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Abstract  
To promote transparency in black-box machine learning systems, different explanation 

approaches have been developed and discussed in the literature. However, training dataset 

information is rarely communicated in these explanations despite the utmost importance of 

training data to a system trained with machine learning techniques. We investigated 

explanations that focus on communicating training dataset information to end-users in our 

work. In this position paper, we discuss our prototype explanations and highlight findings from 

our user studies. We also discuss open questions and interesting directions for future research.   
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1. Introduction 

While machine learning (ML) and artificial 
intelligence (AI) are being increasingly used in 

a range of automated systems, a lack of 

transparency in these black-box systems can be 

a barrier for end-users to interpret the systems’ 
outcomes [28,32]. This lack of transparency 

can also negatively impact end-users’ trust and 

acceptance of the systems [13,36]. 
To increase system transparency, prior work 

has investigated a range of explanation 

approaches for machine learning systems 
[2,7,9,14,36,37]. These explanations provide 

the users with information about the systems 

and their decisions by mostly focusing on 

explaining the decision factors, the criteria, and 
the properties of the outcomes [2,7,9,14,36,37]. 

While evaluations of these approaches 

[4,7,9,16,23,35] have shown them to be 
valuable, previously studied explanations rarely 

communicate information about training data or 

how the system was trained. Since machine 

learning algorithms look at the underlying 
patterns and characteristics of the training data 

to decide on the outcomes, training data and 

training procedures can have a fundamental 
impact on the performance of machine learning 
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systems [8]. For example, biased training data 

can lead to systematic discriminations by the 

systems [5,6,22]. 
Our work focuses on designing and studying 

data-centric explanations that provide end-

users with information on the data used to train 
the system [1]. In this position paper, we first 

summarize how we designed and evaluated 

data-centric explanations that communicate 

information on the training data to end-users. 
We also discuss interesting and important 

future research directions that have arisen from 

our work. 

2. Related Work 

With the goal of increasing transparency in 

machine learning systems, prior work has 

investigated a range of explanation approaches 
that explain the outcomes and/or a system’s 

rationale behind the outcomes. These 

explanations can be categorized into different 
groups based on the focus of the provided 

information. For example, input-influence 

explanations [4,14] describe the degree of 

influence of the inputs to the system output. In 
contrast, sensitivity-based explanations [4,36] 

describe how much the value of an input has to 



differ to change the output. Other popular 
explanation approaches include demographic-

based explanations [2,4], which describe the 

aggregate statistics on the outcome classes for 

different demographic categories (e.g., gender, 
race), while case-based explanations [4,7] use 

example instances from the training data to 

explain the outcome. Prior work also explored 
white-box explanations [9] that explain the 

internal workings of an algorithm, and visual 

explanations [25,39] that explain the outcomes 
or the model through a visual analytics 

interface. Most of these approaches either focus 

on the decision process or the factors in the 

decision process. 
Prior work has also investigated the impact 

of different explanation approaches on end-

users’ perception of machine learning systems 
[4,7,9,16,23,35]. While increased transparency 

through explanations tends to universally 

increase users’ acceptance of the systems 
[13,21,24], the impacts on trust have been 

mixed [9,13,23,26,30,33,34]. Prior work has 

also studied the impact of explanations on end-

users’ sense of fairness, finding that certain 
explanation styles impact fairness judgments 

more than the others [4,16]. 

Given that training data is fundamental to 
the performance of machine learning systems, 

Gebru et al. advocated the concept of 

documenting important information (e.g., 

motivation, creation, compositions, intended 
use, distribution) about datasets before 

releasing them, proposing a standard dataset 

documentation sheet for this purpose [17]. This 
documentation approach is receiving attention 

in the machine learning community [10,40] and 

in some organizations [3,31]. Our research 

focuses on investigating how such information 
could be communicated to end-users and how 

it might impact their perceptions of machine 

learning systems. 

3. Data-centric Explanations 

In this section, we present a high-level 

description of our approach to explanations that 

communicate the underlying training data. We 
also summarize our key evaluation results to 

date. A more detailed discussion of our work 

can be found in [1].  
Our data-centric explanations focus on 

providing end-users with information on the 

training data used in machine learning systems. 

We leveraged Gebru et al.’s datasheets for 
datasets [17] as a starting point to design data-

centric explanations, using an iterative process 

to transform this information into forms that 
were meaningful and understandable to end-

users. Figure 1 provides an overview of one of 

our prototype data-centric explanations. Our 
iterative design and evaluation led us to include 

five different categories of training data 

information (Figure 1: Left). Within each 

category, the prototype explains dataset 
information using a question-and-answer 

format (example is given in Figure 1: A).   

 
 

Figure 1: Overview of data-centric explanations as described in [1]. On the left, we can see the main 
screen with the five categories of information provided in the explanations. On the right (A), we see 
the expanded version of the collection category. (B), (C), (D), and (E) refer to the other categories 
(demographics, recommended usage, potential issues, and general information) respectively. 

