
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Backseat Teleoperator: Affective Feedback with On-screen 

Agents to Influence Teleoperation 

Daniel  J. Rea, James E. Young 

University of Manitoba 

{daniel.rea, young}@cs.umanitoba.ca

 

Abstract—We investigate if an on-screen agent that reacts to a 

teleoperator’s driving performance (e.g., by showing fear during 

poor driving) can influence teleoperation. Serving as a kind of 

virtual passenger, we explore if and how this agent’s reactions may 

impact teleoperation. Our design concept is to create an emotional 

response in the operator (e.g., to feel bad for the agent), with the 

ultimate goal of shaping driving behavior (e.g., to slow down to 

calm the agent). We designed and implemented two proof-of-

concept agent personas that react differently to operator driving. 

By conducting an initial proof-of-concept study comparing our 

agents to a base case, we were able to observe the impact of our 

agent personas on operator experience, perception of the robot, 

and driving behavior. While our results failed to find compelling 

evidence of changed teleoperator behavior, we did demonstrate 

that emotional on-screen agents can alter teleoperator emotion. 

Our initial results support the plausibility of passenger agents for 

impacting teleoperation, and highlight potential for more 

targeted, ongoing work in applying social techniques to 

teleoperation interfaces. 

Keywords — teleoperation; human-robot interaction; social 

interfaces 

I. INTRODUCTION  

Robot teleoperation is becoming part of more industries and available 

to more people for everyday use. Robots are used to inspect factories, 

save people in urban disasters, or perform remote medical procedures. 

Non-specialists now also use teleoperated robots more frequently to 

attend work from home, participate in conferences, and even visit 

museums and attractions in other cities. While teleoperation interfaces 

have improved, safely operating a robot is difficult, often due to the 

challenge of understanding the state of the robot and the surrounding 

environment [1]–[3]. Thus, while mistakes such as collisions have 

been shown to often be due to operator error [4], [5], researchers and 

companies have tried to improve operator performance by improving 

interfaces that support safe operation.  

We present an approach to improving teleoperator performance 

that aims to use social feedback to impact an operator’s mental state, 

with the ultimate goal of trying to shape how they drive the robot. 

Specifically, we add an interactive agent to a simple teleoperation 

interface, like a virtual passenger, which reacts to operator driving 

using emotional feedback. Ideally, the operator may feel empathy and 

compensate by altering their driving (Fig. 1). For example, if the agent 

acts scared following a collision, the operator may feel empathy and 

automatically drive more safely to console the agent.  This effect, of a 

person witnessing an emotion and, in response, changing their 

behavior or feeling an emotion themselves,  is well-established in other 

fields (e.g. [6]–[8]). In this paper, we present and explore a proof of 

concept using this technique to shape teleoperator experience with the 

intent to change operation behavior. 

It has become common to explore how robots can use human- or 

animal-like social communication techniques when working with 

people, in an attempt to improve and simplify communication with 

them [9]. For example, autonomous  robots co-located with people can 

use techniques such as expressive movement [10], gaze [11], or even 

animal-like tail movements to convey robotic state or intention [12].  

However, apart from social tele-operation (where a robot is a proxy for 

two remote people interacting), there has been little work done that 

explores how a tele-operated robot can similarly use social techniques 

to support their operators.  As such, we present this paper as a proof of 

concept, where a tele-operated robot aims to use techniques from 

social HRI to impact the tele-operator.  

We designed and implemented a virtual passenger on the tele-

operated robot which reacts to the operator’s driving (e.g., average 

speed, collisions) in real time by displaying an emotion (Fig. 1), with 

the goal of shaping the tele-operator experience and perhaps ultimately 

a) 

Fig. 1a) An on-screen “virtual passenger” agent reacts to 

poor driving by exhibiting anxiety, with the intention of 

impacting the teleoperation experience 

b) the interface displayed during robot teleoperation. 
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their driving behavior. For example, if the agent reacts with a positive 

emotion, such as smiling, the operator may similarly become more 

positive which may reinforce the current driving style. Conversely, a 

negative agent emotion, such as anxiety or fear, might discourage the 

current driving behavior. To explore this approach, we designed two 

agent variants, each using a different affect feedback model, and 

conducted an initial study to investigate how these agents may impact 

the teleoperation experience and operator’s driving. 

Our results indicate that affective feedback passenger agents can 

create emotional change in teleoperators. However, we found no 

compelling evidence that they changed driving behavior in this case; 

our analysis highlights limitations and avenues for improving both the 

agent and study design that will be useful for follow-up work. Overall, 

our work serves as a proof of concept of using affective feedback-

based interfaces in teleoperation, and of using social interaction 

techniques to support operators in general, which we envision will be 

an important research topic for teleoperation moving forward.  

