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Computer Algebra Systems and matrix-based mathematics packages pro-

vide sophisticated functionality to assist with mathematical problem solv-

ing. However, despite their widespread adoption, little work in the hu-

man–computer interaction community has examined the extent to which

these computational tools support expert problem solving. In this article,

we report findings from a qualitative study comparing and contrasting the

work practices and software use of practicing researchers in mathematics

and engineering who share the goal of developing and defending new

mathematical formulations. Our findings indicate that although compu-

tational tools are used by both groups to support their work, current

mathematics software plays a relatively minor, somewhat untrusted role in

the process. Our data suggest that five primary factors limit the applicability

of current mathematics software to expert work practices: (a) a lack of

transparency in how current software derives its computed results; (b) the

lack of clearly defined operational boundaries indicating whether the system can

meaningfully operate on the user’s input (whether expressions or data);

(c) the need for free-form two-dimensional input to support annotations, diagrams,

and in-place manipulation of objects of interest; (d) the potential for

transcription problems when switching between physical and computational
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media; and (e) the need for collaboration, particularly in early stages of problem

solving. Each of these issues suggests a concrete direction for future

improvement of mathematics software for experts. These findings also

have more general implications for the design of computational systems

intended to support complex problem solving.
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224 Bunt, Terry, Lank

1. INTRODUCTION

Computer visionaries such as Vannevar Bush and Douglas Engelbart have long

viewed computational tools as a means to augment human intellect, allowing one to

solve existing problems faster while opening the door to solving problems previously

beyond one’s reach (e.g., Bush, 1945; Engelbart, 1968). One of the ways computational

systems can achieve these ideals is by providing tools that enable one to work at high

levels of abstraction when solving a problem. For example, domain-specific languages

such as Logo, SQL, or Verilog allow one to work in languages that are much closer to

the problem domain compared to general purpose programming languages. Similarly,

photo editing tools like Adobe Photoshop enable an individual to work efficiently

with operations that would take minutes or hours to perform in a physical darkroom,

with the added benefit of being able to undo actions that do not turn out as hoped.

In short, by providing higher level abstractions to problems, computational tools free

individuals to focus on solving the problem at hand rather than the tedious, low-level

operations that would otherwise be needed to complete the task.

In this article, we consider a class of software that has long held the promise

of enabling people to work with higher level abstractions, namely, mathematics

software. This class of software includes Computer Algebra Systems (CAS), which

enable users to rapidly solve, simplify, and otherwise manipulate a wide range of

symbolic expressions (e.g., Macsyma, Maxima, Maple, and Mathematica); and tools

dedicated to matrix manipulations (e.g., Matlab and Octave). Although there exists

a wide range of other mathematics software (e.g., statistics software, software for

scientific computation, etc.), in this article, we focus on CAS and software for matrix

manipulations.

Although mathematics tools are widely used (e.g., Maple sold close to 800,000

new licenses when a new version was released in 2005; Maplesoft, 2005), there has

been little work to understand how they augment mathematical problem-solving

practices by professional users. Instead, prior work in this space has focused primarily

on CAS use in educational settings, where students use the tools as part of the

mathematics curriculum (e.g., Artigue, 2002; Heid, 1988; Leinback, Pountney, &

Etchells, 2002; Pierce, Herbert & Giri, 2004). Although this prior work provides

insight into how the tools support learning, it is unclear whether previous findings

are applicable to computational tool use by highly knowledgeable mathematicians

solving new problems, a context in which this type of software has the potential to

substantially impact cognitively demanding tasks.

This article reports the results of research examining the practices of working

professionals and researchers for whom mathematics is an integral, if not central, part

of their work. We performed semi-structured interviews of 20 researchers working

in a university research setting to understand our participants’ daily practices, the

full range of tools they employ, and the artifacts they rely on and produce as part

of their work. The interviews were conducted in the participants’ places of work,

where we took photographs of both their work environments and their artifacts to

help us better understand their overall goals, workflow, and use of tools and media.
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Math Software in Expert Problem Solving 225

Although our primary motivation was to understand how mathematics software fits

into their practices, our study sought to form a holistic view of our participants’

work practices to uncover why these software systems are, or are not, used to solve

real-world problems.

