 26, 31, 36] and can be referred to as micro- or small-scale
visualizations [5, 25]. The Horizon Graph [26, 31], for example,
colour codes line graph components making it possible to compress
these along the y-axis. By conducting a user experiment, Javed
et al [18], showed how using the Horizon graph can be used for
some specific visual exploration tasks. However, the colour scheme
requires interpretation which can be challenging to do on a small
display. Space-filling techniques are also efficient, and they are
designed to maximize the available display space [19, 33, 37, 40].
As a result, space-filling techniques reduce chart junk [18] and rely
on highlighting salient content [39]. The Treemap [19, 33, 39] isa
classic example of a space-filling technique for hierarchical data.
We build on such concepts to maximize the space around a line
graph on a small display.

2.3 Line graph simplification methods

Line graph simplification, or smoothing methods, focus on decreas-
ing the complexity of graphs by reducing the number of data points.
Many such techniques exist [30, 34]. In a research paper, Rosen et
al. [29] evaluated 12 different smoothing techniques and proposed a
taxonomy of these techniques. However, these smoothing methods
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are complex and hard to implement on smartwatches with lim-
ited processing resources. In this study, we focus on three existing
line graph simplification methods that inspired our design. These
three simplification algorithms were chosen because they do not
require powerful computational resources, making them suitable
for smartwatches with limited processing power.

Sampling: Sampling is one of the most commonly used simplifi-
cation techniques [4] whereby fixed-size intervals are used to select
data points (e.g., every minute). The larger interval sizes reduce the
complexity of data by having fewer data points (e.g., every hour)
and can be beneficial for trend and pattern recognition tasks. In
contrast, smaller fixed-intervals generate more data points (e.g.,
every 5 seconds) and can be beneficial for identifying incidents.
Sampling does not prioritize the data in the way our visual system
does, and thus we can potentially lose salient information (e.g.,
maximum and minimum) unless they coincide with the selected
intervals.

Piecewise Aggregate Approximation: The Piecewise Aggregate
Approximation (PAA) technique simplifies line graphs using a fixed-
size window. In PAA, the mean of the data points in each window is
calculated, and simplification replaces the original data points with
the mean of each window [20]. Thus, similar to Sampling, simplified
graphs with PAA often do not contain the actual critical data points
(e.g., maximum and minimum). Furthermore, the effectiveness of
this method hinges on the size and the number of windows. For
example, the simplified graph might not hold the shape of the
original graph when the window size is large.

Perceptual Important Points: Chung et al. [6] introduced the Per-
ceptual Important Points (PIP) technique which inspired SF-LG. To
compute the PIP graph, first, the furthest data point on the line
connecting the first and the last points in the graph is detected.
The process is then repeated for each one of the two components
separately (e.g., selected data point with the first data point and
selected data point with the last data point). While PIP requires in-
tensive resources compared to Sampling or PAA, it can preserve the
maximum and minimum data points. PIP was explicitly designed
to reduce the complexity of line graphs with a large number of data
points. It has many applications in areas such as health and stock
market forecasting [13]. It is also one of the only simplification
techniques that considers the visual aspect of important features in
the graph during graph simplification.

2.4 Perceptual tasks on line graphs

Several studies exploring users’ graphical perception with vary-
ing graph types [8-10, 18, 27] identified three essential percep-
tual tasks. These include (i) maximum/minimum point detection
[2, 12, 18, 21, 22, 26], which requires finding the highest or the
lowest point in a graph (e.g., peak daily heart rate); (ii) value detec-
tion, which requires reading an exact data point [16, 18, 21] (e.g.,
comparing peak heart rate on different days); (iii) value comparison
[5, 24], which requires comparing two data points and identify-
ing which one is higher, or how much is the difference between
two highlighted data points in a chart; (iv) trend detection [14, 41],
which can give users an overview of the entire data. Thus, from the
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findings in these works we incorporate these perceptual tasks in
our evaluations.

3 EXPLORATORY REVIEW OF SPACE
UTILIZATION ON SMARTWATCH APPS

To inform our design, we first examine how current smartwatch
applications utilize space when presenting data visualizations. Our
analysis included highly ranked fitness and health-related smart-
watch apps from Google Play and the App Store (12 watchOS, 2
Android Wear, and 8 Android Wear & watchOS apps in total). To
do this, one of the authors collected the top 40 ranked apps in the
fitness tracking category, which include capturing sleep quality,
heart rate, workout duration, and water consumption, from both
Google Play and the Apple App Store (top 20 ranking apps on each
platform). These apps were specifically designed for smartwatches.
We installed and tried all 40 apps on two smartwatches, an Apple
Watch series 4 with a 44mm display, and an Android Macwear
M7. From these 40 apps, only 22 of them used data visualization
techniques to represent the data and the rest only used text or icon
to represent fitness information. This result confirms the findings
reported by Islam et al. [17] that using charts is not currently a com-
mon way to represent data on smartwatch applications and needs
more investigation. We then extracted all visualization techniques
from 22 selected apps by using the built-in screen capture feature
on both smartwatches, and measured how much of the entire space
was occupied by the visualization techniques. We also measured
the empty space used throughout these screens. Using Inkscape
! we measured the exact proportion of the occupied space over
the empty space by calculating the rectangular space an element
occupies on the screen (e.g., Fig 2). The empty space is equal to the
area of the entire screen minus the area occupied by all elements.

Our review focused solely on apps available for rectilinear smart-
watches as this was our target platform in this initial study. The
choice of a rectilinear watch was to even out our comparison be-
tween Apple and Android apps. In total, we reviewed 38 interfaces
from 22 smartwatch apps (some apps had more than one screen).
We then explored each app by examining (i) space usage and (ii)
varieties of chart types used.