II. RELATED WORK 

A goal of teleoperation researchers is to help people use robots to 

accomplish tasks, such as inspection or search-and-rescue tasks. One 

way to improve how well operators perform these tasks is to reduce 

critical incidents such as collisions, increase awareness, and reduce 

task completion time [3], [13], [14]. Techniques may do this through 

novel interfaces to better communicate information about the robot 

(e.g., [15], [16]) and its surroundings (e.g., [13], [17], [18]). 

Teleoperation mistakes may also be avoided by making it easier to 

control the robot (e.g., [18]–[21]), or leverage psychology to improve 

the operator’s behavior [3], [22], [23]. In this work, we explore how 

social signals may also be employed by teleoperation interfaces to 

shape operator experience and performance during teleoperation.  

Research in traffic psychology has shown that a driver’s 

psychological state can change their driving behavior [24], [25]. These 

changes may be due to the perception of the vehicle itself [26], the 

surrounding environment [27], the driver’s mood [28], or even the 

physical controls of the vehicle [29], [30]. This body of work 

demonstrates that a driver’s mental state or emotions can influence on 

how they drive. We build upon this base of traffic psychology and 

investigate if we can use affective feedback to change an operator’s 

mental state, and therefore change their driving behavior. 

The use of social behaviors and strategies follows an established 

tradition in social robotics, and human-computer interaction in general 

[31]. For autonomous robots, the use of social behaviors has been 

shown to influence group communication dynamics [32], [33], 

dissuade people from performing actions [34], encourage lying to 

authorities [35], or change how people talk [36]. We see these 

examples as demonstrating an opportunity to have robots use social 

phenomena to change and affect interactions and people’s behaviors 

with them [37]. Social behaviors have further been used to 

communicate robot state (e.g., [10], [11], [38], [39]), discussed above. 

We extend and combine these strategies using social behaviors in the 

teleoperation interface to communicate state and simultaneously 

influence the teleoperator themselves. 

Social feedback in vehicle driving situations has been shown to be 

beneficial (e.g., in car interfaces [40]). However, the design of such 

interfaces is non-trivial, and may be distracting [41] and increase 

cognitive load [42], [43]. Our design aims to explore emotional 

displays as a social feedback mechanism, while also exploring how the 

effects may change teleoperation behaviors. 

Social signals and teleoperation are often studied together in the 

context of telepresence. Telepresence research tries to design robots 

and robot interfaces that are used by one person to control a robot and 

interact with another person socially, where the robot is a proxy (e.g., 

[44]–[47]). Our work contributes to teleoperation by using social 

feedback mechanisms in cases where there is no human on the remote 

end: the social interaction is between the operator and the teleoperation 

interface. 

III. DESIGN: INTERACTIVE TELEOPERATION AGENTS 

WITH AFFECTIVE FEEDBACK 

As a proof-of-concept for using affective feedback in teleoperation 

interfaces, we designed two interactive agent personalities to influence 

an operator’s mental state and potentially robot driving behavior. The 

agents monitor teleoperation performance in real time, and based on 

how well the operator is driving, the agents change their facial 

expression. To explore this space, we designed two different agents, 

each with a specific affective feedback and reaction strategy. We note 

that there is a rich potential for future work in applying more complex 

and thorough psychological frameworks to agent design; our goal here 

was rather as an exploratory proof-of-concept.  

Our design was heavily inspired by the video game DOOM (id 

Software, 1993), where the face of the player’s avatar was displayed 

at the bottom of the screen and reacted emotionally to the avatar’s state 

and events in the environment. 

A. Design Strategy: affective feedback 

Our approach to influencing an operator is to leverage affective 

feedback by showing them an emotional reaction to their driving. 

Previous work has found that when a person sees someone experience 

an emotion, the viewer may experience a similar emotion (becoming 

happy when someone around you is happy), often an automatic or 

reflexive response [7]. Alternatively, if the operator develops empathy 

for the agent they may react by trying to support the agent [48], [49]. 

Our goal is to use affective feedback to induce an emotional 

response in the operator. We do this for the purpose of shaping driving 

behavior and teleoperation experience. Our exploration concept is that 

positive emotions will influence behaviors via positive and negative 

reinforcement: the happy face may make the operator feel happy as 

well, providing positive reinforcement for the driving behavior at that 

moment. Conversely, we expect our affective feedback will create 

negative emotions in the operator if the agent reacts negatively. We 

expect this to provide negative reinforcement and dissuade the 

operator from taking similar actions in the future.  

