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Supporting eyes-free interaction, mobility and encumbrance, while providing a broad set of commands on 
a smartwatch display is a difcult, yet important, task. Bezel-to-bezel (B2B) gestures are valuable for rapid 
command invocation during eyes-free operation, however we lack knowledge regarding B2B interactions 
on circular devices during common usage scenarios. We aim to improve our understanding of the dynamics 
of B2B interactions in these scenarios by conducting two studies and a third analysis: First, we explore the 
performance of B2B in a seated position; second, we explore the efect of mobility and encumbrance on the 
B2B interaction; fnally, we improve on the B2B accuracies by calculating features and utilizing machine 
learning. With the limited interaction capabilities on smartwatches and the importance of the scenario of use, 
we conclude with applications and design guidelines for improved utilization of B2B that enables efective 
smartwatch control while in common, mobile and eyes-free scenarios. 
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1 INTRODUCTION 
With the constant fow of information and connectivity, and their always-available nature, the 
use of smartwatches is often quick, while mobile, and/or while encumbered [39, 53, 65]. These 
usage scenarios include walking, during transit or physical activity, while working with one’s 
hands, and/or while communicating with others. In these scenarios, users often must be aware of 
their core task promoting the need for rapid, and at times, eyes-free interaction. However, while 
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smartwatches             
interactions they ofer are often limited and can be afected by these usage scenarios. 
Smartwatch bezels, as a means of interaction, provide a unique approach that may be suitable 

for mobile and/or encumbered use. Bezel interactions include, rotary movement [9], bezel taps 
[70], bezel initiated sequential tapping [59], bezel pressing [68], bezel gliding [44], and edge based 
interaction [1, 48]. Furthermore, bezel initiated swipe (BIS) [22, 66] and bezel-to-bezel (B2B) [28, 29] 
have shown to increase the input vocabulary on smartwatches, allowing for interactions that can 
be performed quickly, accurately, eyes-free, and without contradiction to current touch gestures 
[29]. Moreover, BIS and B2B allow for increased interaction with a smartwatch that can provide 
beneft through leveraging physical traits of the smartwatch, the short and unique gesture set, and 
do not require additional hardware [29, 66]. 

While benefts of BIS and B2B interactions are clear, existing work that focuses on these interac-
tions has concentrated towards their use in static and non-encumbered conditions. Furthermore, 
B2B gestures have been primarily explored on square smartwatches, where edge landmarks are 
benefcial. For these reasons, this work aims to better understand circular smartwatch B2B interac-
tion while mobile and encumbered. Thus, we focus on three research questions: (RQ1) Can B2B 
interactions be efciently performed on circular smartwatches for which cornered and straight 
landmarks are non-existent? (RQ2) While mobility and encumbrance creates negative interaction 
efects on smart-devices, what is the specifc impact for B2B interactions? (RQ3) Can we algo-
rithmically adapt B2B gestures, resulting in an even more accurate interaction under mobile and 
encumbered usage scenarios? 

To address our questions, we carry out two user studies. Our frst study, with participants seated, 
provides a baseline to further explore the impact of the circular form factor and the efects of 
later adding mobility and encumbrance. We reveal accuracies of 97.2%, 87.5%, and 74.0% for the 
4-, 6-, and 8-Bezel Segments conditions tested respectively. Our second study focuses on mobility 
and encumbered usage scenarios, where participants perform B2B gestures while walking with or 
without holding bags in both hands. Results show signifcantly decreased accuracies across our 
experimental conditions. However, the underlying characteristics of the gesture itself importantly 
remain the same. Thus, we utilize the data captured from the two studies to improve the accuracy of 
B2B interactions using machine learning. Here, we note that a Random Forest model provides the 
often optimal solution when using a feature set containing the user’s touch down and up positions 
as well as a calculated angle of direction change within their gesture. 

Our contributions are twofold: (C1) We conduct studies investigating eyes-free B2B interaction on 
circular smartwatches while seated, mobile, and mobile while encumbered. This provides knowledge 
of B2B interaction during increasingly common usage scenarios. (C2) Through exploration of the 
underlying components of B2B interactions, we provide a machine learning based approach for 
adapting and improving B2B interactions through captured and calculated features. Taken together, 
and through fnal discussion, our contributions allow us to further promote smartwatch B2B 
gestures in common usage scenarios for a range of smartwatches. 

have become a common and useful device throughout our day-to-day lives, the

2 RELATED WORK 
2.1 Smartwatch Touch Interaction 
Many touch input methods used on smartwatches have been translated from that of smartphones. 
However, due to the much smaller screen size, adaptations and novel techniques have also been 
explored. Finger identifcation [17], distinguishing diferent touch areas for a single fnger [24], 
multi-touch [32], and sequential tapping [51] all ofer feasible interaction and a large set of com-
mands. Specifc applications for touch gestures include text-entry [11, 19, 35, 51, 55], command 
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selection [15], list selection [23], and other interactive purposes [52, 61]. Specifcally, Fruchard 
et al. [15] explored a gestural swipe technique that allowed for eyes-free directional interaction of 
up to 172 commands; achieving an accuracy of 95% after training and with the use of tactile cues 
around the watch. Notably, the edge (or bezel) of the watch was used by participants to locate the 
appropriate area of interaction within the screen. 

Through these works, we note that touch interactions which are common and natural for users 
[16], should be considered when designing new interaction techniques. However, some of the 
interactions proposed have learning periods, longer interaction times, and/or use multiple fngers 
or taps. This is not ideal under mobility and encumbered scenarios where hands could be occupied. 
B2B gestures, a form of swipe gesturing, ofer a viable alternative as they allow for rapid, simple, 
and a widely used invocation modality. 

2.2 Bezel Interactions 
2.2.1 Smartphone and Tablet Bezels. Understanding that screen content competes for visual and 
situational attention, Bragdon et al. [8] looked at analyzing bezel gestures and taps under various 
environmental and situational conditions. Bezel gestures ofering rapid interaction, and mark-based 
gestures ofering high accuracy, proved to not be signifcantly afected by the environment in which 
they were executed in. Furthermore, they found that bezel gestures were suitable for an eyes-free 
environment, with eye-gaze data showing that users looked at the smartphone 3.5% of the total 
interaction time while for soft buttons this increased to 98.8%. Jain and Balakrishnan [25] further 
proposed a text-entry application utilizing bezel gestures and a style of marking menu [31], while 
others have focused on reducing reachability issues through bezel-based shortcuts [10, 36, 59]. 

2.2.2 Smartwatch Bezels. Edge based interactions utilize the physical hardware of the smartwatch 
and focus on bringing interactivity of the touchscreen and onto the side of the device [30, 48]. Ahn 
et al. [1] further utilized this method in conjunction with the touchscreen for increased interaction 
capabilities. This gives users the ability to use multiple fngers for tasks involving navigation and 
selection. Focusing on the touchscreen, smartwatch bezels have been used for data visualization 
interaction [44], command invocation through bezel initiated swipe (BIS) [22, 66] or bezel to bezel 
(B2B) [28, 29] gestures, and as a means of fltering during list selection [54]. BIS and B2B have shown 
to provide many benefts such as their ability to expand the input vocabulary of a smartwatch in a 
familiar yet non-contradictory manner, as well as work in eyes-free conditions [29, 66]. Han et al. 
[22] explored using the corners of a square smartwatch to allow for a continuous BIS interaction and 
Wong et al. [66] explored the range of segments that could be used for BIS on circular smartwatches, 
noting that after 8 segments performance dropped signifcantly. As an extension of BIS, B2B has 
been explored on square form factors [28, 29] to allow invoking of menu items and shortcuts. 
Bezel interactions have shown to provide a simple method of increasing the interaction space 