3.1 Space utilization

Based on the selected apps, we explored space utilization on recti-
linear smartwatch displays to understand how designers organize
visual data. In particular, we aimed to understand the interplay
between the space allotted to the primary visualizations and aux-
iliary information, such as labels, icons, or other charts. To this
end, we first computed the entire area of the interface and the area
allotted to visual elements on screen. We further categorized on-
screen content into three common visual elements we observed
on such interfaces: data visualizations/charts, text, and icons. The
space allotted to each element, the free space without visual ele-
ments, and the occupied ratio (percent of the interface area with
visual elements on it) were manually computed based on screen-
shots we captured. Figure 2 shows these measures on four selected
smartwatch visualization interfaces.

!https://inkscape.org/
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We observed a high degree of variability in the amount of free
space for the 38 interfaces (Figure 3.left). In total, more than half
(55%) of the interfaces we examined had between 40% to 70% of
free space. Further, no app had free space that was larger than 70%.
We note that free space is important for improving the legibility of
content but we were equally surprised to see such a large amount
devoted to no visual content.

There was also a large variability in space occupied by charts
(Figure 3.right). In the majority of the apps (60%) charts occupied
less than 50% of the available space, whereas only 26% of the apps
used more than 70% of the available space. 89% of the interfaces used
icons that occupy between 0-10% of the interface space, whereas
only 10% of the interfaces had icons that occupied between 10-20%
of the space. Interestingly, the analysis of text showed text elements
occupied between 0% to 30% of the total space across all interfaces.
About half (47%) of the apps used text that occupied 10-20% of
the screen. While specific to the apps we surveyed, these results
provide insightful context on how designers distribute balance
visual content and free space on the small smartwatch screen.

Sleep Pulse 3 1:12 Sleep Pulse 3 11:12 1:12

Mtion 5 5o Resting 00:01:08
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00:00
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Texts 18.74% Texts 18.78% Texts 25% Texts 12.07%
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Figure 2: Space usage analysis on four illustrative visualiza-
tion interfaces across two applications “indicating the per-
centage of free space and of space occupied by each visual
element: charts, texts and icons.
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Figure 3: (left) Distribution of free space and (right) Distri-
bution of space occupied by charts in the reviewed apps (N
= 38).

3.2 Chart types

The reviewed apps most commonly employ Bar charts, used in
50% of the apps, followed by Donut (26%), Line (24%), and Scatter

2Runtastic Run, Mileage Tracker from Apple App Store

(5%) charts. We also looked at the number of charts used in each
interface. The analysis showed that 95% of the visual interfaces
used one graph compared to only 5% that used up to four charts.
This also confirms the results reported by Islam et al. [17] that the
average number of chart representations per watch face was nearly
one across a wide range of smartwatch applications. Our result
shows that most existing smartwatch applications deploy separate
visual displays to represent charts which means each visual display
represents a single chart. For instance, a line chart can be used to
describe heart rate data, and in the following display, a radial bar
graph to show the proportion of different activities the user did in
a day.

Based on our analysis, we summarize the following key observa-
tions (OB), which are closely tied to the review of apps we examined:

e OB1: The majority of the apps use little space for their key
charts, and do not take advantage of the entire display.

e OB2: Most interfaces have a considerable amount of free
space. This potentially implies that the overall space utiliza-
tion could be further optimized to include auxiliary content
to the primary data chart.

e OB3: Most apps that include more than one visualization
from multiple sources (e.g., a radial graph for steps walked
and a bar graph of burnt calories) require users to flick be-
tween these visual displays. Interlinked charts are rarely
presented on a single screen.

e OB4: Most apps reviewed used Donut charts rather than
Line charts to represent time-series data. However, earlier
work [28] has shown Bar and Line charts are best suited to
visualize trends and numerical values over time.

e OB5: We found that many of the icons augment textual
descriptions (see Figure 2; heart rate icon and label). These
are important in describing the charts and could be further
optimized (but we leave this for future work).

These observations suggest that chart interfaces can be further opti-
mized to use the available space. Either by (i) enlarging the chart or
(ii) augmenting the chart with either additional information/graphs.
Furthermore, we believe additional space can be made available if
the area devoted to the chart is optimized. For this reason, we next
seek to expand the available space by (a) simplifying the chart and
then (b) augmenting the freed space.

4 SPACE FILLING LINE GRAPH (SF-LG)

We introduce a Space-Filling Line Graph technique that has two el-
ements, (i) a graph simplification algorithm and (ii) efficient embed-
ding of auxiliary data. We first present our simplification approach
which frees screen space and then describe how we embed sup-
plemental charts compared with non-simplified graphs (Figure 1).
Similar to PIP, we also focus on data points that have “significant
meanings”, such as peaks, maximum/minimum(s), and outliers. In
SF-LG, we look for data points with the highest average distance to
all other data points. This provides us with a subset of data points
in the line graph that have significant meaning (i.e., anomalies).
We calculate and store the average of the Euclidean distance of
each point p; such that (i € [0, N], where N is the sample size) for
the entire set of points (P) in the graph. A point with higher average
distance indicates that this data point is relatively far away from the
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rest of the dataset. This causes a challenge because the right-most
(and left-most) points in the graph have no neighbours to its right
(or left). Furthermore, a large difference in x-values of the right-
and left-most data points in the graph makes the average distance
of these points artificially larger. This implies that data points with
very high and very low x-values will have a higher average distance
compared to data points at the graph’s center (i.e., data points with
neither very high nor very low x-values). To resolve this, akin to the
PAA approach, we define windows. With the windowing technique,
we can select points with the highest average distance to all other
data points, compared to all of its neighbours, for that same window
(Figure 4). As such, we can calculate and select the essential points
in each graph window. Algorithm 1 shows the SF-LG pseudocode
and Figure 4 shows how SF-LG works.

Algorithm 1: Simplification algorithm.