Our study participants can be classified into two general categories—theoreticians

and engineers. In an earlier publication, we reported how theoreticians perceive and

use mathematics software in their day-to-day work (Bunt, Terry, & Lank, 2009). In

this article, we elaborate on these findings and complement them with data from a

second group of participants, engineers.

The theoreticians who participated in our study work in the area of theoretical

mathematics with the goal of producing new mathematical knowledge. In contrast,

the engineers employ mathematics to build and validate mathematical models and

controllers of physical entities and phenomena.

Despite the different uses of mathematics between the two groups, our study

reveals a number of clear, shared themes in the perceptions and uses of computational

mathematical tools across the groups. As an example, we found that both groups, as

a matter of principle, generally distrust the results of mathematics software, and thus

feel the need to validate the system’s output. Such recurrent themes provide some

generalization to our earlier findings arising from the study of the theoreticians alone.

At the same time, the differences discovered between the two groups’ use of math-

ematical software enriches our understanding of the various dimensions one should

consider in the design and evaluation of this general class of software. For example, in

contrast to the theoreticians, the engineers in our study use mathematics software to

build complex simulations. Features that support debugging and verification of these

simulations would thus be of great value to the engineers, while of comparatively

little value to the theoreticians.

To summarize our results, we found that mathematical tools are used to perform

the following tasks:

� To find solutions or simplifications to long, ‘‘tedious’’ expressions. As an exam-

ple, a user may input a long, complex symbolic expression and ask the system to

simplify it. Both groups take advantage of these features, though theoreticians

typically have greater need for this type of capability.
� To search through large solution spaces for examples or counterexamples of

potential solutions to a problem. A small number of participants representing

both groups occasionally engage in this activity.
� To perform rapid, successive manipulations of expressions to understand their

nature or to detect patterns. A small number of users across both groups indicated

using computational tools for this purpose.
� To create simulations of models of the phenomenon under study (engineers).
� To make sense of the large data sets that arise from model validation (engineers).

These tasks range from those that are quite straightforward to perform with the

mathematics software (e.g., simplification), to those that are quite involved, such as
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226 Bunt, Terry, Lank

data analysis and the creation of simulations and models. However, despite these

uses of mathematics software, our findings reveal that our participants choose to do

a large amount of their work by hand using physical media. Their reluctance for using

mathematics software, and their corresponding preferences for using physical media,

arise primarily from the following issues in current offerings:

1. The Lack of Transparency: Given the goal of discovering, producing, and proving

new mathematical formulations, there is a concomitant need to be able to

communicate and defend these formulations. However, the computational tools

used by our participants lack sufficient transparency in communicating many of

their internal processes. Specifically, given input and a command (whether the

input is purely symbolic in nature, or a combination of mathematical models

and data), the mathematical software produces an output, but often without

accompanying information explaining how that result was derived. Without a

clear explanation of how the system’s output was derived—an explanation of the

intermediate steps—mathematicians are not always able to argue or demonstrate

the correctness of their solution, a stringent requirement of their work.

2. The Lack of Clearly Defined Operational Boundaries: Current mathematical software is

able to perform operations on many different types of mathematical expressions

and data, but our participants indicated that they cannot always predict whether

the system can properly operate on their input, making the output of the software

sometimes suspect. In essence, our participants cannot produce robust mental

models of the system’s capabilities and specific limitations.

3. The Lack of Free-Form Two-Dimensional (2D) Representations: Although tools such

as CAS could be used in various phases of the mathematical problem-solving

process, we found that the software’s rigid input/output format can also deter

its use, especially in earlier problem-solving phases where mathematicians tend

to move fluidly between informal notes, sketches, formulae, and mathematical

arguments.

4. Transcription Problems: Moving between physical media and computational media

requires transcribing expressions into a format the computer can understand.

A number of participants commented that this process can be error prone,

with errors difficult to diagnose. Eliminating physical media is currently not

an option because of the unique advantages it confers during early phases of

problem solving.

5. Limited Support for Collaboration: Mathematics is often a highly collaborative

activity with individuals working around a shared whiteboard or piece of paper.

Collaboration using physical media is very natural, whereas collaboration that

takes place around a shared computer console requires coordination of physical

input devices. These requirements reduce the feasibility of using computational

tools for collocated, collaborative work.