With these two ideas in mind, we designed respective interactive 

agent personas with different affective feedback strategies: an 

“anxious” and a “daredevil" agent.  

B. Personas for affective feedback 

Both personas are based on the same principle of trying to encourage 

certain behaviors with positive emotions and discourage others with 

negative emotions. Specifically, our agents encourage or dissuade 

behaviors based on teleoperation danger, such as collisions with 

obstacles, or driving too quickly. Thus, the reactions act as a social 

interface that conveys safety information to the operator. 



Anxious persona: if an operator drives more dangerously, the agent 

would become more upset or frightened. Conversely, if the operator 

drove safely, the agent would become happier. This was to encourage 

safe driving with happy reactions and dissuade less safe driving. 

Daredevil persona: the agent displays an increasingly bored and 

contemptful face if the operator drives safely but becomes excited if 

driven dangerously. We expected this persona to promote dangerous 

driving by providing positive affective feedback when the operator 

drives dangerously. Further, the negative reactions to safe driving may 

discourage safe behavior. This was designed to explore if a badly 

designed persona could possibly promote dangerous behavior. 

The daredevil and anxious personas both build on the same 

approach of leveraging social feedback to change teleoperation 

behavior, with the different personas helping to explore our strategy. 

C. Measuring teleoperation safety 

This initial proof of concept uses collisions per minute and robot 

velocity as coarse measures of driving safety. Collisions are a direct 

sign of mistakes during operation. Velocity is a measure of safety as, 

in general, driving very quickly is more dangerous: faster speeds give 

operators less time to react and not collide with people, expensive 

equipment, or tumble over a ledge. We acknowledge that a very skilled 

driver may be able to drive quickly without causing collisions, but they 

are still subject to these increasing constraints to reaction time and may 

still make a real (or in our case, virtual) passenger nervous. We 

concede that our choice of these two measures is a limited 

representation of safety – reckless acceleration, near misses, and other 

factors may all contribute to long-term safety. It serves, however, as a 

sufficient and consistent mechanism for our exploration. 

D. Design Implementation 

We designed our interactive agent to be easily visible but to not be too 

distracting. This was done by placing the agent on-screen, overlapping 

the teleoperation video in a salient location while not covering up a 

typically important area (Fig. 1b). Further, to provide an illusion of 

activity for the agent and draw attention [50], we had the agent update 

its expression twice a second.  

Calculating Safety 

In order to define how our agents reacted to teleoperation, we had to 

define what number of collisions per minute and speeds were 

considered unsafe or safe. We ran pilot experiments to calibrate this, 

specifically tuning the change in velocity or collisions per minute 

needed to change the reactions of our personas. Our goal was to find 

thresholds such that the agents provided noticeable visual and 

emotional feedback for both the operator’s initial driving, and after any 

changes they may make to their driving in response to the social 

feedback. Thus, our thresholds are specific to our environment. 

We calculated an independent safety rating for both collisions per 

minute and driving speed, resulting in a value that ranged from most 

safe to least safe. For collisions, we maintained a running “collisions 

per minute” total, which summed collisions occurring in the last 

minute. We used a linear weighted sum to make the agent’s changing 

reaction smoother as older collisions became less relevant: each 

collision was weighted by how much of a minute had passed since the 

collision occurred. For example, a collision that was 30 seconds old 

would contribute to the safety rating as half a collision. Collisions were 

measured automatically by combining data from the robot’s inertial 

measurement unit and the joystick used to drive the robot. 

Velocity-based safety was calculated based on the average velocity 

over the last minute. We defined “not safe” driving to be anything over 

a threshold speed (25% of robot max speed). Excess velocity after this 

threshold was then used to determine the safety rating. As discussed 

earlier, we did not want to react to maximum speed driving with no 

collisions as completely unsafe. Thus, max velocity safe driving (no 

collisions) would only progress the personas to a middle safety state 

(Fig. 2, neutral). 

The final safety rating was the least safe of the two measures, 

collisions per minute and velocity, recalculated each frame.  

Selecting a Reaction 

Our interface maps the safety rating, ranging from a minimum safety 

rating to a maximum rating, to a reaction (Fig. 2). We first ordered the 

persona’s expressions from least safe to safe. Our safety rating is then 

used as an index in between these expressions; for example, a safety 

rating of 50% of the maximum safety rating will pick a neutral 

expression (half way between not safe and very safe expressions). A 

safety rating of 75% would pick a slightly smiling face, in the case of 

the anxious person (Fig. 2, top).  