and ability to interact with a device under varying usage scenarios. While there is promise for the 
use of bezels on smartwatches in eyes-free conditions due to their accuracy, quick interaction time, 
and non-contradictory interaction, there are limitations to note. First, most of these studies use 
square smartwatches which may beneft from landmarks (i.e. the corners/edges of the watch) to be 
utilized. Second, to our knowledge the use of BIS and B2B in mobile and encumbered scenarios, 
scenarios which are common when using smartwatches, has yet to be explored. However, we also 
note the beneft of B2B over BIS in regards to smartwatch interaction. While BIS allows for rapid 
and eyes-free interaction for up to 8 segments [66], its expressivity is limited to 8 items. Using B2B 
with 8 segments, the expressivity expands to the squared value of the number of segments, e.g. 
with 8 segments, B2B allows for 64 possible commands. 
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2.3 Mobile and Encumbered Smart Device Usage 
Mobile, or on-the-go, smart device usage has shown to hinder the performance of touch interactions 
due to the increase in user’s cognitive load [58]. Thus, research has focused on understanding the 
decrease in interaction performance [7, 37], efects on mobility [7, 58], and efects on awareness of 
one’s surroundings while using smart devices [38, 60]. Furthermore, on-the-go interactions may 
involve encumbered usage scenarios, such as holding a bag, which can further reduce interaction 
capabilities [46]. 
Due to the decrease in interaction performance, research has attempted to provide interaction 

techniques for smartphones that consider such negative efects [18, 27, 43]. Kane et al. [27] explored 
adapting the user interface that allowed for larger on-screen contents while walking. Moreover, 
Goel et al. [18] focused on a purely algorithmic implementation that adapted text-entry for a 
user in mobile scenarios. Finally, Negulescu et al. [43] noted that motion gestures allowed for less 
focus required on-screen when interacting compared with tapping. While larger on-screen content 
mitigates the negative efects of mobility, this is not overly feasible on small-screen devices. Thus, 
algorithmic and simple interactive changes aford the user interface the ability to be maintained 
throughout usage scenarios. 

Smartwatches are often used in spans of under 5 seconds [4, 65], while on-the-go, and to glance at 
and interact with when accomplishing other tasks [53]. With the many use cases for smartwatches, 
context is of utmost importance and is known to greatly efect the interaction behaviour [6]. 
Due to the efects of mobility and encumbrance, Singh et al. [61] focused on creating a design 
space specifcally for smartwatches that overcame the drawbacks of common smartphone touch 
interactions while mobile and encumbered. They note that touch eforts (number of fngers and 
repetitions used combined with required visual attention) must be reduced to allow for efective 
interaction while mobile and encumbered. In close relation to this work, Dobbelstein et al. [13] 
explored tapping, swiping, and wrist ficking across usage scenarios, fnding that swiping was more 
efcient and accurate than the other interaction techniques. 
While the aforementioned works focus on adapting interactions due to the decrease in perfor-

mance while mobile and encumbered, many works that look at smartwatch interaction do not focus 
on mobile and encumbered conditions [12, 21, 29, 40, 49, 66, 71]. For this reason, this work explores 
a smartwatch interaction that can be performed efciently, while eyes-free, and can accommodate 
mobility and encumbrance. B2B gestures may provide this possibility as they have a very low touch 
efort and show promise in prior research. 

3 DEFINITIONS 
Bezel Segments.                  

touch screen [44, 66]1. This allows for the use of typically untouched pixels on the touchscreen 
to be used in increasing the interaction space [56]. We then divided the bezel of the watch into 
diferent numbers of segments. For this we choose 4 (90° per segment), 6 (60° per segment), and 8 
(45° per segment) segments, illustrated in Figure 1 (b). As accuracy was greatly impacted when the 
number of segments increased further than 8 [66], we limited our work to this. Lastly, in exploring 
orientation of the bezel segments we looked to mimic a compass as our justifcation for the 4- and 
8-Segments conditions. To extend to the 6-Segments condition, we aimed to provide familiarity by 
having bezel segments encompass the top-most/bottom-most portions of the bezel similar to the 4-
and 8-Segments conditions [66]. 

We defne the width of the bezel region as an eighth of the diameter of the entire

1Similarly found on Samsung’s Galaxy Watch Active 2 - https://www.samsung.com/global/galaxy/galaxy-watch-active2/ 
#galaxy-watch-active2 
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B2B Gestures. A B2B gesture is a swipe gesture that starts from a specifc bezel segment and 
ends in the same or a diferent bezel segment [29]. For a B2B gesture to be correct, users need to 
perform a gesture with (1) a correct angle from the center, within both segment’s angle ranges, and 
(2) the distance from the centre for both the start and end of the interaction must be greater than 
the radius of the remaining screen space, thus outside the area of the screen and inside the bezel 
(Figure 1 (a)). These conditions must be met for both the touch down (initial contact with the bezel, 
in the start segment), and the touch up (fnal point of contact, in the end segment). 

Fig. 1. In a we demonstrate how a correct interaction with a single segment occurs (the highlighted green 
area). First, the touch down (or up) must be within the minimum (orange/45°) and maximum (blue/135°) 
angles from the centre horizontal (grey/0°). Second, the interaction must occur outside the screen’s new radius 
(radius of the grey circle), thus inside the bezel segment (light blue ring). In b we show the bezel segment 
conditions and their orientations used in our study. The blue portion represents the touch bezel used for the 
B2B gesture. Note, the bezel regions are not to scale and are enlarged for representation. In c we showcase the 
Study 1 apparatus. Note, the arm is placed parallel to the edge of the desk and the participant’s field-of-vision 
towards the watch is occluded. 

4 STUDY 1: EYES-FREE B2B INTERACTION IN A STATIC CONTEXT 
4.1 Participants 
Twelve adults (3 females, 9 males), aged 21 to 39 (� = 26, �� = 4.6) participated. Participants were 
recruited from our university, all right-handed with the exception of one, and none were color 
blind; half of our participants (6) were daily smartwatch users. 

4.2 Apparatus 
The smartwatch used for the study was the Fossil Gen 5 The Carlyle HR2 with a touch screen of 44 
mm in diameter and a resolution of 416 × 416 pixels. This watch has no raised edge around the 
touch screen, thus has a fat surface from which to interact. During the study, participants sat at a 
desk where a cardboard covering occluded their vision of the smartwatch. Trials were displayed on 
a 23", 1080p, external monitor. The study apparatus can be seen in Figure 1. 

4.3 Design 
We used a within-subject study design with the Number of Segments as a main factor (4, 6, and 8); the 
number of possible B2B gestures was respectively 16, 36, and 64. Each gesture was repeated 3 times 
within a segment condition, and were randomized within blocks while ensuring no repeated trial 
was displayed back-to-back. We counterbalanced the segment conditions’ order across participants 
using a Latin Square design. In total, we collected 12 (participants) × 116 (16 + 36 + 64 B2B 
combinations) × 3 (repetitions) = 4176 total trials (576 trials in the 4-Segments condition + 1296 
trials in the 6-Segments condition + 2304 trials in the 8-Segments condition). 
2https://www.fossil.com/en-us/products/gen-5-smartwatch-the-carlyle-hr-black-silicone/FTW4025.html 
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4.4 Procedure and Task 
After introductions, participants were informed about the ethics and asked to sign a consent form, 
completed an Ishihara Color Blindness Test3, and fnally a short demographic survey. Before starting 
the study, the B2B interaction was explained and participants were allowed to practice B2B gestures, 
while wearing the watch and interacting on a blank screen. Participants were asked to wear the 
watch on their non-dominant hand’s wrist while interacting with their dominant hand’s index 
fnger. When interacting with the smartwatch, participants were asked to place their watch wearing 
arm comfortably parallel to the edge of the table. This ensured that the watchface was oriented in 
the same manner as the trials being displayed; see Figure 1. 