Collectively, these findings signal clear issues in current mathematics software

that limit their potential for effectively and seamlessly supporting work with a strong
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Math Software in Expert Problem Solving 227

mathematical component. These findings also suggest paths forward for improving

the design of mathematics software for professional use, a topic that we expand on

later in this article.

The remainder of this article is structured as follows. We contextualize this

research by first considering previous work in the area of mathematical tools. We

then describe our study design and detail its findings. We contrast these findings

with those from educational research, derive a set of implications for the design

of mathematical software for professionals, and discuss our study’s limitations. We

conclude with directions for future research.

2. RELATED WORK

A wide range of software, both commercial and experimental, has been de-

veloped to support mathematical work. As mentioned in the Introduction, for the

purposes of this article, we are most concerned with two classes of such software: CAS

and matrix-based mathematics software. CAS support symbolic computation involv-

ing mathematical expressions. Examples of popular CAS offerings include Maple,

Mathematica, and Maxima. The second class of software focuses on matrix-based

mathematics and includes packages such as Matlab and its open source equivalent,

Octave. Other classes of mathematical software, such as S, R, SPPS, or JMP (which are

more geared toward data processing and statistics), are beyond the scope of this work.

Past human–computer interaction research has examined these two classes of

software from two different perspectives: through laboratory studies assessing the

general feature sets offered by this type of software (including expression entry

capabilities), and via studies examining the impact of CAS in educational contexts.

2.1. Assessing General Feature Sets of Mathematical Software

In a laboratory evaluation involving high-school students as participants, Oviatt

and colleagues studied the impact of different media on mathematical problem-

solving performance (Oviatt, Arther, & Cohen, 2006; Oviatt & Cohen, 2010). The

experiment examined students’ ability to solve math word problems with four types

of interfaces: pen and paper, an Anoto pen, a pen-based Tablet PC, and a graphical

equation editor. The authors found that problem-solving performance was better

with pen and paper or the Anoto pen compared to the other two conditions and that

the performance differences were particularly dramatic for students with low prior

math knowledge. Drawing on Cognitive Load Theory (vanMerrienboer & Sweller,

2005), the authors attribute their results to the familiarity students have with entering

and manipulating expressions with physical media, leading to comparatively higher

cognitive load when using digital media for these tasks. The results of this study also

suggest that physical media might better support utilizing and moving between the

different representational forms required for this type of problem solving (e.g., prose,

diagrams, and formulae).
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228 Bunt, Terry, Lank

Given mathematical expressions’ two-dimensional nature and use of special

notation (both of which push the limits of traditional keyboard and mouse input),

other studies have focused more specifically on the problem of entering mathe-

matical expressions. For example, Anthony, Yang, and Koedinger (2005) compared

the efficiency with which users could input expressions using four different input

techniques: pen-based entry, speech, pen plus speech, and keyboard and mouse using

Microsoft’s equation editor. The authors found that expression entry with a keyboard

and mouse was significantly slower and more error prone than the other three

conditions, particularly for equations with a large number of mathematical symbols

(as opposed to equations consisting primarily of characters found on the keyboard).

On a post-session questionnaire, participants also rated pen-based entry higher than

the other conditions for its suitability to entering mathematical expressions.

Expression entry has also been examined in the context of pen-math systems,

systems that use a Tablet PC as an interface to mathematics software. The goal

of these systems is to create a more natural input interface. For example, LaViola

(2007) and Labahn et al. (2008) both assessed a user’s ability to enter expressions,

correct system recognition errors, and solve a number of small problems with pen-

math systems. The evaluations have shown that expression recognition and correction

can be challenging in such systems but that users are able to complete their tasks

effectively once their expressions have been recognized. Thus, although studies by

Oviatt and colleagues (Oviatt et al., 2006; Oviatt & Cohen, 2010) and Anthony et al.

(2005) suggested advantages to pen-based input, current recognition engines for pen-

math systems likely need to be improved and refined before such systems can offer

compelling environments for mathematical problem solving.