Our expressions are taken from video data of people making pre-

defined emotional reactions starting from a neutral expression [51], 

[52]. The personas are formed by reversing the “not safe” emotion 

video to start from an emotion and end with a neutral expression. We 

can then transition to the “safe” emotion video by moving between the 

neutral expressions in both videos. 

Thus, each expression in our dataset is a frame in this linked video 

–  a video of an unsafe reaction, transitioning to a neutral reaction, 

transitioning to a safe reaction. Our safety index is mapped to a frame 

in this video, which is displayed in our interface (e.g. Fig. 1b). As the 

safety rating changes, we simply display new frames from the video, 

providing a smooth emotion transition. If the safety rating stays the 

same, a nearby, similar frame of video is used to show small movement 

in the agent, such as slightly moving the corners of their lips or eyes. 

This creates an illusion of activity and livelihood to the agent, and may 

anxious happy neutral 

… … 

happy neutral upset 

… … 

very safe 

safety rating 

not safe 

Fig. 2. The range of expressions, mapped from not safe to 

very safe driving behavior. The real-time driving safety 

rating indexes into a collection of faces displaying emotion. 

Top row: anxious persona, bottom row: daredevil persona. 



draw attention to the agent itself [3]. Our emotion video data is from 

the Extended Cohn-Kanade emotional face dataset to pick our faces 

[51], [52]. In our anxious persona, we combined “fear” and “disgust” 

for negative reactions and used “happy” for positive reactions. In our 

daredevil persona we combined “contempt” and “disgust” for negative 

reactions and used “happy” for positive reactions. 

IV. EXPERIMENT 

Our experiment’s goal was to investigate the effects of our affective 

feedback interfaces for teleoperation on the operator’s perception of 

the robot and their driving behavior. To do so, we created a driving 

task: an obstacle course that would test a participant’s ability to control 

the robot. Participants drove the robot through an obstacle course with 

the two interactive agents and a base case, and, in each trial, we 

measured their driving performance, their perceptions of the robot, and 

their driving using self-report measures. 

A. Task  

Participants were tasked with remotely driving a robot around an 

obstacle course. The course consisted of a grid of obstacles and a series 

of arrows that had to be followed, with each arrow indicating a 90 

degree turn around a corner (heavily inspired from previous work 

[22]). Participants would drive 3 laps around the course, with the first 

lap being treated as a practice run. We instructed participants to drive 

as fast as they felt comfortable, while trying to avoid any collisions 

with obstacles along the course. 

We designed three similar obstacle courses for the within-

participants study; while the obstacles did not move between trials, the 

arrows leading them through the course did change. Each course had 

similar length and number of turns to maintain difficulty across 

conditions. Further, courses were designed to have a mix of straight 

sections and sequences of turns to test different driving scenarios.  

B. Manipulations 

We tested three conditions. The two interactive agents, anxious and 

daredevil personas, and a numeric-display base case. We struggled to 

develop a base case, as our first inclination was to simply have an 

interface with no feedback. However, this would compare two things: 

availability of driving feedback, and, emotional encoding. By 

including the numeric case, we can keep the feedback only without the 

affect. This base case displayed the same information encoded in our 

personas but had no social or emotional element (Fig. 3). Each persona 

started the condition showing the “very safe” reaction. This allowed us 

to test whether just the information alone could influence an operator’s 

driving in comparison to the social encoding. 

Our experiment used a within-participant design; each participant 

used all interfaces: anxious persona, daredevil persona, and the 

baseline. Condition order was fully counterbalanced across 

participants, while course order was fixed for all participants. 

C. Measures 

Before the experiment, we administered a demographics questionnaire 

that recorded and age and gender. We further inquired about any 

experience they have for activities similar to robot teleoperation: 

experience playing video games, experience driving vehicles, 

experience with remote control robots (quad copters, RC cars, etc.), 

and participation in any other robot experiments.  

In each condition we recorded the time it took to complete the task 

and number of collisions. During the experiment, we also logged robot 

velocity and the current safety rating of the participant’s driving. The 

robot’s movement data was recorded as a potential way to measure 

changes in operation. 