   

   

   

   

   



We evaluated our prototype explanations in 
a mixed-method user study with 27 participants 

to assess their potential to impact end-users’ 

perceptions of machine learning systems. Our 

evaluation used a scenario-based approach, 
where we presented participants with a set of 

scenarios describing potential real-world 

systems along with the accompanying 
explanations. The scenarios varied in the 

perceived stakes of the systems (high stakes vs 

low stakes) and the characteristics of the 
training data revealed in the accompanying 

explanations (balanced training data vs training 

data with red flags). Our study also included a 

semi-structured interview session with each 
participant where we probed on issues 

surrounding trust, fairness, and characteristics 

of the system scenarios and training data. 
We found in our evaluation that the data-

centric explanations impacted participants’ 

perceived level of trust in and the sense of 
fairness of the machine learning systems. We 

found that participants had more trust in the 

system and thought the system was fair when 

the explanations revealed a balanced training 
dataset with no errors compared to when 

explanations pointed out issues in the training 

data. Our study also provided qualitative 
insights into the value end-users see in having 

training-data information available. For 

example, participants liked having access to the 

demographics information as they felt it helped 
them identify biases. We also noticed initial 

indications of participant expertise affecting 

attitudes towards the explanations. Machine 
learning experts expected other users to have 

difficulty understanding explanations; 

however, we did not such concerns expressed 
by participants with less prior knowledge of 

machine learning. In fact, almost all 

participants reported that the explanations were 

easy to understand and expressed interest in 
having them available. 

4. Opportunities and Challenges 
with Data-centric Explanations 

Our initial evaluation of the data-centric 

explanation prototypes suggested that end-
users are capable of and interested in 

understanding information about training 

datasets. Our results also point to interesting 

future research directions that we discuss in this 
section. 

While our study findings suggest that 
participants positively receive data-centric 

explanations, some participants also wanted 

additional information about the systems and 

the decision factors, particularly to judge 
fairness. A significant body of research has 

investigated explanations that focus on the 

factors of a decision and the decision process 
(i.e., process-centric information) 

[9,14,25,36,39]. While each of the explanation 

approache has its own benefits, it would be 
interesting to explore ways to combine 

explanations of training data with process-

centric explanations. Doing so would also allow 

us to investigate how end-users might prioritize 
the different types of explanations, as well as 

how the different approaches might 

complement each other. 
We also see opportunities for the 

community to study and discuss different 

evaluation methods. For example, a common 
method for evaluating explanations of machine 

learning systems is to use fictional system 

scenarios (which we also used in our study with 

data-centric explanations) [4,19,29,38,41]. A 
downside of this method is that it requires 

participants to role-play rather than experience 

the systems directly, which in turn impacts the 
ecological validity of the study findings. There 

are a number of challenges with moving 

towards evaluations with real-life systems. For 

example, before we can evaluate our 
explanations in a real setting, we need more 

documented datasets available for real-world 

systems and we need more machine learning 
specialists to buy into the idea of data-centric 

explanations and be more open to incorporating 

data-centric explanations in real-life systems.   
One of the goals for explanations, in general, 

is to ensure fairness in machine learning 

systems by revealing more details about the 

systems and their decision process. However, 
measuring users’ perceptions of fairness is a 

challenging task. While a common approach is 

to adapt and use prior scales proposed for 
organizational justice [4,12,16] (which we also 

use in our study), these scales do not necessarily 

capture the fact that fairness is multi-
dimensional and context-dependent [18,19]. A 

first necessary step in developing more robust 

study instruments is to develop a common 

definition of “fairness”. There is existing work 
in this direction that we can build upon [11,20]. 

A second key evaluation challenge is having 

objective measures to complement the 



commonly collected questionnaire data (e.g., 
self-reported Likert scale values 

[4,7,9,16,19,29]). Developing such measures, 

particularly ones that can be feasibility 

collected, is an important area of future work.   
Finally, we are interested in how 

explanations such as ours might influence the 

perceptions of stakeholders other than potential 
end-users, who are often the target pool in 

evaluations [4,7,16,23,35]. For example, for 

explanations of training data, one interesting 
audience could be companies and organizations 

that want to purchase machine learning systems 

to see whether data-centric explanations might 

impact on their purchasing decisions. Another 
potential audience for the data-centric 

explanations are journalists, who play an 

important role in reporting black-box systems 
and communicating them to the general public 

[15]. We know from prior work that journalists 

have criticized machine learning systems for 
their black-box nature [27]. 

5. Summary 

Explaining the training data of machine 

learning systems has the potential to provide a 
range of benefits to end-users and other 

stakeholders in terms of increased transparency 

of the systems. Our study with data-centric 

explanations found some evidence that such 
explanations can impact people’s trust in and 

fairness judgment of machine learning systems. 

We discussed some important directions for 
future work, which we hope will encourage 

discussion with researchers working on a 

variety of explanation styles and approaches. 
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