2.2. CAS Use in Educational Settings

Moving outside of the laboratory setting, there is a relatively large body of

work within the education research community investigating how computational

mathematics tools, particularly CAS, integrate with high-school and undergraduate

education (e.g., Artigue, 2002; Heid, 1988; Leinback et al., 2002; Pierce et al., 2004;

Pierce & Stacey, 2001; Robinson & Burns, 2009; Ruthven, 2002). This work has

articulated three main advantages of using computational tools in the classroom. The

first is students’ ability to learn higher level concepts through active experimentation

with different expressions (e.g., Leinback et al., 2002; Pierce & Stacey, 2001). It is

important to note that this type of experimentation is too time-consuming to do

by hand, making it an activity only possible with computational tools. The second

potential benefit seen for using CAS in the classroom is that some of the low-level

work can be delegated to the computer (such as low-level calculations), enabling

students to focus on higher level problem-solving processes and decision making

(Leinback et al., 2002; Ruthven, 2002). Students appear to benefit from both of

the previous two advantages without a noticeable impact on their calculation skills,

despite having less classroom time devoted to this latter activity (Heid, 1988). The

third benefit that has been observed is that computational tools allow students to
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Math Software in Expert Problem Solving 229

work on interesting problems, particularly ones from the ‘‘real world,’’ where these

problems would otherwise be infeasible to do by hand given the complexity of the

calculations (Artigue, 2002; Robinson & Burns, 2009).

Although a number of advantages of mathematics software have been noted,

research in this space has also enumerated the challenges associated with using this

type of software in the classroom. First, students often have difficulty coping with

the vast array of commands available in current offerings (Artigue, 2002; Pierce et al.,

2004). Second, similar to findings from the laboratory experiments described in the

previous section, the syntax required to input expressions into such systems can

impose additional cognitive load not present with paper-based work (Pierce et al.,

2004; Robinson & Burns, 2009). Third, some students have difficulty translating CAS

output into representations that they understand, particularly when the output differs

significantly from the input expressions. Artigue (2002) argued that this problem is

less likely to occur when students are manipulating expressions using physical media,

where they are able to see the intermediary steps. Finally, some students feel that they

learn more when solving problems by hand, or that ‘‘real mathematics’’ is done by

hand, not by computers (Pierce & Stacey, 2001). Some researchers believe that the

aforementioned challenges can be addressed through a combination of careful lesson

and exercise planning (Leinback et al., 2002) and by having the teacher emphasize and

motivate the use of computers for mathematics (Artigue, 2002; Pierce et al., 2004). As

we show later, some of these very issues and concerns also arise in professional use

(most notably, the need to see the intermediary steps required to achieve the output,

and the sense that problem solving is better done by hand than with software),

indicating that these issues are not limited to educational contexts.

These initial studies, both in the laboratory and in educational settings, provide

important insights into the potential benefits and limitations of current CAS software

and other computational tools for mathematics. However, these studies characterize

only short-term use of such software, typically in fairly well-defined, well-directed ways.

For example, in the classroom, students are working on structured, well-defined

problems, typically with a known, correct answer. Furthermore, the tools are used

to help students understand and apply fairly standard mathematical concepts. In

contrast, there has been very limited study of how these mathematical tools are utilized

by professional mathematicians who are motivated to develop new mathematical

representations. In this latter context, individuals are attempting to solve unstructured

and ill-defined problems, for which the ‘‘correct’’ solution is often unknown. Thus,

although some researchers have argued for the value that computational tools can

bring to mathematics research (e.g., Borwein, Bailey, & Girgensohn, 2004), their true

impact and utility are less known.

To the best of our knowledge, there has been only one other study examining

computational mathematics tool usage within mathematics research. Quilan (2007)

conducted a large-scale web survey (containing primarily of closed questions) designed

to understand which computational tools are used in mathematics research (including

typesetting software), how frequently, and for what purposes. Through his study,

Quilan found that the majority of participants reported at least monthly use of
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230 Bunt, Terry, Lank

mathematics software, with Maple, Matlab, and Mathematica being the most com-

monly used packages. Unfortunately, the survey was not able to clearly distinguish why

the mathematics software was used. Thus, although it is known that computational

mathematics tools are used within professional work practices, there is limited knowl-

edge of how and for what reasons. A deeper and more contextualized understanding

of how these tools are adopted and applied in professional environments would be

valuable, both to guide future design efforts and to identify open research problems.