The task required participants to perform a B2B gesture between the bezel segments highlighted 
on the monitor by touching down in the start bezel segment and then sliding into the end bezel 
segment (indicated by the colors green and red respectively). For trials where the start and end 
bezel segments were the same, yellow was used. The participants were instructed to perform the 
B2B interaction by going through the non-bezel portion of the screen (i.e., starting in the start bezel 
area, sliding into the screen away from the bezel, and fnally sliding into the end bezel area to fnish 
the interaction). Previous works follow a similar approach [28, 29, 66], as keeping interactions 
around the edge of a round smartwatch has proven to be difcult [3]. Participants were instructed 
to perform the B2B interaction as fast and accurate as possible. Upon successful completion of a 
trial, the next trial would be displayed one second later. Otherwise, feedback would be displayed 
showing the error made. This feedback was given to mimic the real world efect of correctly or 
incorrectly executing a task. Lastly, participants were given optional breaks after every 12 trials. 

4.5 Dependent Variables 
We collected the following dependent variables: Accuracy, Time, Ofset, and all start, end, and 
intermediate touch locations. Accuracy is simply whether a correct B2B gesture was performed. 
Time was further explored through two variables. First, we captured the amount of time taken 
by the participant from the time the stimuli appeared to the time they released their touch (Trial 
Time). Second, we isolated the physical touch interaction time from touch-down to touch-up 
(Movement Time). Ofset was registered as the angle from the center horizontal line, as seen in a 
unit circle, for both the touch-down and -up locations. We use these to compute the ofset between 
the measured angles and the expected angles (center of the respective segments), from which we 
derived a (signed/relative) ofset. Finally, we recorded all touch points for the touch interaction in 
x,y coordinates. This was done through Android’s event handlers, capturing the touch down, all 
touch move, and fnally the touch up locations. 

4.6 Statistical Analysis 
We analysed our data using R. All statistically signifcant results are reported, while if not reported 
there was no signifcance found. For each dependent variable, we checked the distribution with a 
Shapiro-Wilks test. If normal, we proceeded in using a parametric analysis. Otherwise, we would 
transform the data and check for normality again. If after transformation the normality test failed, 
we would proceed with a non-parametric analysis. 

For parametric analysis we used the ANOVA with repeated measures to detect main efects and 
interactions, and pairwise t-test with Benjamini-Hochberg corrections for post-hoc comparisons. 
We applied Greenhouse-Geisser sphericity correction when needed. The degrees of freedom may 
have decimal values after correction, similar to other work [5]. For non-parametric analysis we 
used Friedman’s test to detect main efects and pairwise Wilcoxon tests with Benjamini-Hochberg 

3https://www.color-blindness.com/ishihara-38-plates-cvd-test/ 
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corrections for post-hoc comparisons. We did not use Bonferroni correction, as its conservative 
approach leads to high rates of false negatives when done with large number of comparisons, which 
we have for the 6- and 8-Segments conditions [64]. Instead, we relied on Benjamini-Hochberg as it 
minimizes the problem [42] while still accounting for multiple comparisons. 

5 STUDY 1 RESULTS 
5.1 Accuracy 
5.1.1 Across Segments Conditions. We found a signifcant main efect of the Number of Segments (4, 
6 or 8) on accuracy (�2 (2) = 24.0, � < .0001). Pairwise comparisons showed signifcant diferences 
between all segment conditions (all � < .01); participants were overall more accurate in the 
4-Segments condition (� = 97.2%) [�� = 95.9%, 98.6%] than in the 6-Segments (� = 87.5%) 
[�� = 85.7%, 89.3%] and 8-Segments (� = 74.0%) [�� = 72.2%, 75.8%] conditions. Figure 2 shows the 
overall accuracy for each segment condition and Figure 3 shows a complete breakdown of accuracy 
by segments for each start and end segment combination. 

Fig. 2. Accuracy of each segment condition. Bars denote 95% confidence intervals. Statistically significant 
diferences found between all segment conditions. 

Fig. 3. Accuracy of each B2B combination. The x-axis represents the start bezel and the y-axis represents the 
end bezel. Thus, each square within the individual segment conditions is a specific B2B gesture combination 
of start and end segments. 

5.1.2 Within Segments Conditions. Further breaking down the B2B gestures by start and end 
segments revealed signifcant diferences (�2 (7) = 17.09, � = .01) in accuracy in the 8-Segments 
condition between certain start segments. However, while there was a main efect, due to the 
number of conditions no signifcance was found after further analysis. We did not fnd any other 
efect of segment locations (start or end) on accuracy for any other condition. 
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5.2 Time 
5.2.1 Total Trial Time. A one-way ANOVA showed a signifcant main efect of the number of 
segments on total time (�2,22 = 30.84, � < .0001). Pairwise comparisons showed signifcant dif-
ferences between all conditions (all � < .01). The mean total time for 4-Segments was 1756ms 
[�� = 1675��, 1838��], for 6-Segments was 2323ms [�� = 2184��, 2463��], and for 8-Segments 
was 2711ms [�� = 2607��, 2815��]. 

5.2.2 Movement Time. We found a signifcant main efect of Number of Segments on movement 
time (�2,22 = 4.67, � = .02). Participants tended to be signifcantly slower in the 8-Segments 
condition with an average movement time of 711ms [�� = 690��, 732��], as compared to the 
603ms [�� = 557��, 648��] for the 4-Segments conditions (� < .05), and 645ms [�� = 622��, 688��] 
for 6-Segments (� < .05). 

5.2.3 Within Segments Conditions. Separating analysis by start and end segments revealed signif-
cant diferences in the total time taken to perform B2B gestures in both the 4- and 8-Segments con-
ditions. For the 4-Segments, we found a main efect of Segment Location on total time (�2 (3) = 11.1, 
� = .01). Participants were signifcantly slower starting from the South segment (� = 1951 ms) 
compared to North (� = 1646 ms, � = .041) and West (� = 1665 ms, � = .041) segments. We 
discovered a similar trend in the 8-Segments condition (�2 (7) = 15.06, � = .03), however we could 
not fnd signifcant diferences between individual segment locations. 

5.3 Touch Points and Paths 
5.3.1 Start and End Touch Points. The touch points for the start and end of the interaction correlate 
with relative ofsets recorded during the interaction, and can be seen with 95% confdence interval 
ellipses in Figure 4. The relative ofset data for these touch points, compared with the centre of 
the segment, was broken apart by start and end segments across all segment conditions and was 
normally distributed. Since the segment size difers across the Number of Segments, the analysis of 
the ofsets across this factor does not allow for a fair comparison. 
Notably of the start and end touch points, there is no overlap for both start and end segments 

in the 4-Segments condition. We also note that the West and South clusters are shifted counter-
clockwise during the start of the interaction. A signifcant main efect was found for the start 
segments in the 4-Segments condition (�3,33 = 6.16, � < .01). The West segment tended to have an 
increasingly larger ofset (� = −12.7°) in the negative direction compared to the North (� = 0.46°, 
� = .03) and South (� = −4.9°, � = .05) segments. 

In the 6-Segments condition, we observe a similar counter-clockwise shift for Segment North 
(� = −4.0°), North-East (� = −9.0°), South (� = −4.14°), South-West (� = −14.4°), and North-West 
(� = −3.9°) with little overlap between segments. Interestingly, Segment South-East had a positive 
mean relative ofset (� = 7.85°) in the clockwise direction. A very similar shifting phenomenon 
can be observed with a larger spread of touch points, for the end segments. 
Finally, the 8-Segments condition shows a signifcant amount of overlap, and a slight shifting 

of cluster centers towards the counter-clockwise direction. A signifcant main efect was found 
using a one-way ANOVA for only the start segments (�7,77 = 4.23, � < .001). We found signifcant 
diferences between West (� = −10.48°), East (� = −0.77°, � = .02), and South-East (� = −1.72°, 
� = .03). 