To understand changes in self-reported workload, we administered 

the NASA TLX questionnaire [53]. Further, we measured the 

operator’s emotional state on a common two dimensional emotion 

model (valence and arousal [54]), with the Self-Assessment Manikin 

instrument (7-point variant, from -3 to +3) [55]. To measure changes 

in perception of the robot’s operation, we additionally asked 

participants to rate the robot’s overall safety for driving, and 

informativeness of the safety indicator interface.  The post-condition 

questions included free-form feedback areas for participants to give 

positive, negative, or other feedback that they felt was appropriate. 

In our pilot studies, we noticed participants did not pay attention 

to the safety interfaces (including the base case), perhaps due to the 

study being in a safe lab environment. To encourage operators to pay 

attention to the safety information, we created a distractor question 

about the information displayed: we ask operators to choose “the face 

shown most often while you drive,” or “the average velocity you 

thought you were closest to most often.” Then, we show a range of five 

faces used by the agent during the condition, spread from negative to 

positive emotions. For the baseline, five percentages of max velocity, 

spaced from 20% to 100% are shown. This question was not for 

analysis, but to make participants pay attention.  

After the experiment, we asked participants to rank each interface 

for preference. There were also optional short answer blocks for 

comments, similar to those described above in the post-condition 

questionnaire. Finally, we administered a questionnaire from prior 

work that measures susceptibility to emotional responses when 

exposed to different emotions, from [56], which we thought may help 

control for variance in our observations. 

D. Procedure 

Participants are welcomed and told we will be exploring ways to 

convey safety information to robot operators and investigating how 

that may affect how safely they drive the robot. We explicitly tell 

participants we are using collision information and robot speed to 

gauge driving safety, and that this information will be displayed via a 

summary as a facial expression. We do not, however, state which 

Fig. 3. Our baseline interface simply displayed the safety 

information without social or emotional cues. The text reads: 

“collisions/min: 2.8    velocity: 68.6%” 



expression correlates to what driving safety level. The consent form 

and demographics questionnaire are filled out at this point. 

Each persona is first introduced and explained using a paper 

representation, with multiple expressions shown (similar to Fig. 2, but 

with positive emotions aligned to the same side). We additionally 

introduce the baseline system (Fig. 3), and explain that the information 

it displays is the exact same information used by the system’s 

algorithm to decide what face is shown (words like system and 

algorithm are used, emphasizing the mechanical nature of our 

interface, and not implying our agent is intelligent).  

The participants are instructed that their task is to drive through the 

obstacle course as fast as they feel comfortable while trying to avoid 

all obstacles. After course instructions and controls are demonstrated, 

participants are given one lap to practice. Afterwards, they drive two 

laps with the same agent and course, during which data is recorded. If 

necessary, after the practice lap, obstacles are replaced in case they 

were pushed around, and the program is restarted to reset the agents to 

a “very safe” state. From pilots, we found each lap of our courses took 

around one to five minutes a lap, depending on participant skill. We 

found participants took around two to three extra minutes on their 

practice laps as well, resulting in roughly 15 to 54 minutes of driving 

per person. 

Before the two laps where data is recorded in each condition, we 

explain the distractor question to participants, so they know to pay 

attention to the agent. After the laps are complete, the distractor 

question and other post-condition questionnaires are administered. The 

next obstacle course is prepared, the new on-screen interface 

(interactive agent or baseline) is explained, and the participant is given 

a practice lap before continuing.  

At the end of the experiment, participants are given the post-

experiment questionnaire (interface ranking, final comments), and 

brought to see the course and robot in person. The details of the 

experiment are explained, as well as why we were purposefully vague 

on how the agents each conveyed the safety information. After any 

questions were answered, the experiment was over.  

E. Implementation 

Our robot was a Clearpath Jackal robot running ROS Indigo. It was 

limited to 50% of its maximum forwards and backwards speed, and 

75% of its maximum turning speed as pilot testing showed our robot 

moved too quickly in our smaller environment. A PointGrey Flea3 

camera was mounted near the front of the robot such that the robot 

itself was not in the view of the camera. The camera was run in 

640x480 resolution (Fig. 1b) at 45 frames per second over the 

institution’s Wi-Fi network. The data handling and networking was 

handled through multi-threaded python code. 

Participants were seated at a desk and allowed to adjust the setup 

to be comfortable. They used a 4K 27-inch monitor, with the interface 

maximized (black bars were used for letterboxing). They controlled 

the robot with a joystick (Microsoft Sidewinder USB) on the desk in 

front of them. The client-side was programmed in C#.  