We turn now to our work intended to address these open research questions.

3. STUDY OVERVIEW

In this research, our primary goal is to understand how mathematics software

is utilized by working mathematicians. We also wish to gain insight into how this

software could be better designed to integrate with desired practices. We are thus

interested in answering the following research questions:

� What are the goals of the mathematicians? What are they seeking to accomplish?

What is the ‘‘product’’ or output of their work?
� What characterizes the mathematicians’ workflow? That is, how do they accom-

plish their work?
� Which tools are used in mathematical problem solving (e.g., paper, whiteboard,

mathematics software), at which points in the work process, and for what

reasons?
� What types of tasks are best supported by the different tools and why?
� What preferences do they have with respect to tools and media?

To answer these questions, we interviewed two groups of mathematicians who

work in a university setting. We first interviewed a group of theoreticians, the results

of which were reported in (Bunt et al., 2009). We then sought to extend this work by

interviewing a group of applied researchers (engineers) to complement the data from

the theoreticians. Although the study took place in two phases, we used a common

method and analytical process for both groups of participants.

3.1. Method

We used semi-structured interviews in participants’ places of work (where pos-

sible) to examine the study’s research questions. Interviews lasted approximately 30

to 45 min each. During the interviews, we asked participants to educate us about their

research practices and how they perform their work. To ground the interviews and

assist with recall, we asked participants to walk us through specific instances of recent

research work. As participants described specific instances of their recent work, we

asked them to discuss which tools they used to complete the various pieces of their
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Math Software in Expert Problem Solving 231

work and their reasons for doing so. At the end of the interviews, we also asked about

general preferences with respect to different tools/media.

Interviews took place at locations identified by participants as their primary

workspace (either offices or labs), enabling us to photograph their work environments.

Conducting the interviews in their workplace also allowed us to view, discuss, and

document samples of relevant work materials. One interview was held in the first

author’s office because of the participant’s concern about disturbing others in his

shared workspace. This participant brought his current working materials with him

to the interview (his laptop and paper work). All photography was at the request of

the interviewer (as opposed to being directed by the participant).

We collected data by audio-recording the interviews and taking digital pho-

tographs, with three exceptions. The audio-recording device failed during one inter-

view. Immediately following this interview, the interviewer created detailed notes and

later had the participant review the notes for accuracy. Two participants declined to

have photographs taken of their working materials for reasons of privacy.

3.2. Participants

Participants were recruited in a university setting. However, and of importance,

our focus was not on how these individuals teach or learn mathematics in this setting

but on how they employ mathematics in their research.

Twenty mathematics researchers were interviewed. We divide the participants

into two categories—theoreticians and engineers. Theoreticians are mathematicians who

have the broad research goal of deriving new mathematical knowledge. The engineers,

on the other hand, build mathematical models of phenomena, and thus are more

applied in their use of mathematics. We note that not all participants in the engineers

category are in engineering departments, though their work clearly falls in the area

of the applied use of mathematics. Nine theoreticians (eight male, one female) and

11 engineers (nine male, two females) participated in the study. Participants ranged

in age from mid-20s to early 60s. Other demographic data, such as prior computer

training, were not collected.

Although classified into these two general categories, our participants represent

a wide range of specialties within these categories. All participants have advanced

mathematics knowledge, with all but three participants at the PhD level or higher,

although seven of the participants were graduate students. The title and research area

of each participant is listed in Figure 1. We use the prefix ‘‘T’’ to refer to theoreticians

and ‘‘E’’ for the engineers. We omit gender information in Figure 1 to guard participant

anonymity.

3.3. Data Analysis

As described in Section 3, our study was conducted in two phases. For each

participant group, data were analyzed by the three authors employing methods from

Contextual Inquiry (Beyer & Holtzblatt, 1998).
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232 Bunt, Terry, Lank

FIGURE 1. Participant backgrounds

Group Participant Title Research Area

Theoreticians T1 Postdoc Theoretical Computer Science
T2 Ph.D. student Quantum Computing
T3 Faculty Applied Math
T4 M.Sc. student Pure Math
T5 Postdoc Symbolic Computation
T6 Postdoc Mechanical Engineering & Applied Math
T7 Ph.D. student Pure Math
T8 Faculty Applied Math
T9 Faculty Theoretical Computer Science