5.3.2 Touch Paths. In order to better understand the entire B2B gesture we visualized the touch 
paths of participants; see Figure 5 for selected touch paths. We note that, while not always, partici-
pants often looked to perform discrete changes in direction/angle. This direction change occurred 
throughout the centre of the watch. We calculated, with a 95% confdence interval, the centre used 
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for this change in angle across all trials to be 225 pixels wide and 220 pixels high. This suggests a 
wide area was used to move from start to end segments. 

Fig. 4. Start (top row) and end (botom row) touch points of the B2B gestures in Study 1. Ellipses represent 
95% confidence intervals. 

Fig. 5. Selected touch paths of 3 B2B combinations for each of the 3 Segment Conditions. Each line within a 
single color represents one trial from each participant. As can be seen, across participants, the B2B gestures 
ofen have a discrete angle change when moving from the start to end segment. As well, it can be seen that 
the angle change is ofen performed within a wide central radius. 

5.4 Summary of Results 
5.4.1 B2B gestures are accurate. Accuracy across segment conditions followed an expected pattern, 
with a decreasing accuracy as we increase the number of segments. Compared with our 4-Segments 
condition, Kubo et al. found similar results, reporting accuracies of 96.3% in their sighted condition 
and 92% in the eyes-free condition [29]. This allows us to suggest that the round form factor does 
not hinder the ability for the a B2B gesture to be performed. 

5.4.2 Locating the Start Segment was easier. Participants were seemingly more accurate in perform-
ing the start of the B2B interaction than they were in ending the interaction. The 95% confdence 
interval ellipses for the start segments are much more compressed than those of their end segment 
counterparts. This implies participants could often locate the start segment, however lose track of 
location throughout the gesture. 
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5.4.3 Participants tended to shif counter-clockwise. As observed from the touch point data in 
Figure 4, we noticed that participants tended to have trouble fnding the center of segments, often 
interacting left of center. This is likely due to bio-mechanical constraints (i.e., due to the interacting 
hand being on one side of the watch, interaction on that side may be easier and more accessible 
than across the watchface) and suggest that the segments could potentially be redivided in a more 
meaningful way, by shifting them slightly in the counter-clockwise direction. 

Furthermore, segments on the left and upper-left side of the watch, as well as segments directly 
next to each other, tended to perform less accurately with absolute ofsets higher in these areas. 
The start and end touch points of the B2B interaction were much less compact on the left and 
upper-left side in the 6- and 8-Segments condition. This decrease in precision may again have been 
due to bio-mechanical constraints as previously discussed. With the interaction taking place in a 
non-natural resting position for the index fnger, the accuracy of the interaction then decreases. 

5.4.4 Acceptable interaction time. When analyzing time, the total interaction time occurred across 
all conditions in under 2.75 seconds; for the 4-, 6-, and 8-Segments conditions 1.756s, 2.323s, and 
2.711s were respectively calculated. Of importance, is that these times fall well below 5 seconds of 
which ~50% of smartwatch interactions occur [65]. 

5.4.5 Shape of gestures use central reference point. To maintain reference, it can be seen that 
participants tended to attempt to fnd the centre of the watch face and to change their angle/direction 
towards the end segment from this reference point. While this strategy promotes the possibility of 
ending in the end segment, and the change in angle seems to be relatively correct, most participants 
gesture’s changed angle away from the exact centre. This fact caused some interactions to end in 
the incorrect segment, thus making the B2B gesture incorrect. 

6 STUDY 2: EYES-FREE B2B INTERACTION IN MOBILE AND ENCUMBERED 
SCENARIOS 

The second study in this work aims to better understand B2B interactions, remaining eyes-free, 
while participants are mobile and encumbered. This allows us to evaluate the interaction in an 
increasingly common usage scenario. 

6.1 Participants 
For this study, 12 adults (6 females, 6 males) volunteered aged between 18 and 57 (�=30.6, ��=13.9) 
from and around a local university. All participants were new, thus none had partaken in Study 1. 
Participants were all right-handed, and 3 were daily smartwatch users. No participants were color 
blind. 

6.2 Apparatus 
We used the same smartwatch and external monitor as in Study 1. In addition, participants walked 
on a treadmill with a cardboard covering placed on their forearm to occlude their vision of the 
smartwatch. Furthermore, in the encumbered condition, 1.6 kg bags were used [45, 46, 61]. The 
study apparatus can be seen in Figure 6. 

6.3 Design 
A 3 × 2 within-subject study design was utilized, with the Number of Segments conditions (4, 6, 
and 8) and the Usage Scenarios (walking WK and walking while encumbered WKE) as the main 
factors. We keep the 8-Segments condition, despite its weaker performance in Study 1, as our goal 
is to further improve upon the accuracies in the latter part of this work. Each of the total possible 
B2B gestures were repeated 3 times within a segment condition, and were randomly displayed to 
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the participant while ensuring no repeated trial was displayed back-to-back. We counterbalanced 
the segment conditions and usage scenarios across participants using a Latin Square design. This 
ensured that no practice efects were seen across the conditions. Overall, with 12 (participants) × 
116 ( = 16 + 36 + 64 B2B combinations) × 3 (repetitions) × 2 (usage scenarios) = 8352 total trials 
(576 in the 4-Segments condition + 1296 in the 6-Segments condition + 2304 in the 8-Segments 
condition = 4176 trials per usage scenario × 2 = 8352 total trials). 
To simulate mobility, participants walked on the treadmill at a speed of 2.5 km/h; this speed 

has been used to mimic average walking speeds in previous studies [26, 57]. For the encumbrance 
conditions we used two bags, one held in each hand and each weighing 1.6kgs; previous work 
explored this specifc weight and usage scenario [45, 46, 61] and is noted as a common and worst 
case encumbrance situation, as both hands are busy. 

Fig. 6. Study 2 apparatus. Here the arm is held naturally while still occluded (highlighted by the blue squares). 
The image on the lef demonstrates the walking condition, while the image on the right demonstrates the 
walking while encumbered condition (with the bags highlighted in red). 

6.4 Procedure and Task 
A similar procedure was used from Study 1. Participants were allowed to practice the B2B gesture 
on a blank screen in a standing position to gain familiarity with the watchface. After this, the 
participants were brought to the treadmill to cover operation and safety procedures. The same task 
and instructions were given to participants as from Study 1. 

7 STUDY 2 RESULTS 
Similar statistical analysis techniques and methods were used from that of Study 1. Our analysis 
mainly focuses on the efect of the usage scenarios, both walking and walking while encumbered. 

7.1 Accuracy 
7.1.1 Usage Scenario. We found a signifcant main efect of Usage Scenarios on Accuracy (�1,11 = 
19.24, � < .001), as our participants performed better in the Walking Usage Scenario (WK) (� = 
74.7%) [�� = 69.4%, 80.1%], compared to the Walking While Encumbered Usage Scenario (WKE) 
(� = 66.7%) [�� = 60.1%, 73.2%]. 

7.1.2 Number of Segments. We also found a signifcant main efect of Number of Segments on 
Accuracy (�2,22 = 34.67, � < .0001). Pairwise comparisons showed signifcant diferences between all 
three conditions, with a higher accuracy for 4-Segments (� = 89.4%) [�� = 86.3%, 92.5%], followed 
by 6-Segments (� = 79.1%) [�� = 73.1%, 83.1%] and 8-Segments (� = 61.9%) [�� = 56.4%, 67.3%]
(all � < .01). We did not fnd any interaction efects (� = .06). The overall accuracy is shown in 
Figure 7 and the accuracy breakdown for each B2B combination can be seen in Figure 8. 
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Fig. 7. Overall accuracy in Study 2 across segment conditions. Bars denote 95% confidence intervals. 