In our pilot studies we found that the robot was able to move our 

obstacles easily, hindering the study. To make the obstacles more 

stable, they were each weighted with 14 KG of weights, placed on 

rubber friction mats, which in turn were placed on carpet tape stuck to 

the ground. With this much resistance, the robot could not easily push 

obstacles out of the way: operators needed to navigate the obstacle 

course correctly. To further emphasize collisions, our system would 

make the whole screen flash red briefly (1/3 of a second) when a 

collision was detected. 

F. Analysis 

We investigate the two components of our affective feedback strategy: 

a) how the agent behavior impacted operator mental state (if we 

induced an emotional response), and b) how this impacted the 

operator’s driving behavior and teleoperation experience. The emotion 

analysis included the five emotion-susceptibility questionnaire 

subscales as covariates, to control for how not everyone is affected by 

displays of emotion equally. 

For performance measures, we analyzed collisions over time 

(number of collisions divided by completion time, in minutes), 

perceived workload (TLX sum and its subscales), our perceived safety 

and informative scales, and the safety rating calculated by our system. 

Results 

We recruited 23 participants by advertising with posters around our 

local university area. One participant did not complete the experiment, 

resulting in 22 participants (mean age of 28, standard deviation of 10.7 

years; 10 female). 

To understand how our interfaces may have changed operators 

emotionally, we ran a repeated-measures ANOVA on reported 

measurements for valence and arousal changes, with the five emotion-

susceptibility questionnaire subscales as covariates. We found a 

statistical effect of the interface on self-reported valence (a measure of 

pleasure or displeasure, F2,32=4.1, p<.03, η2=.20), and arousal (a 

measure of activation, or sleepiness, F2,32=3.4, p<.05, η2=.18). Post-

hocs with Bonferroni correction found the daredevil agent produced 

higher self-reported valence than the anxious agent (p<.02, mean 

difference=-.32 points, 95% CI [-.59, -.05]). Other pairwise 

comparisons were non-significant. 

Marginal means showed the daredevil case had the highest valence 

(mean=0.36, 95% CI [-0.07, 0.80]), followed by the numeric case 

(mean=0.27, 95% CI [-0.24, 0.79], with the anxious agent (mean=.05, 

95% CI= [-0.44, 0.53]), having the lowest valence. For arousal, we 

found the numeric interface had the highest (mean=-0.68, 95% CI [-

1.34, -0.02]), followed by the daredevil interface (mean=-0.82, 95% 

CI [-1.35, -0.29]), with the anxious case have the lowest arousal 

(mean=-0.86, 95% CI [-1.30, -0.42]). See Fig. 4 (note for legibility, we 

have enlarged the graph, but the scale ranged from -3 to +3). 

Fig. 4. The reported emotions of operators after using each 

interface. Anxious interface appeared to lower valence more 

than the numeric case, while daredevil had lower arousal than 

the numeric (from contrasts). Grand mean differences are 

p<.05. Error bars show standard error. 
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There was an interaction effect between the subscale on 

susceptibility to happy emotions and the interface (F2,32=4.4, p=.02, 

η2=.22). We present the graph of the interaction (Fig. 7) but note there 

were few participants for each valence rating, so we caution drawing 

conclusions from it.  

We performed repeated measures ANOVAs on the performance 

measures listed above. The effect of the interface on collisions over 

time (CPM) was non-significant (F2,42=2.6, p=.085, η2=.11). Marginal 

means showed the numeric case had the most collisions (mean=1.9 

CPM, 95% CI [1.6 CPM, 2.2 CPM], followed by the anxious agent 

(mean=1.8 CPM, 95% CI [1.5 CPM, 2.2 CPM]), with the daredevil 

agent interface having the fewest (mean=1.6 CPM, 95% CI [1.3 CPM, 

1.9 CPM]) – see Fig. 5.  

We wished to test if the interface may have improved operation 

over time, as exposure to the reactions potentially affected driving 

behavior as time passed. We ran a 2x2 ANOVA (interface versus 

time), with sample points at 10% intervals throughout the experiment. 

This was not found to be significant (p>.05) – see Fig. 6. 

The agent’s reactions may have been used by operators to inform 

themselves of their performance, but we found no statistical effect of 

the interface on perceived performance (F2,42=2.7, p=.08, η2=.11) – 

note the TLX performance scale is reverse-coded and higher scores 

mean worse perceived performance. Marginal means showed the 

daredevil case made participants feel they performed the best 

(mean=7.8 points, 95% CI [6.1 points, 9.5 points], followed by the 

numeric case (mean=8.8 points, 95% CI [6.9 points, 10.7 points]). The 

anxious agent interface made had participants feel they performed 

worst (mean=9.4 points, 95% CI [7.5 points, 11.3 points]) – see Fig. 8.  