Input: A set P, of points in the graph with x and y
coordinates and window size
Output: A subset of P, representing data points with the
highest average distance to all other data points
for each data point p;in P do
Sum = 0;
for each data point pj inP (i ! = j) do

EuclideanDistance = calculate Euclidean distance

from p; to pj;

Sum = Sum + EuclideanDistance;
AVGDistanceArray[i] = (Sum / number of data points -
L 1s
Divide the set of data points into subsets (windows);
for eachwindow do

| mark the point with the highest AVGDistanceArray(i];
return marked points

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4: SF-LG calculating the average distance of the red
data point in the red rectangle to all other data points in the
graph leads to the highest average distance compared to the
remaining two data points in the same window. This process
is performed for all data points in all windows to choose the
data point with the highest average distance.

4.1 Comparing simplification techniques

The aforementioned Sampling technique selects data points with
fixed and specific intervals and does not consider the importance
of data points. SF-LG solves this by focusing on data points that are
more important in the dataset (e.g., anomalies and extreme points),
similar to the PIP method. Furthermore, unlike Sampling, as we are
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using the windowing technique with actual data points in SF-LG,
many visual features of the line graphs such as trends, patterns,
extreme points, and the general shape of the graph are preserved.

Similar to PAA, increasing the window size (i.e., fewer windows)
will reduce data points in the graph, which can affect the represen-
tation accuracy of the original graph. Because PAA uses the average
of each window and not real data points, the PAA-simplified version
of the graph could significantly differ from its original. However,
preserving the original extreme data is often crucial, especially for
biometrics (e.g., extremely high heart rate). In comparison, because
SF-LG uses actual data points, there will be no distortion in the
simplified graph.

SF-LG deploys the same concept used in PIP but with improve-
ments aimed at representing and simplifying line graphs on smart-
watches. In different windows, data points are selected that have
close values (data points that are further away from the rest of the
data) which can prevent extreme fluctuations in the graph. This
has the effect of creating additional space (Figure 5) which can
be used to present augmented information such as pictures and
graph details (Figure 1.f). Furthermore, smartwatch hardware is
very limited and for this reason we chose to compare PIP with
SF-LG. Limited processing capabilities of smartwatches prevent
application designers to deploy complex algorithms to visualize
or analyze the data. Using non-intensive algorithms such as PIP,
and our SF-LG method, smartwatches can take advantage of these
simplification techniques. To confirm this, we compared the pro-
cessing time it takes for both SF-LG and PIP algorithms to simplify
30 data sets with 300 data points. To ensure everything is the same
for both conditions, we used the same data sets for both algorithms.
On average, it took 12.76 ms (min=11 ms, and max=22) for SF-LG
and 17.25 ms for PIP (min=15 ms, and max=22) to simplify these
graphs. This result illustrates how fast these algorithms are on
smartwatches with limited processing capabilities to simplify large
data.

Figure 5: Visually comparing simplification techniques for
line graphs: left) SF-LG, middle) PIP method, right) non-
simplified graph. Green spaces in the left image represent
the spaces created by the SF-LG method, overlapping with
blue spaces generated by the PIP technique.

5 STUDY 1: SF-LG GRAPH SIMPLIFICATION

In Study 1 we compared the effect of simplification with SF-LG
against two baselines, the Non-Simplified and PIP techniques. We
chose PIP as one of our baselines for the following reasons: 1) it
is one of the simplification methods that does not require com-
putational power which makes it suitable to be implemented on
smartwatches with limited computational capability; 2) it has been
commonly used to simplify health data, which is one of the main
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reasons smartwatches are being used, 3) it preserves many of the
important data points of the original graph (e.g., maximum and
minimum), and 4) considering the visual aspects of the graph to
simplify the graph.

5.1 Conditions

Our evaluation included three visual conditions: SF-LG, Non-
Simplified, and PIP. PIP was carefully selected for three important
reasons: (i) PIP is one of the most widely applied simplification
techniques; (ii) PIP is the only major technique that does not com-
promise crucial data points such as maximums and minimums; (iii)
PIP is a simple algorithm which can be deployed by smartwatch
applications due to limited processing and memory capabilities
of smartwatches. Thus, having these conditions will allow us to
investigate a) whether SF-LG can improve users’ performance (i.e.
accuracy and response time) compared with the Non-Simplified
graph; b) whether SF-LG achieves at least equal performance com-
pared with PIP, a popular simplification method. Other simplifica-
tion techniques are also available but given the popularity of the
PIP approach, and its ability to preserve salient data points, we use
this in our exploration.

5.2 Participants and apparatus

Thirty (30) participants, 10 for each condition, (F = 13; M = 17;
Mage = 28.53; 27 right-handed), with normal to corrected vision,
were recruited via poster advertisement at a local university. Par-
ticipants completed the Ishihara colour blindness test 3 which con-
firmed that none were colour blind.

We used an IMACWEAR M7 smartwatch, with a 1.54” and
240x240 resolution display. To avoid any distraction by the title or
notification bars on the screen, we used the entire screen for the
study. For user input, based on [5], we used a Targus AKP03CA
Bluetooth keypad (Figure 6) so we could solely focus on the vi-
sualization aspects without introducing possible confounds (e.g.,
fat-finger concerns) due to small displays. Participants were asked
not to touch the display.

We chose not to control the orientation and the distance of the
smartwatch, unlike [5] for three main reasons: 1) to preserve the
authenticity of users’ daily smartwatch usage without any artificial
restrictions; 2) even if the distance was fixed at the beginning, the
participants could still move their heads; 3) the discomfort that fixed
distance could induce may impact the participants’ performance.

Figure 6: Apparatus and setup used in both studies.