Fig. 8. Accuracy for all combinations of B2B gestures in Study 2. 

7.2 Time 
7.2.1 Total Trial Time. We did not fnd any signifcant efect of Usage Scenarios on Total Trial 
Time (� = .18). It took our participants 2093 ms on average [�� = 1902��, 2284��] to perform a 
trial. 
There was a signifcant main efect of Number of Segments on Total Trial Time (�2,22 = 29.30, 

� < .0001). Post-hoc comparisons showed signifcant diferences between all three conditions, with 
participants performing faster in the 4-Segments condition (� = 1758��) [�� = 1591��, 1923��]
than in the 6-Segments condition (� = 1935��) [�� = 1733��, 2136��] or in the 8-Segments 
condition (� = 2350��) [�� = 2120��, 2580��] (all � < .01). We did not fnd any interaction efects 
(� = .10). 

7.2.2 Movement Time. We found no diferences between WK and WKE conditions (� = .97), for 
an average performance of 651 ms [�� = 596��, 707��] to perform a B2B gesture. 

We found a main efect of Number of Segments on Movement Time (�1.34,14.73 = 10.59, � < .01). 
Overall, participants were signifcantly slower in the 8-Segments condition (� = 697��) [�� = 
636��, 758��] compared to the 4-Segments condition (� = 612�� , � < .01) [�� = 558��, 667��]
and the 6-Segments condition (� = 610�� , � < .01) [�� = 548��, 672��]. We did not fnd any 
interaction efects (� = .32). 
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7.3 Touch Points and Paths 
7.3.1 Start and End Touch Points. Figure 9 shows the start and end touch points of the B2B gestures 
across all segment and mobility conditions. It is again clear that the start of the interaction is more 
accurate than the end, and we note that comparing walking and walking while encumbered shows 
the encumbrance to have a large efect on the spread, and thus the overlap of the confdence ellipses. 
Interestingly the charts from the walking data compare relatively similarly with the data from 
Study 1. This suggests that walking alone has a minimal efect on the estimated location of the 
start and end segments. 
We analyzed the relative ofsets comparing our two usage scenarios as factors. This did not 

have any efect (� = .32) on the ofset for the start segments, with an average ofset of -3.54° 
[�� = −5.90°, −1.18°]. We did not observe any signifcant efect of Number of Segments (� = .06) 
nor any interaction efects (� = .47). We observed a similar trend for the end segments (� = .36), 
with an average ofset of -3.31° [�� = −5.82°, −0.80°], and no efect of Usage Scenario (� = .18), 
Number of Segments (� = .66) or interaction efects (� = .14). 

7.3.2 Touch Paths. Participants again tended make a discrete angle change in the centre of the 
watch, very similar to those shown in Figure 5. The 95% confdence interval ellipse was slightly 
larger than in Study 1 at 246px wide and 240px high. No diferences in this perceived centre, where 
the change in angle occurred, was found between the walking and walking while encumbered 
conditions. Interestingly, the centre of the confdence ellipse was skewed slightly right and low 
of the actual centre of the watch in both usage scenarios. This further reinforces that interacting 
across the watch face is more challenging in mobile and encumbered scenarios. 

7.4 Summary of Results 
7.4.1 Reduced Accuracy. Compared to Study 1, participants were understandably less accurate. 
Accuracy dropped from an average 86.3% in Study 1 to 79.6% in the WK condition and 73.3% 
in the WKE condition. The drop in accuracy is consistent across segment conditions, with the 
largest diference of 17 points calculated between the 8-Segments condition in Study 1 and the 
8-Segments while walking and encumbered condition in Study 2 (74.0% vs. 57.0% respectively). 
We note, participants generally struggled with the 8-Segments condition, often taking breaks and 
commenting that the task was much too difcult. When comparing between walking and walking 
while encumbered, we fnd that accuracy only shows a signifcant diference in the 8-Segments 
condition. Accuracies hovered around the 80% mark for the 6-Segments condition and around the 
90% mark for the 4-Segments condition. Thus, importantly towards our goal, these two segment 
conditions can accommodate potential usage across scenarios without hindering performance. 

Furthermore, similar to the frst study, the left and upper left side were signifcantly inaccurate in 
the 6- and 8-Segments conditions. While this was noticeable in Study 1, the results were exaggerated 
across Study 2. We speculate this may be due to the user’s posture when interacting while walking, 
participants’ arms were often aimed towards the ground, and the weight of the bag pulling down 
during the interaction when encumbered. As seen in Figure 8 the North-West segment in the 6-
Segments condition and and West and North-West segments in the 8-Segments condition proved to 
show the worst accuracy when walking while encumbered. Interestingly, these segments performed 
at par with the others when they were the end segment of the B2B gesture. Furthermore, we highlight 
that B2B gestures where the segments are located physically next to each other tend to provide 
lower accuracy rates. 

7.4.2 Similar interaction time across studies. Despite the reduced accuracy, we note that the total 
(1700 to 2700 ms) and movement (600 to 750 ms) times remained quick and relatively unchanged 
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from Study 1. The time taken to perform the B2B gesture promotes the use of B2B gestures for 
rapid command selection and common interaction length on smartwatches, even under diferent 
usage scenarios. 

Fig. 9. Start and end touch points of the B2B gestures for all segment conditions and both usage scenarios. 
Ellipses represent 95% confidence intervals. 

7.4.3 Gesture similarities across studies. While Study 1 and Study 2 provided signifcantly diferent 
accuracy results, we note similarities in the interaction characteristics across our studies. These 
include start and end locations, their ofsets to the centre of a segment, as well as touch path shape. 
Furthermore, the same counter-clockwise shift and lower accuracy on the left side are evident 
within the Study 2 results. This informs us that underlying gesture characteristics are not strongly 
afected by walking and walking while being encumbered. 

8 OPTIMIZATION OF B2B-SWIPE DETECTION 
We aimed to improve the B2B gestures captured over the course of Studies 1 and 2 using adaptive 
methods. First, we implemented an algorithm to calculate the angle of direction change in a B2B 
gesture. Second, as this empirical rule-based detection algorithm may miss hidden patterns, we 
trained a set of supervised-machine-learning classifcation models. We note, we chose not to 
utilize common gesture recognizers, such as the lightweight $ family, due to the need for nuanced 
extraction of similar gesture directions and orientations. 
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8.1 Angle Change Detection 
We created an angle change detection algorithm that analyzes the points recorded from a B2B gesture 
and calculates the angle at which participants changed direction within the gesture. This takes 
into consideration our assumption that participants understood the angle between the segments, 
but potentially lost reference to the start and end segments during the eyes-free aspect of the 
interaction. Pseudo-code for the algorithm can be found in Appendix A while Figure 10 provides a 
rudimentary example of the algorithm at work. 
To explore how often participants utilized a correct angle of change, we compared the angle 

of change calculated to the minimum and maximum allowed angles between the given start and 
end segments for a specifc trial. If the value of the angle of change fell within the minimum and 
maximum allowed angles, the trial was considered a success. As seen in Figure 10, performance 
gain is obtained across the study scenarios, with an up to 19.5% increase in accuracy in the walking 
while encumbered 8-Segments condition. We note, that in-the-wild the angle of change could be 
calculated in real-time for each gesture; however, it can not be used as the sole model for accuracy 
as the desired start and end segments would be unknown. As this is the case, yet due to the large 
accuracy increase found, we aim to utilize this calculation within the machine learning models 
below. 