 The perceived informativeness of the interface had a statistical 

difference (F2,42=3.9, p=.03, η2=.16) Marginal means showed the 

numeric case was perceived to be the most informative (mean=14.9 

points, 95% CI [12.8 points, 16.9 points], followed by the anxious 

agent interface (mean=13.9 points, 95% CI [11.7 points, 16 points]). 

The daredevil agent interface was considered the least informative 

(mean=12.8 points, 95% CI [10.3 points, 15.3 points]) – see Fig. 9.  

All other tests and interactions were found to be non-significant. 

V. DISCUSSION 

Our results found differences in self-reported valence and emotion 

after using our interface, implying that their emotions did change 

somewhat for each interface. We found inconclusive evidence for the 

numeric case to have a higher collision per minute rating than the 

social interfaces, and that collision rates may be stable over time, 

though future study is required to confirm this. Although we did not 

detect a statistical difference, our results indicating potential 

differences merit further inquiry. Daredevil had the lowest average 

collisions per minute and was perceived by operators as enabling the 

better performance of our three interfaces. The anxious interface had 

fewer mean collisions per minute than the numeric case, but was seen 

as having worse performance. The numeric interface was the most 

informative, followed by the anxious and then daredevil interfaces. 

The changes in valence and arousal demonstrate that an on-screen 

agent using affective feedback of safety ratings can change an 

operator’s mental state. Interestingly, when inspecting average safety 

scores, we found that people, on average, drove in a way that our 

system rated as unsafe. Thus, people would have seen primarily a 

negative reaction from the anxious agent, and a happier face for the 

daredevil agent. This aligns with our background theory and results: 

the anxious interface (a lower valence emotion than happiness [54]) 

was reported as making participants feel lower valence overall, and 

happiness (a higher valence emotion [54]) had a higher valence. Thus, 

we can see the expected emotion divide (happy, sad) between 

daredevil and anxious, acting as a manipulation check that viewing 

emotions in a teleoperation interface can influence the operator’s 

emotions to become more similar to the displayed affective behavior. 

While the differences were small, we note that the interaction overall 

Fig. 7. The interaction of an operator’s susceptibility to displays 

of happiness, measured by questionnaire, and valence, by 

interface. The interaction is significant (p<.05) 

Fig. 5. The average collision density during operation 

depending on which interface operators saw. Means are not 

significant (p=.085). Error bars show 95% CI.  

Fig. 6. Collisions per minute sampled at 10% intervals 

through the study. High variance in our sample means we 

could not detect a difference (p>.05). 



was very short. Small differences over time, however, may amount to 

a longer-term effect, but more research is needed to confirm this. 

Our theory that positive emotions would encourage the behavior at 

the time of the affective feedback was not supported by our data. It is 

possible the emotional response itself was not strong enough for this 

effect to take place. Another possibility is that the daredevil persona 

helped people relax; when colliding, the reaction on the face was 

happiness, which may have reassured the participant. If they saw the 

anxious persona look unhappy and experienced our observed negative 

valence shift, instead of discouraging the behavior, the feedback may 

have made them tense up and perform worse. This may also explain 

why self-reported performance was higher for the daredevil persona: 

the positive reaction upon mistakes made participants think they were 

not doing poorly. Certainly, the intricacies of how participants reacted 

to the emotion needs further research for clarification. Further, this 

highlights the importance of a more rigorous model for creating 

personas, which would enable us to more concretely and specifically 

reflect on components of the agent’s reaction.  

Even over a short period of operation, such as 30 minutes, a 

difference of 0.3 collisions per minute (the same difference between 

our numeric and daredevil case) results in an extra 10 collisions. 

Further, as per Fig. 6, the average difference in collisions per minute 

between interfaces may be stable over time. Large variances, however, 

stop us from being able to reach strong conclusions, and require further 

research. It is interesting that the numeric interface appears to have 

higher collisions per minute. This may be due to the mental work 

needed to read and understand numeric data, which may take more 

attention away from actual operation. However, we stress these 

collision results are not statistically significant, and further study is 

needed to confirm if our measures are correct. 

The daredevil interface was seen as least informative, which may 

be due to it being unintuitive: after seeing a more positive face after a 

collision, operators may have thought the system was not working 

properly. However, all three interfaces were ranked similarly (Fig. 9), 

which may suggest that social interfaces for communicating 

information may be feasible when the operator does not need a 

granular understanding of data, such as in our case. 