3https://enchroma.com/pages/color-blind-test

5.3 Tasks

There were five tasks in total, three of which were adapted based
on previous studies (see Perceptual Tasks on Line Graph section
2.4). All tasks are described below. For each task, each participant
was asked to process ten unique line graphs. Participants had to
finish one task to be able to carry on to the next task. Each graph
contained 300 data points. We used a partial latin square design for
the study. Furthermore, to boost the generalizability of our results,
we used real heart rate data as stimuli instead of synthetic data
[13, 24].

Maximum/Minimum Detection: In this task, participants were
asked to detect the highest/lowest data points on each graph. Partic-
ipants were asked to report the x-value of the max/min data point
using the keypad, and pressed Enter to move to the next line graph.
To avoid any confusion, each graph had only one maximum and
one minimum data point.

Value Detection: In each line graph, one data point was marked
with a small red circle, and participants were asked to type the
exact y-value of this point. This is a commonly performed task on
line graphs (e.g., reading the exact heart rate, the number of steps,
or the body temperature).

Value Comparison: Two randomly selected data points were
marked with small red circles in each graph. The participants en-
tered the difference between them as measured on the y-axis.

Trend Detection: Participants were asked to indicate the overall
trend of each line graph (i.e., an increase or decrease) by pressing
the UP or DOWN arrow buttons on the keypad. We ensured that
each graph contained an unambiguous trend. An ambiguous trend
line is a trend line that is close to the flat (horizontal) line. This
means that it is not clear if the trend is increasing or decreasing.

5.4 Study design and procedure

The study followed a between-subject design with one factor, Inter-
action Technique (SF-LG vs. Non-Simplified vs. PIP). After reading
and signing the consent form, participants were randomly assigned
to one of the three conditions. A between-subject design was se-
lected to avoid potential cognitive fatigue because the entire session
was designed to take longer than 30 minutes. For each condition
(e.g., SF-LG, PIP and Non-Simplified), we counterbalanced the order
of five tasks by using a latin square design. Before each task, a
research assistant explained the process and gave detailed instruc-
tions. Participants were asked to perform each task as quickly and
accurately as possible. First, each participant was allowed prac-
tice trials with sample line graphs until they felt confident about
performing each task. Participants were informed that all the data
points’ x- and y-values were integers (i.e., whole numbers), and
not fractions (e.g., 56.5). Participants received a $10 gift card upon
completion.

To collect post-study user preference, we presented participants
with three graphs (SF-LG, Non-Simplified, & PIP) made from the
same datasets. Participants were asked to rank the graphs based on
their preference. Also, participants’ Accuracy and Response Time
were recorded as dependent variables for further analysis.
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5.5 Results

Shapiro-Wilk tests yielded that certain data collected was normally
distributed while some was not normally distributed. Thus, Kruskal-
Wallis and Mann-Whitney U tests were conducted for the non-
normal data. Otherwise, we conducted a one-way ANOVA test on
the normal data. Furthermore, Bonferroni correction was applied
to reduce Type I errors (i.e., p = .05/3).

Maximum/Minimum Detection: For the accuracy of maxi-
mum/minimum detection, we did not find any significant difference
across conditions. However, for the response time in both maximum
and minimum detection tasks, there was a significant difference
between the three conditions (Figure 7). First, the result of the
Kruskal-Wallis analysis for maximum detection was significantly
different (y? = 13.94,p < 0.001,df = 2). To identify the loca-
tion of the effect, Mann-Whitney U tests were conducted. For the
maximum detection task, there were significant effects between
SF-LG and Non-Simplified (U = 58.00,p < .001) but no signifi-
cant effect between PIP and Non-Simplified nor SF-LG and PIP was
found (SF-LG; Mdn = 5599ms, PIP; Mdn = 7788ms, Non-Simplified;
Mdn = 10326ms). Altogether, in comparison to the Non-Simplified
graph, SF-LG was able to improve the response time for maximum
detection tasks; such improvement was not found with PIP, how-
ever.

Because response time for the minimum detection task was
normally distributed, we employed a one-way ANOVA test. A sig-
nificant effect was found among the three conditions, F(2,27) =
12.62,p < .001. Tukey post-hoc tests revealed that there was a
significant difference between SF-LG and Non-Simplified (p <
0.001; SF-LG; M = 5847ms, PIP; M = 8254ms, Non-Simplified;
M = 11096ms). Thus, parallel to the maximum detection, SF-LG
again yielded the improved response time compared to the Non-
Simplified.

Value Detection: For the accuracy in value detection we did not
find any significant condition effects. However, a Kruskal-Wallis
test revealed a significant effect for response time (y2 = 17.99,p <
0.001,df = 2). A Mann-Whitney U test yielded a significant effect
between SF-LG and the Non-Simplified condition (U = 56.00,p <
.001), SF-LG and PIP (U = 71.00,p = .009), as well as PIP and
Non-Simplified (U = 70.00,p = .007). The median response time
was 4328ms with SF-LG, 6583ms with PIP, and 14106ms with Non-
Simplified.

Value Comparison: For both response time and accuracy, we did
not find any significant condition effects.

Trend Detection: A Kruskal-Wallis test found a significant ef-
fect among the three conditions in response time (y2 = 10.4,p =
0.005,df = 2). Furthermore, Mann-Whitney U tests found sig-
nificant effects between SF-LG and Non-Simplified graphs (U =
63.00,p < .001; SF-LG; Mdn = 4890ms, Non-Simplified; Mdn =
12166ms). No statistically significant effects were found in accu-
racy.

Participant preference: The majority of the participants (83.33%)
preferred simplified graphs over Non-Simplified graphs, and more
than half of the participants (53.33 %) ranked SF-LG the highest
(Figure 8, Left chart). Many participants noted that the SF-LG graphs
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Figure 7: Response time (secs). Sig. differences between pairs
are noted by the red lines.

were more simple than the two other techniques and easier to
understand. Some of the participants believed that representing
many data points on a small smartwatch screen could backfire (e.g.,
P4: “Although more data point gives me the best data output, it is
more uncomfortable and difficult to understand’[sic], P5: “[Non-
Simplified] graph is too complex”” [sic], P23: pointed out that “too
many data points on the graph cause distraction and inaccurate
interpretation”).
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Figure 8: Proportion of each of the three techniques’ rank-
ings. SF-LG was ranked 1st by 53.33% (left), and ranked 2nd
(in the middle) by 30%. We observe a higher number of 1st
and 2nd rankings for SF-LG, than PIP or NS.