Fig. 10. (Lef:) the blue doted line represents a user’s touch path, with significantly less touch points shown 
for demonstrative purposes. The first two iterations of the angle of change detection algorithm are highlighted 
from the start segment. The algorithm iterates through the touch path, running until no touch points remain, 
taking three touch points per iteration to calculate the angle between them. Afer iterating through all touch 
points, the smallest angle calculated is found to be the angle of change; here that angle is highlighted in 
blue. For demonstrating efectiveness, we can utilize the minimum (orange) and maximum (purple) angles 
to test against. In this example the gesture would be seen as correct, as the blue angle is within the orange 
and purple angles. (Right): the graph denotes the increase in accuracy (faded portion of the bar charts) for 
all conditions in Study 1 and 2 when angle optimization is utilized and tested against the minimum and 
maximum angles. 

8.2 Classifying B2B Swipes with Supervised Machine Learning 
To utilize machine learning techniques, we frst derived a set of 7 features for a B2B swipe gesture, 
including the gesture’s start and end position (i.e. two pairs of x and y coordinates), start and end 
touch angles calculated from the centre horizontal, minimum angle ofset values at the start and end 
position, and the angle of direction change during the gesture. Note, these features can be grouped 
into four categories: 1) positional touch information 2) angle information 3) ofset information and 
4) the maximum angle of direction change during the gesture. The combinations of these feature 
categories resulted in 15 possible feature sets as shown in Table 1 within the appendix. 
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In our user studies, each participant performed each B2B swipe for three repetitions, resulting 
in 12 participants × 3 repetitions = 36 samples for each bezel combination in each condition. As 
this sample size may not be sufcient for training the classifcation models, we adopted a data-
augmentation process for the collected data. Pearson Correlation analysis on the selected features 
shows a weak correlation among the start and end features. As there is no obvious causal relation 
between start and end features, we assume that for each B2B gesture performed by participants, 
given the feature group of one particular start position, it is then possible to result in any end 
position and angle of direction change. Thus, for each Study 1 participant, we augmented their 
data with the combinations of 3 start features × 3 end features × 3 angle features = 27 data entries 
for each type of B2B swipe. This led to 12 participants × 27 augmented entries = 324 samples for 
each bezel condition in each condition. 

For each combination of segment and encumbrance condition, we adopted the strategy of leave-
one-out cross validation. That is, we trained, validated, and tested each classifcation model for 12 
rounds, each round with one user’s data as the testing set and the rest for training and validation, 
and calculated the average performance. In each round, the training-validation set was further 
randomly divided, 70% for training and 30% for validation. The classifcation models were trained 
and validated using the training-validation set, and then evaluated with the testing set. 
For all models tested below, training and testing were performed on a MacBook Pro with a 

2.3GHz quad-core 10th-generation Intel Core i7 processor, 16GB RAM, and 1TB SSD hard disk. We 
considered four commonly used models throughout, including Support-Vector Machine (SVM) [47], 
K-Nearest Neighbors (KNN) [14], Logistic Regression (LR) [67], and Random Forest (RF) [63]. As 
we were working with a small amount of feature sets, we compared the performance of each model 
with all 15 feature sets across each test. 

As shown in Figure 11 (left), all the selected 
classifcation models improved the accuracy of the testing data sets for each layout. On average, 
the four models improved the accuracy on the testing sets by 1.8% (from 97.2% to 99.0%), 6.8% 
(from 87.5% to 94.34%), and 9.6% (from 74.0% to 83.6%) for the 4-Segments, the 6-Segments, and the 
8-Segments conditions respectively. In addition, the inference time captured was within the range 
of real-time response (i.e., 100ms) [41]. 

8.2.1 Classification Experiment on Study 1 Data. 

8.2.2 Classification Experiment on Study 2 Data. With the classifcation models trained with the 
Study 1 data, we frst experimented the generalizability of these models on the data recorded in 
Study 2. Figure 11 (right) summarizes the classifcation performance of the trained models on the 
Study 2 data. 

Fig. 11. (Lef): Performance of B2B classification on Study 1 data. The baseline accuracy is denoted by the dark 
dashed line. Numbered results can be found in Table 2 of the appendix. (Right): Classification performance of 
the Study 1-data-trained models on all the Study 2 data. Numbered results can be found in Table 3 of the 
appendix. In both lef and right, the baseline accuracy is denoted by the dark dashed line. 
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Overall, the classifcation models improved the accuracy from their respective baselines. Among 
the three segment conditions and the two usage scenarios, the pre-trained SVM model achieved 
the highest accuracy of 90.28% in the 4-Segments condition while walking without encumbrance. 
KNN achieved the highest accuracy of 89.35% and 83.02% for the 6-Segments condition in walking 
without and with encumbrance respectively, and 93.75% for the 4-segments condition in walking 
with encumbrance. The pre-trained RF model achieved the highest accuracy for the rest of the 
segment conditions and usage scenarios (8-Segments while walking without encumbrance: 76.21%; 
8-Segments while walking with encumbrance: 67.71%). 
While the models trained with the Study 1 data showed a considerable improvement on the 

accuracy, we were also interested in how the models would perform when specifcally trained with 
the data from Study 2. For the data recorded in Study 2, we adopted the same feature-sets and 
processes as that of the Study 1 trained model to train two new sets of classifcation models, one for 
each of the usage scenarios. Figure 12 shows the classifcation accuracy of the two sets of models 
trained with the Study 2 data. 

Fig. 12. Performance of B2B classification trained by the Study 2 data for the walking condition (lef) 
and walking while encumbered condition (right). In both, the baseline is denoted by the dark dashed line. 
Numbered results can be found in Table 4 and Table 5 of the appendix. 

8.3 Summary of Results 
8.3.1 Features, Model, and Generalizability. The feature set which most often provided the greatest 
accuracy increase contained the starting and ending position of the gesture as well as the angle 
of direction change; benefcially this is a relatively small feature set. Furthermore, the majority 
of feature sets which provided high accuracy increase included the angle of direction change, 
highlighting the ability for a mid-gesture characteristic to beneft the overall accuracy. 

While all models across our testing, except LR, provided respectable results, the RF model often 
provided the largest increase in accuracy and was consistently a top performing model. Importantly, 
the RF model clearly outperformed the models aiming to improve on the walking and walking 
while encumbered data. 

An independent-sample T-test showed no signifcant diference between the classifcation ac-
curacy of the models trained by the Study 1 data and the Study 2 data respectively, showcasing 
successful model use both within and across study data. As Study 1 and Study 2 involved two 
diferent groups of participants, this may indicate the generalizability of the classifcation models 
trained with the Study 1 data. Furthermore, this may imply that the data collected when performing 
B2B gestures while walking without and with encumbrance yielded similar behavioral patterns as 
the B2B gesture data during seated interaction. 

8.3.2 Smartwatch Deployment. While we did not run the prediction models in real time, we note 
that research has begun to take advantage of greatly improved hardware to successfully train 
and run models on smartwatches [33, 34, 62]. For now, we deployed the trained RF model to an 
emulator with the same confguration as the watch used for the data collection. The inference time 
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for one data entry, using our optimal feature set, took just over half a second. This time elementally 
indicates the real-time speed of the trained prediction model. As an important future work, we will 
deploy the prediction model to a range of smartwatches, and conduct real-life usability validation. 
Furthermore, as performance varies among diferent users, personal models could outperform 

the general study models, as seen in prior works [66]. Thus, future work will also investigate the 
efectiveness of adaptive and continual learning models that can dynamically improve the model 
for each user over time, both gradually and automatically. This would require a much larger study, 
in both time from participants and data captured, and was thus not explored within this work. 
However, through the positive results obtained, we recognize this as an important and plausible 
step to consider for future real-world, in-situ, deployment. 

9 DISCUSSION 
As each study section above includes a discussion, here we consider overall design guidelines 
for B2B usage and their comparison to previous work, broader implications of eyes-free and B2B 
gestures, potential applications, and limitations and future directions for our work. 