While we motivated our design with existing social psychology 

theory, social interfaces have sometimes struggled in industry. 

Microsoft’s Clippy is one example: critiques of Clippy point out that 

Clippy breaks social rules, such as offering help when it is not asked 

for and not remembering people’s decisions [57]. Others have argued 

virtual companions should be more agreeable (such as our daredevil 

showing happy faces during bad driving), or offer alternative solutions 

to a difficult task [58], [59]. Our agents were only reactive and did not 

try to provide advice to users; this may be why we did not witness 

similar negative feedback to our agents. It is possible that virtual 

agents helping in teleoperation may have different social rules applied 

to them and is an important avenue for future work. 

VI. LIMITATIONS AND FUTURE WORK 

Our results raised many questions for future work. Overall, we aimed 

for external validity and used an algorithm that could be applied to 

robots right now, but that made it difficult to evaluate the nuances of 

the social interfaces. For example, a future study could look at if the 

agent even needs to properly react to current driving behavior: it could 

always look annoyed, or happy. This would remove the variable in our 

studies where drivers of different skill levels would see, on average, 

different agent reactions. If certain agent reactions would have a 

stronger effect than others, we would have difficulty measuring those 

effects as our operators had different levels of exposure to each 

reaction.  

The agents were described primarily as a tool, or algorithm. It is 

possible that this reduced the anthropomorphism effect and reduced 

the impact of the agent’s reactions. If operators thought the agent was 

intelligent, it is possible they would react to the agent in a more social 

way. Further, the agent could be presented in multiple different ways: 

as a boss, as a coworker, as the robot’s intelligence, etc. This change 

in agency and relationship with the operator could further affect their 

reactions to the agent’s displayed emotion. 

The emotion susceptibility questionnaire we used had five 

subscales, which proved difficult to use with a smaller participant pool. 

With our participant numbers, adding all scales as covariates may lead 

to overfitting for our model. Due to the direct link between emotion 

susceptibility and viewer response in the literature, we believed 

including the covariates for our emotion data (valence and arousal) 

was necessary. However, we opted to use a simpler model in our 

performance analysis for fear of overfitting.  

We witnessed a large amount of variance between participants. 

This may be due to our course being overly difficult, such as having 

little room for the robot to make turns and operators having difficulty 

visualizing the robot in the remote area. Anecdotally, we witnessed 

operators who performed well, but got stuck in difficult situations on 

occasion, resulting in numerous collisions during a single event, 

perhaps increasing the variance in our results. While we pilot tested 

Fig. 8. Self-reflection performance values by operators were 

not significant (p=.08). Performance is reverse-coded (higher 

means worse perceived performance).  

Fig. 9 The perceived informativeness of the interfaces was 

different (p<.5). Error bars show 95% CI. Interestingly, the 

difference with the numeric case was slight, despite very 

different visualizations. 



extensively to calibrate our agents, we still believe that the course 

difficulty may have confounded our results. We recommend future 

work carefully consider and calibrate the difficulty of their study.  

Our choice of baseline may contribute to our results. We opted to 

design our baseline to have information parity with our affective 

feedback agents: all interfaces, on some level, presented collision and 

velocity information. However, by displaying safety information 

numerically, we likely increased the mental processing needed to 

understand the presented information as compared to the affective 

feedback from our agents. To reduce this, we could have a baseline 

with no information displayed, or just a neutral face displayed, or to 

use simple text labels for the emotional state (e.g., “safe”, “unsafe”, 

“very unsafe”, etc.). Thus, our baseline is not a truly neutral control 

condition, but enables us to compare social to non-social interfaces 

without the confound of difference in available information. 

One major limitation we believe is the presence of the researcher 

in the room while the participant was piloting the robot. As the 

researcher was an authority figure and a stranger, the operator may 

have suppressed their reactions to appear more professional and under 

control to the researcher. The researcher’s own subtle and 

subconscious body language may have provided a stronger social 

signal to the operator than the agent itself. Thus, we recommend 

removing the researcher from the room in future studies. 

VII. CONCLUSION 

We presented a proof-of-concept for using affective agents to shape 

teleoperation experience and highlights the potential for using social 

HRI techniques between the teleoperated robot and the operator. Our 

results highlight using social interfaces designed to leverage affective 

feedback can indeed change a teleoperator’s mental state, and its 

design impacts how effective they felt the feedback was for 

communicating state. Further work is needed to leverage change in 

emotional state to improve actual teleoperation performance. Our 

results pave the way for more research into applying other 

psychological and social phenomenon to teleoperation. 
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