6 SPACE MAXIMIZATION AND EMBEDDED
GRAPHS

SF-LG frees up space on the smartwatch display that we use to rep-
resent auxiliary information useful for queries requiring interlinked
datasets. Collating data sources on multiple views is common and
also available on commercial software applications. Tableau, for
example, does this in the form of dashboards to aid in improved
data analysis. To place additional charts on the available empty
space on SF-LG, we develop a greedy algorithm consisting of two
steps. First, the system calculates the entire space available. Second,
we select regions for maximum graph legibility.

6.1 Space calculation

To calculate the available space around the line graph, we divide
the graph into the area above and below. We explain our calculation
for the lower area as the same method is applied to the upper area.
The algorithm starts from the leftmost data point of the graph. If
the gradient of the line where this data point is located is positive,
the algorithm calculates the horizontal line (parallel to the x-axis)
connecting this data point to the first intersection of this horizontal
line, and the line graph, or the border of the graph. The rectangular
area beneath the calculated horizontal line will be the available
space in the line graph which can be used for additional content. To
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continue, we just need to add a small value (e.g., one pixel) to the
x-value of the starting data point, on the line graph, and repeat the
process as for the first data point. For data points with a negative
gradient, we have the same calculation in the upper area of the
graph.

In another step, we calculate all available space under the line,
and start from the bottom of the y-axis and move upward to reach
the data point on the y-axis of the graph. Our algorithm does this by
adding a small value, such as a pixel, to the y-value of the previous
point. In each step we calculate the horizontal line, connecting this
point and the intersection of this horizontal line with the graph.
The output of this space calculation provides an array of available
spaces with different heights, widths and areas. We use these cal-
culated spaces in the next step of our greedy algorithm to allocate
auxiliary visualizations. Algorithms 2 and 3 show how the available
space beneath the line graph is computed. With few changes, this
algorithm can be used to calculate all the available spaces above
the line graph as well.

6.2 Space allocation

The space allocation component of the algorithm takes an array,
ChartsArray, as one of the input arguments, representing the type
of embedded visualization we wish to add to the line graph (e.g.,
ChartsArray = [Bar, Pie, Pie, Bar, Line]). The output of the previ-
ously mentioned algorithm is another input argument containing
all possible available spaces to present additional information in
the line graph. For instance, ChartsArray = [Bar, Pie] indicates that
we give the best available space on the screen to the first item, a bar
chart. The pie chart uses the next largest available space. Charts,
such as pie and donut are circular while graphs such as bar and
line graphs have horizontal rectangular shapes. Since we calculate
all available quadrilateral spaces in the line graph, the algorithm
can use the available spaces that are horizontal-rectangular for
line and bar charts, while using square-shaped spaces for pie and
donut charts. As finding the exact square shape space is intractable,
we define a square shape as a rectangle that follows one of the
conditions in Formula 1. A pilot study on our smartwatch showed
that rectangles that satisfy one of the following conditions could
be considered as square spaces.

Height — (1/20)Height < Width < Height + (1/20)Height
Width — (1/20)Width < Height < Width + (1/20)Width

The previous steps lead to multiple small rectangular spaces.
However, after experimental implementations, we noticed that such
spaces are too small to represent many graph types such as line
and bar charts. Similarly, available spaces with a very high (or low)
ratio of width over height are not suitable for these graph types.
Therefore, we implement restrictions on how we define horizontal
rectangular space in our algorithm as follows: (i) the minimum
height and the width of the space should be 60 pixels; (ii) the ratio
of the width over height should be greater than 3/2.

Based on the chart type to display and its order in ChartsArray,
the algorithm seeks the largest available area and allocates that
space around the central line graph. In the next step, the available
spaces need to be recalculated only for those spaces that have a
common area with the space occupied by the newly added chart.

For instance, for ChartsArray = [Bar, Pie], the algorithm first tries
to calculate all available spaces. Then it identifies the largest area
with the aforementioned characteristics for horizontal-rectangular
spaces to insert the bar graph. Finally, the algorithm recalculates the
spaces that have a common area with the occupied space. The algo-
rithm then runs a similar process to insert a pie chart. Changing the
assignment priority gives a different layout (Figure 9). Algorithm 4
represents a pseudocode of the space allocation algorithm.

Algorithm 2: SpaceCalculation(P)

Input: A set P, of all data points in the line graph with x
and y coordinates
Output: An array of all available spaces underneath the
line graph (AllEmptySpacesArray)
YLeftTop = 0;
AllEmptySpacesArray([];
while YLeftTop! = poy do
PointIntersection =
CalculateIntersectionPointWithGraph(0, YLeftTop);
AllEmptySpacesArray.add(Rectangular space
between(0, YLeftTop,
PointIntersectionX,PointIntersectionY);
| YLeftTop++;
for each data point t on the line segment between all P; and
Pi.1 do
PointIntersection =
CalculatelIntersectionPointWithGraph(tX, tY);
AllEmptySpacesArray.add(Rectangular space
between(tX, tY, PointIntersectionX,
PointIntersectionY));

return AllEmptySpacesArray

Algorithm 3: CalculateIntersectionPointWithGraph(X.Y)

Input: X and Y coordinates of a point
Output: Horizontal intersection of this point with graph
for all data points of line graph with x-values greater than X

do
find the first two subsequent data points on the line

graph, PNext and PPrevious, such that PNextY <=Y
and PPreviousY >=Y;

return the x and y coordinates of the horizontal
intersection point between (X,Y) and the line segment
between PPrevious and PNext;

if there are no such PNext and PPrevious then
L return x coordinate of the right border of the line graph
and Y