9.1 B2B Guidelines and Comparison to Prior Work 
Our assumption was that due to a decreased amount of physical landmarks (i.e., the physical discrete 
edges of a square smartwatch), a circular form factor may not allow for as accurate of B2B gestures. 
When comparing with the work done by Kubo et al. [29], our 4-Segments eyes-free condition 
actually achieved greater accuracy than their sited (96.3%) and their eyes-free (92%) conditions. 
Thus, B2B gestures work equally as well for 4-Segments on circular form factors, and can therefore 
be used across the range of smartwatches available on the market today. While accuracy is not 
afected, we do note that movement time of the gesture almost doubled (from roughly 300 to 600 
ms). This suggests that slightly more cognitive efort was needed on the circular form factor, yet 
B2B remains to be a rapid and accurate gesture. 

As expected, mobile and mobile while encumbered conditions decreased the accuracy of the B2B 
gestures. Yet, while this is true, 4- and 6-Segments still remain feasible for use, and the interactions 
show little diference between the two usage scenarios tested within Study 2. As smartwatches 
have the potential for use across usage scenarios, these results show promise for a smartwatch 
interaction technique that allows for accurate and efcient interaction. 
Finally, we aimed to explore the use of machine learning methods and calculated features to 

increase the accuracy, and thus the potential, of B2B gestures on smartwatches. We suggest to 
improve upon basic B2B gesturing through the calculated use of the B2B gesture’s change in angle 
naturally performed by the user and a machine learning model. This can provide at times more 
than a 15% increase in accuracy. This was achievable due to the common characteristics seen from 
the B2B gestures across our studies. 

9.2 Eyes-Free Interaction 
Studying eyes-free interaction within this work, while not performed regularly throughout one’s 
day, allows for two factors to be taken into consideration. First, smartwatches are often used in 
diversifed short interactive bursts while on-the-go and during day-to-day activities [20, 53, 65]. 
Thus, a fundamental motivation for the ability to perform eyes-free interaction is to allow for a 
user to be visually uninhibited during the interaction, so as to remain focused on the scenario of 
use such as walking or talking with others [50]. Further motivation has been explored by Yi et al. 
[69], citing environmental, social, device features, and personal aspects as reasons for the need of 
eyes-free interaction. These situated usage scenarios and motivations must be considered when 
designing interactions, as is a motivation of this work. Second, through our studies and prior works 

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. MHCI, Article 201. Publication date: September 2022. 



Understanding and Adapting Bezel-to-Bezel Interactions for 
Circular Smartwatches in Mobile and Encumbered Scenarios 201:19 

exploring eyes-free interaction [29, 52, 66], we highlight the ability for B2B gestures to be used in 
eyes-free scenarios if needed, while understanding this may not always be the case. Furthermore, 
eyes-free conditions allow us to encapsulate a worst-case usage environment, thus reporting a 
lower bound on our results. 

9.3 B2B Versus BIS 
An advantageous aspect of B2B, beyond that of BIS, is the increased number of possible interactions 
within the same screen real estate. While the results of our work are promising for 4 segments 
and plausible for 6 segments, which are only slightly less accurate, and matched through machine 
learning, to the BIS work done by Wong et al. [66], this allows for 16 and 36 possible interactions 
compared with only 4 and 6 in BIS respectively. However, this raises the questions of memorability 
and need. In terms of memorability, Appert and Zhai [2] explored stroke gestures, arbitrary to the 
command being performed, and found that with 14 commands users could achieve ~80% recall 
accuracy after only 12 sessions. We believe that through the proper mapping of commands, users 
could achieve similar recall when utilizing B2B gestures. This result bodes well for the 4-Segments 
condition in full, however the 6-Segments condition ofers a much increased set of possibilities. 
Here, we understand that the potentiality for users to need all 36 B2B commands is limited. However, 
while users may not utilize every command, an increased set of possibilities allows designers to 
create a range of options within their applications from which users can utilize a select few that 
regularly pertain to them. Ultimately, this expanded B2B gesture set allows designers to provide 
greater option and generalizability for all users. 

9.4 Applications 
9.4.1 Smartwatch Menu. B2B allows for applications that can beneft and provide users with 
extended options or easier access to many controls that may be otherwise hard to utilize. In this 
regard, we suggest using marking menu shortcuts that can improve smartwatch applications where 
reduced interaction is currently an issue or many controls are available. For everyday smartwatch 
users, applications that could beneft include messaging, IoT control, or music players. Messaging 
could beneft from the quick and rapid responses B2B makes available, see Figure 13 (a). Ample 
common phrases or responses could be made available to the user through B2B gestures, without 
the need for additional time spent looking at the smartwatch after reading the message. 

9.4.2 Augmented and Virtual Reality. To extend on this, virtual reality (VR) and/or augmented 
reality (AR) applications with at times complex menuing systems could utilize a smartwatch 
as an external input device; see Figure 13 (b). VR applications would often be performed while 
encumbered, through use of the controllers, and while eyes-free, due to the headset. Throughout, 
additional and rapid menuing enabled by B2B interaction could be utilized across applications 
(e.g., gaming and paint/drawing applications) and even for native UI navigation. On the other 
hand, AR applications have future potential in being used throughout our daily lives where mid-air 
and controller interaction may not be suitable. Again, due to the nature of viewing what is being 
displayed and even your surroundings, the B2B interaction with the smartwatch can be seen 
as potentially eyes-free and allow for a range of interactive capabilities. We note that using the 
smartwatch as an input modality for these head worn displays provides an important distinction. 
The B2B commands no longer need to be memorized by the user, as the controls could be displayed 
within the virtual content while the interaction remains eyes-free. This allows for the use of the 
recommended 6-Segments and allows designers of VR/AR systems to provide ample controls to 
users as needed. 
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Fig. 13. In a (lef) we demonstrate quick replies utilizing B2B and marking menu responses. In b (right) we 
demonstrate how B2B on a smartwatch could be used in AR. Note, the interaction could be eyes-free of the 
actual smartwatch while controls are displayed within the virtual content. 

9.5 Limitations and Future Work 
Throughout our work we highlight limitations. The second study’s design utilized a treadmill to 
simulate the walking conditions. While this provides us a means of studying the efect of mobility, 
as is often done in HCI research [26, 44, 61], testing B2B interactions outdoors or in-the-wild 
may produce slightly diferent results. External factors and the need to better understand one’s 
surroundings may infuence the B2B gesture. Second, our sample size limited two factors. First, 
all participants except one were right handed. Thus, our results are focused only on participants 
wearing the watch on their left wrist and interacting with their right hand. We presume the results 
we have found could be mirrored along the centre y-axis, but this remains to be studied. Second, as 
our dataset was relatively small, data-augmentation techniques were needed to create large enough 
training and testing data sets for the machine learning models. While this technique is utilized 
throughout data analysis domains, true raw data can be seen as better. 
Future work in this space will mainly focus in three areas. We believe that exploring the B2B 

gesture past just a start and end segment could allow for the possibility of a swipe text-entry or 
password pattern entry. Second, as we note that B2B provides extended input options over BIS we 
also understand that memorability of options may become an issue. As such, we aim to explore 
this aspect in future work. Lastly, with the knowledge from this work we aim to further explore 
the efect that arm and hand position has on the smartwatch interaction. These areas of research 
may further expand the feasibility of utilizing the bezel and machine learning models to their full 
potential on a smartwatch. 