7 STUDY 2: EMBEDDED GRAPHS

Study 2 explored the capability of the SF-LG technique to efficiently
present multiple chart contents on a smartwatch display to facilitate
users’ complex visual queries.
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Algorithm 4: GreedySpaceAllocation(ChartsArray(],
AllSpaces(])

Input: An array of all available rectangular spaces sorted
from maximum to minimum area (AllSpaces) and an
array indicating the priority of representing charts
(ChartsArray)

Output: Additional charts allocated to the optimal spaces

within the main line graph

foreach CurrentChart in ChartArray do

if CurrentChart = Bar | CurrentChart = Line then

foreach CurrentSpace in AllSpaces do

if CurrentSpace = Rectangle then
L Embed the new Line\Bar chart in this space;

SpaceCalculation(); \\to update AllSpaces
break;

else
foreach CurrentSpace in AllSpaces do

if CurrentSpace = Square then
Embed the new Pie\Donut chart in this

space;
SpaceCalculation(); \\to update AllSpaces
break;

Figure 9: The greedy algorithm is provided with desired
charts in a prioritized list of importance to be shown first.
Based on the chart properties (rectangular or square) the al-
gorithm identifies the optimal region to insert them. (Left)
The priority given to the algorithm is to first find the largest
square space and then a rectangular region (for example, a
donut chart and bar chart respectively). (Right) The reversed
priority (bar chart first, then donut chart) provides a differ-
ent layout as it seeks to give the rectangular component the
larger space first and then allocates space to the donut chart.

7.1 Conditions and stimuli

In Study 2, we evaluated the use of SF-LG against embedded graphs
in a Non-Simplified graph. By comparing these two conditions,
we will identify if generated spaces and embedded auxiliary infor-
mation in SF-LG are effective or not compared to Non-Simplified
graphs. We also included Flicking in our comparison as it is the most
common method for exploring multiple graphs on a smartwatch.
Our investigation of the existing smartwatch applications (section
3.2) revealed that more than 90% of these applications use only one
visualization in each visual display. A similar result also reported by
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Islam et al. [17]. Therefore including the Flicking condition is very
similar to existing smartwatch applications to represent multiple
charts.

One potential condition in this experiment could be dividing the
screen into segments, for instance, on the y- or x-axis, and use each
segment to represent one graph. As we wanted to use different
types and shapes of graphs in this study (square and rectangle
shapes), representing multiple graphs with different shapes could
be highly dependent on the layout of these graphs, which will add
more complexity to our study. So, we excluded this condition in
this experiment. Thus, we arrive to three conditions; (i) SF-LG, (ii)
Non-Simplified Embedding (NSE), and (iii) Flicking.

For the SF-LG and NSE conditions, we applied our greedy algo-
rithm to identify the best locations to place the embedded charts.
In the Flicking condition, one graph was presented per screen and
users flicked through three screens in total per trial. Participants
were allowed to go back and forth between the screens. For embed-
ded charts, three of the most commonly used types on smartwatches
were selected: line chart, bar chart, and pie chart [5]. Note, specific
values were not represented on embedded charts, as these are often
provided to help users get an overview of the central graph instead
of presenting specific numerical values (e.g., to identify when the
maximum/minimum happened, or to detect a trend).

The main line graph represented real heart rate data (e.g., the
black line graphs on Figure 10) which ranged between 60 and 90
bpm, taken over 24 hours. This range was divided into three sub-
ranges: low (60-70 bpm), mid (70-80 bpm), and high (80-90bpm).
The proportion of these ranges were represented with an embedded
bar or pie chart (e.g., Low in Green, Medium in Yellow, and High
in Red in the bar chart in Figure 10). The embedded line chart was
randomly generated with data points ranging between 0-200 (e.g.,
the purple line chart in Figure 10), representing the burnt calories
associated with the heart rate over 24 hours.

Note, our greedy algorithm selected either a line graph or a bar
chart when the conserved space was rectangular. In contrast, a pie
chart was selected when the conserved space was a square shape
in the main line graph.

7.2 Task

The main goal of this study was to explore the participants’ capabil-
ity to link information between the main line graph and embedded
charts. This analytic task consisted of the user understanding the
overall tendency on heart rate (represented by the main line graph),
and to identify how it was associated with burnt calories (an em-
bedded chart). This query type is commonly of interest to users of
in-situ visualizations, such as fitness enthusiasts [3].

Users had to follow these four steps to successfully complete
a trial. Step 1: identify the most frequently occurring heart-rate
range from the embedded chart (bar or pie). In Figure 10 (left), the
highest value in the bar chart consists of heart rates in the high
range (80-90bpm). Step 2: identify the corresponding region on the
central line graph. This is marked in red in Figure 10 (center). Step
3: based on the region in Step 2, use the second embedded chart
(purple line graph in Figure 10) to make a visual estimation of the
average burnt calories. This required users to estimate this average
based on the selected region in Figure 10 (right). Note, as both line
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graphs represented data recorded for 24 hours, this identification
process was performed by comparing the relative segments of the
line graph with the embedded line chart, on the x-axis. Step 4:
indicate whether the mean within this region falls above or below
the middle line (dotted in Figure 10 right), by pressing the Up or
Down arrow keys.

Figure 10: Illustration of Study 2’s task. (Left) Users need to
first find the maximum value in the embedded bar chart.
(Middle) Using the previously found value, the user next
has to find the corresponding data points in the line graph.
(Right) Finally, users provide their best visual estimate of
the average value of the corresponding data points in the
lower auxiliary line graph. This is representative of a task
such as wanting to know the maximum burnt calories dur-
ing peak performance

7.3 Study design and procedure

To prevent possible learning effects and cognitive fatigue, we used
a between-subject design with one factor, the Visualization Tech-
nique (SF-LG vs. NSE vs. Flicking). First, participants went through
a practice session. They performed all the tasks until they felt com-
fortable. Importantly, participants were asked to perform all the
tasks as quickly and as accurately as possible. If the incorrect re-
sponse was entered, the users repeated that task after completing
all trials. They performed 20 trials per visual condition. As in Study
1, participants used a Bluetooth keyboard to prevent any confounds.
We measured response time and accuracy. After they completed
the graph exploration tasks, we provided sample stimuli from each
of the Visual Techniques and asked them to rank the visualization
techniques based on their preference. The study took approximately
30 minutes.

7.4 Participants

Twenty-seven (27) new participants volunteered (F = 15;M =
12; Mage = 27.31; 26 right-handed) from a local university. Partici-
pants received a $15 gift card as compensation.

7.5 Results
We applied the same statistical tests as in Study 1.

Response Time: A Kruskal-Wallis test revealed a significant dif-
ference among three conditions (y2 = 20.63,p < 0.001,df = 2).
Further, Mann-Whitney U tests yielded significant effects between
all the pairs (SF-LG vs. NSE, U = 55.00, p = 0.006; SF-LG vs. Flick,
U = 45.00,p < 0.001, NSE vs. Flick, U = 45.00,p < .001, SF-LG;
Mdn = 9764ms, NSE; Mdn = 18903ms, Flicking; Mdn = 37106ms)
(Figure 11).

Accuracy: Because accuracy was normally distributed, we ap-
plied one-way ANOVA along with Tukey post-hoc tests. An
ANOVA test revealed a significant difference among the three con-
ditions, F(2,24) = 6.82,p = .005. Pos-hoc tests revealed only one
significant difference: SF-LG was significantly different from Flick-
ing (p = 0.003; SF-LG; M = 57.7%, Flicking; M = 40.3%). Altogether,
accuracy results indicated an encouraging potential for SF-LG on a
smartwatch display. Although overall accuracy rate might not ap-
pear sufficiently high, placing multiple graphs on one page yielded
a generally higher accuracy than placing them on different pages

(Figure 11).
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Figure 11: (Left) Participants’ response time and (Right) Par-
ticipants’ accuracy in Study 2. significant differences be-
tween pairs are noted by the red lines.

Participants’ preference: More than 65% of the participants pre-
ferred the SF-LG method compared to the NSE or Flicking methods,
and more than 60% of participants rated Flicking as the least favor-
able condition (Figure 12). Participants commented on the simplicity
element of the SF-LG, P10: “the graph has less data points so that
makes it less dense and easy to understand the trend.”[sic]). Also,
multiple participants noted that seeing all three graphs at once
made the task easier and more accurate to perform in comparison
to flicking (e.g., P26: “I don’t have to swipe to different screen to
compare different conditions”[sic], P13: “I prefer the SF-LG’ be-
cause [...] it is easier to see the relationship between all the graphs”

[sic]).

18.52%
14.81%

3 25.93%
Rank 2 Rank 3 7.41%
18.52% 86.67% 66.67% 25.93%

55.56%

[ NSE I Flicking I sF G
Figure 12: Proportion of each of the three techniques’ rank-
ings. SF-LG was ranked 1st by 66.67% of participants.

In summary, results from Study 2 reveal SF-LG benefits users on a
smartwatch for tasks requiring viewers to relate information across
multiple datasets. While we primarily tested a limited number of
datasets, to facilitate three- or four-way comparisons across mul-
tiple datasets, additional mechanisms would be needed to include
and remove graphs to be compared.

8 DISCUSSION

We briefly present potential SF-LG interaction techniques, use cases,
as well as limitations and future work.
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8.1 SF-LG interaction techniques

Through a few scenarios, we briefly present interaction techniques
with SF-LG that resolve challenges with either the technique itself
or with current ways of interacting with line graphs.

Details-on-Demand: A user wants to view their heart rate at a
certain point during their workout, which is one of the most basic
smartwatch queries. To interact with their heart rate line graph,
the user taps an area on the line graph. Additional charts, such
as details of the simplification, or related bar or pie charts, fade-
in to fill the largest spaces available. This approach can also be
used to alleviate fat-finger interactions on a touch display [38], by
providing the call-out of the details in a space made available by
the SF-LG technique (Figure 13.a-c).

Multi-Level Details: A user receives a weather warning notifica-
tion, and tries to learn what the warning is about. The notification
appears first as an icon in an available space. A tap on the noti-
fication icon opens a layer of details, into the largest area. Such
multi-level details could be applied to other forms of information,
such as receiving an email notification, and then viewing the con-
tent of the email either in an overlay or a call-out around the line
graph (Figure 13.d-e).

Comparative Analysis: A user wakes up and views their sleep
quality data. They notice a spike in the data at a certain time, and
would like to know what caused the spike. We implemented an
interaction method that allows a user to compare two data points
using the embedded data. First, a user taps on the spike to view
additional data (e.g., body temperature at the time of the spike). An
auxiliary graph will fill in the largest available space. Next, they
tap on another point in the sleep quality graph to view their body
temperature at that time. A second embedded graph fills the second
largest available space. This allows them to compare data at two
points (Figure 13.f).

Managing Screen Updates: An inherent challenge with the SF-LG
is having to deal with changes in the view, as when a user flicks the
line graph or when viewing streaming data. The challenge involves
dealing with rapidly changing screen real-estate from one view to
another. We addressed this concern in two steps.

In the first step, the embedded chart scales down but stays in the
same position, while the central line graph is shifting out of view.
This allows the embedded charts to remain in the same location
within the line graph until such a point that the space is too small
to display any content. As the embedded chart is shrinking in size,
we only move it to the next available space if the point of interest
on the line graph is still in view (Figure 13.g-i). If the selected point
is no longer in view, the embedded chart disappears altogether.