10 CONCLUSION 
Due to the always-available nature of smartwatches, input and output can occur at any time 
across many usage scenarios. Thus, a simple means to perform commands that allow for precise 
manipulation of on-screen contents is required. Most importantly, this interaction must not interfere 
with the core task being accomplished. Through this work, we have shown that B2B gestures can 
do just this; allowing for simple, quick, accurate, and eyes-free interaction across mobility and 
encumbrance scenarios. This can be utilized on round smartwatches, granting the user the ability 
to rapidly perform accurate interactions to invoke commands. Through the results of this work, 
we suggest that designers focus on utilizing either 4 or 6 bezel segments. Furthermore, we also 
highlight that using a mid-gesture feature, the angle of change made during the B2B gesture, and 
machine learning models can further improve accuracy across our usage scenarios. Through these 
fndings, end users can beneft from an increased smartwatch interaction space which allows for 
use across a range of typical usage scenarios. 
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A ANGLE CHANGE DETECTION ALGORITHM 

Algorithm 1: Angle calculation algorithm 
input : An array of all touch points (containing x and y locations) in a B2B gesture 
output : The angle of change within the B2B gesture. This value can be used within the 

machine learning model’s feature sets or to compare to the minimum/maximum 
allowable angle of change for a B2B gesture. 

/* Set variables for use in algorithm. A granularity value of 5 was 
chosen as optimal after testing a range of values. */ 

���������������� ←− 5; 
�������������ℎ���� ←− 361; 

/* Iterate through touch point array and calculate angle between points 
and test against current angle change. */ 

for � ← 0 to ���(����ℎ����������) do 
��� : 
� ��������� ←− ����ℎ���������� [�]; 
�������� ←− ����ℎ���������� [� + ����������������]; 
��������� ←− ����ℎ���������� [� + ���������������� ∗ 2]; 
/* Calculate the angle between the three points. calculateAngle 

trivially calculates the angle using the tangent function. 
calculateAngle also checks if the calculated value needs to be 
inverted before returning it as tempAngle. */ 

��������� ←− �������������� (� ���������,��������, ���������); 
/* If the newly calculated angle is less than the currentAngleChange 

then we can set it as our currentAngleChange */ 
if ��������� < �������������ℎ���� and touch points used for angle calculation are 
not within the bezel area then 
�������������ℎ���� ←− ��������� 

������ : ���� 

/* After iterating through the touch path, return the calculated angle 
of change. */ 

return currentAngleChange 
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B FEATURE SETS 
Here we provide a table containing all feature sets tested within our machine learning models. 

Feature Set Features 
1 starting position, ending position, starting angle, ending angle, minimum start-

ing ofset, minimum ending ofset, angle of direction change 
2 starting position, ending position 
3 starting position, ending position, minimum starting ofset, minimum ending 

ofset 
4 starting position, ending position, starting angle, ending angle, minimum start-

ing ofset, minimum ending ofset 
5 starting position, ending position, minimum starting ofset, minimum ending 

ofset, angle of direction change 
6 starting position, ending position, starting angle, ending angle 
7 starting position, ending position, starting angle, ending angle, angle of direction 

change 
8 starting position, ending position, angle of direction change 
9 minimum starting ofset, minimum ending ofset 
10 starting angle, ending angle, minimum starting ofset, minimum ending ofset, 

angle of direction change 
11 starting angle, ending angle, minimum starting ofset, minimum ending ofset 
12 minimum starting ofset, minimum ending ofset, angle of direction change 
13 starting angle, ending angle, angle of direction change 
14 starting angle, ending angle 
15 angle of direction change 

Table 1. Feature sets for B2B-swipe classification 
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C EXPANDED MACHINE LEARNING RESULTS 
Here we provide tables with expanded results from the machine learning done in Section 8.2. The 
green in each table highlights the optimal results. 

SVM KNN LR RF 

4-segment Layout 

Optimal Feature Set #1 #8 #1 #8 
Training Accuracy 100.00% 98.96% 99.14% 100.00% 
Validation Accuracy 97.38% 98.83% 97.75% 98.63% 
Testing Accuracy 99.88% 98.61% 97.80% 99.83% 
Baseline Overall Accuracy 97.22% 

6-segment Layout 

Optimal Feature Set #1 #8 #1 #10 
Training Accuracy 99.81% 95.69% 95.31% 100.00% 
Validation Accuracy 89.87% 93.02% 89.84% 91.57% 
Testing Accuracy 94.42% 94.31% 92.21% 96.42% 
Baseline Overall Accuracy 87.50% 

8-segment Layout 

Optimal Feature Set #1 #8 #1 #5 
Training Accuracy 98.84% 89.02% 81.09% 100.00% 
Validation Accuracy 79.78% 82.30% 71.48% 82.86% 
Testing Accuracy 89.12% 80.51% 73.60% 91.25% 
Baseline Overall Accuracy 74.00% 

Table 2. Performance of B2B-swipe classification on Study 1 data. The baseline accuracy is calculated with 
the same way in Study 1’s result analysis. 

Baseline SVM KNN LR RF 

Walking without Encumbrance 
4-segment Layout 90.10% 90.28% 89.58% 89.58% 89.58% 
6-segment Layout 82.10% 85.03% 89.35% 86.03% 88.66% 
8-segment Layout 66.80% 70.88% 75.00% 68.97% 76.21% 

Walking with Encumbrance 
4-segment Layout 88.71% 92.36% 93.75% 86.11% 92.36% 
6-segment Layout 74.10% 78.78% 83.02% 78.54% 80.02% 
8-segment Layout 57.00% 64.41% 67.32% 62.33% 67.71% 

Table 3. Classification performance of the Study1-data-trained models on all the Study 2 data. The baseline 
accuracy is calculated with the same way in Study 2’s result analysis. 
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SVM KNN LR RF 

4-segment Layout 

Optimal Feature Set #7 #13 #7 #1 
Training Accuracy 100.00% 96.68% 97.24% 100.00% 
Validation Accuracy 95.33% 95.34% 95.28% 96.75% 
Testing Accuracy 98.38% 98.32% 98.38% 99.31% 
Baseline Overall Accuracy 90.10% 

6-segment Layout 

Optimal Feature Set #1 #5 #7 #8 
Training Accuracy 99.84% 92.87% 89.85% 100.00% 
Validation Accuracy 87.35% 89.94% 86.41% 89.89% 
Testing Accuracy 91.64% 84.59% 81.02% 94.03% 
Baseline Overall Accuracy 82.10% 

8-segment Layout 

Optimal Feature Set #1 #8 #1 #13 
Training Accuracy 98.05% 86.78% 78.48% 100.00% 
Validation Accuracy 69.09% 73.55% 64.88% 72.27% 
Testing Accuracy 81.45% 71.01% 61.37% 85.20% 
Baseline Overall Accuracy 66.80% 

Table 4. Performance of B2B-swipe classification trained by the Study 2 data of walking without and with 
encumbrance. The baseline accuracy is calculated in the same manner as Study 2’s result analysis. 

SVM KNN LR RF 

4-segment Layout 

Optimal Feature Set #2 #3 #7 #6 
Training Accuracy 97.62% 95.89% 96.05% 100.00% 
Validation Accuracy 92.87% 95.02% 90.16% 94.08% 
Testing Accuracy 96.35% 95.25% 92.25% 97.86% 
Baseline Overall Accuracy 88.71% 

6-segment Layout 

Optimal Feature Set #1 #1 #1 #8 
Training Accuracy 98.66% 89.65% 84.29% 100.00% 
Validation Accuracy 75.93% 80.51% 75.30% 81.56% 
Testing Accuracy 86.47% 78.11% 71.15% 89.25% 
Baseline Overall Accuracy 74.10% 

8-segment Layout 

Optimal Feature Set #1 #7 #1 8 
Training Accuracy 94.67% 80.23% 67.03% 100.00% 
Validation Accuracy 62.36% 66.08% 58.57% 68.94% 
Testing Accuracy 76.06% 63.41% 52.29% 82.96% 
Baseline Overall Accuracy 57.00% 

Table 5. Performance of B2B-swipe classification trained by the Study 2 data for walking with encumbrance. 
The baseline accuracy is calculated in the same manner as Study 2’s result analysis. 
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