8.2 Takeaway lessons
From our study results we propose several key takeaways:

o Multilinked time-series data, collected and visualized on
smartwatches, could be simplified using techniques that
highlight a line graph’s salient features.

o Simplifying a line graph frees up space, which importantly
can be used to embed additional information.
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Figure 13: Scenario 1: (a) To obtain details-on-demand, (b)
the user clicks a point in SF-LG. (c) This opens a callout in
the most available region with details relevant to that point.
Scenario 2: (d) A notification icon appears in the second most
available region, and clicking it (e) opens details. Scenario
3: (f) Comparative analysis between two points on the line
graph is possible. Scenario 4: (g) With streaming data, an
embedded chart first (h) shrinks to the smallest size, before
(i) moving to a region with sufficient space. This animated
movement maintains visual consistency during the opera-
tion.

e To present multiple charts that are linked to a line graph,
having them on one view (via efficient space-filling) could
yield better accuracy and response times than representing
them on separate screens.

8.3 Limitations

Here, we present the limitations of the SF-LG approach and of our
studies. First, we did not vary the simplification levels. We simpli-
fied PIP and SF-LG to a fixed number of points. As one potential
technique to find the optimum window size, a preprocessing step
could be added to SF-LG to calculate the number of high fluctua-
tions for different window sizes. In a simplified line graph, if the
difference of y-values of two consecutive data points is above a
threshold (proportional to the range of all possible y-values) this
can be considered as a height fluctuation. The window size with the
minimum number of high fluctuations could be picked. We could
have included such a factor in a larger study, which was beyond
the focus of this initial work. Another limitation of our studies was
the use of only a rectangular screen. While we believe SF-LG can
be adapted to other display form factors (i.e. circular), we leave this
for future work.

One of the advantages of SF-LG over PIP is that we can use it
as a real-time algorithm for streaming data. However, we did not
evaluate this element of SF-LG in practice. There are potential limi-
tations of using SF-LG for streaming data. Depending on the shape
of the simplified line graph, representing the streaming data, the
scale and the location of auxiliary information could change contin-
uously. We however demonstrate (described in SF-LG Interaction
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Techniques) how we can handle the continuously changing space
available to embed graphs. With smooth animations and transitions,
we believe we can alleviate these side effects of the space-filling
method. Also, to prevent continuous quick location changing of the
additional content, which could add cognitive load, a time threshold
could be added to maintain the location of auxiliary information
for a specific minimum period of time.

Preventing extreme fluctuations in the line graph provides us
with more suitable available spaces to add information to the line
graph. Given that this is one of the main goals of SF-LG, for datasets
that have periodic increasing and decreasing patterns in the data,
if the size of windows in SF-LG is equal to periodic behavior of the
data, this will cause a jagged simplified graph which is not suitable
to present additional information, similar to PIP. This issue can be
fixed by changing the size of the windows.

Another limitation of our technique is that we did not provide
labels on the axis of the auxiliary charts (e.g., bar and line chart)
embedded in the main line graph. Although adding this information
could help specific tasks, this may not be beneficial when the size
of the supplemental chart is too small. This makes it hard for smart-
watch users to read the labels and may add additional cognitive
load. To solve this issue, the labels could be dynamically added
to the auxiliary chart if its size is larger than a specific threshold
to make sure labels are visible to the smartwatch users. Another
essential factor in adding information to supplemental charts is the
density and the number of data points in these charts. For instance,
if a pie chart has only a few segments (e.g., two segments), depend-
ing on the size of the auxiliary pie chart, we can add values to the
segments of this additional chart.

Choosing a suitable task, as we did for Study 2, is challenging.
Our primary aim was to find a complex visual query, that users
often reported needing based on prior work [3, 32]. However, our
choice of task resulted in a relatively low accuracy rate in Study
2. This is not surprising given that the task (i) required users to
make a complex decision; (ii) involved viewing and comparing con-
tent across multiple small views; (iii) involved limited familiarity
with these queries. However, simplifying the query could have re-
sulted in floor effects, where we may not have observed differences
among conditions. A suitable balance between task complexity and
ecological relevance will need consideration for future tasks.

In future work, we intend on extending the Space-Filling tech-
niques for glancing at more than one graph. Techniques such as
Braided Charts [18] offer inspiration on how to handle multiple
time-series graphs in one view. We plan to explore the effect of
simplifying charts that include multiple time-series data. In such
cases the simplification could be applied to one, multiple, or even
all of the data sets in the graph based on the details needed by the
users.

9 CONCLUSION

Line graphs, common on smartwatch applications, are one of the
most frequently used visualizations to represent large time-series
data. We presented SF-LG, a two-step technique, to make effective
use of the smartwatch display space to assist users with in-situ
visual queries. In the first step, SF-LG simplified a line graph, by

focusing on salient features. We found that users can efficiently per-
ceive simplified graphs to address basic queries. Furthermore, the
simplification frees up space, allowing us in a second step to embed
additional content around the line graph. In a second study, we
found that embedding content around a simplified line graph can
facilitate visual queries involving interlinked datasets. Finally, we
introduced interaction techniques that benefit from the SF-LG ap-
proach and proposed methods to improve in-situ analytics, directly
on a smartwatch display.
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APPENDIX: LIMITATION OF SF-LG

The limitation of SF-LG has been illustrated in Figure 14. If the

data set has very high and very low values periodically, and if this
periodic behaviour is equal to windows size, this will result in a

jagged simplified line graph.
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Figure 14: (Left) A non-simplified line graph with 300 data
points with periodic high and low values in the data. (Right)
Simplified line graph using SF-LG technique result in nu-
merous frequent high fluctuations preventing app designers
for adding auxiliary information.
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