Engineers E10 Faculty Electrical and Computer Engineering
E11 Faculty Electrical and Computer Engineering
E12 Faculty Systems Design Engineering
E13 Faculty Physics
E14 Faculty Mechanical Engineering
E15 Postdoc Electrical and Computer Engineering
E16 Faculty System’s Design Engineering
E17 Ph.D. student Physics and Astronomy
E18 M.Sc. student Electrical and Computer Engineering
E19 M.Sc. student Computer Science (Graphics)
E20 Ph.D. student Electrical and Computer Engineering

The main findings from our analysis of the theoretician’s data were initially

reported in Bunt et al. (2009). Data from this first phase were analyzed by creating two

separate affinity diagrams, one examining participants’ responses and one clustering

and categorizing their work artifacts. These affinity diagrams revealed common themes

in work practices and goals, as well as common conventions within the artifacts

themselves. The affinity diagram for the work artifacts was particularly helpful in

identifying commonalities in structure, annotations, and so on, that might not have

been explicitly discussed by participants during the interviews.

In analyzing the theoreticians’ data, we also discovered a strong temporal theme

within the work artifacts. In particular, we found that the samples collected served

to document the progression of mathematical solutions from early problem-solving

stages to final solution forms. Thus, in addition to the affinity diagrams, we devel-

oped a timeline composed of pictures of the artifacts. The timeline incorporated

samples from all theoreticians, which had the benefit of providing multiple example

artifacts from similar points in the problem-solving process. From this timeline, we

were able to identify general trends in how their solutions evolve over time, the

characteristics of their work at various stages, and how participants move between

different tools and media as the work progresses. Figure 2 shows a subset of this

timeline.

After collecting data from the engineers in the second phase of the study, we

used a similar analysis procedure. Specifically, we created two affinity diagrams (one

for interview statements and another for the artifacts) and a timeline. When analyzing

the engineers’ data, we looked for evidence of the themes identified in our first round
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Math Software in Expert Problem Solving 233

FIGURE 2. Example images illustrating a subset of the timeline present in the theoreticians’

work. (a) is an example of early work on one participant’s whiteboard and (b) is another

participant’s work on paper. In the early stages, expressions and diagrams are rough, with

little attention paid to alignment or formal prose. As the work progresses (c) shows that there

is increased structure, with greater attention paid to alignment. In (c), however, items are still

being actively manipulated as the derivation unfolds. Finally, in (d), we see an example where

the narrative has reached a more formal state—the writing is neat, the structure is clean, and

rhetorical conventions are used in a more rigorous fashion. (Color figure available online.)
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234 Bunt, Terry, Lank

of analysis and for any new emergent themes. Data from the theoreticians were

subsequently reanalyzed in light of any new themes that emerged from this second

data set.

To ensure proper interpretation of the data, the authors held interpretation

sessions amongst themselves to discuss the findings derived from the data analysis.

We also conducted a small number of follow-up interviews with participants to verify

our interpretations.

4. STUDY FINDINGS

In this section, we examine the goals and practices of our participants, as well as

the artifacts and tools employed by them. This description of their goals, workflows,

tools, and artifacts establishes a context within which we can consider the current

and potential roles of computational tools in mathematical problem solving. In the

next section, we use this context to enumerate limitations of current computational

tools for our participants. We note that when discussing our findings, our intention

is to describe the practices and perceptions of this particular group of professional

mathematicians. We discuss the potential generalizability of our findings to other

professional mathematicians in Section 6.3.

4.1. Goal/Product of Work

As would be expected, there are some clear differences between our two groups

of participants with respect to goals and workflow. In fact, given the diverse research

areas of our participants, there is no single definitive representation of what our

participants are trying to accomplish and how they go about accomplishing this

work. However, the similarities observed across participants reveal issues likely to be

of concern for many expert users of computer-based tools for mathematics.

Our data reveal that the primary goal of our participants’ work is to develop

new mathematical formulations, as opposed to applying existing mathematical techniques

to well-known, well-defined problems (such as performing a statistical test of sig-

nificance). In addition to developing these new mathematical formulations, both

theoreticians and engineers must demonstrate and/or argue for the new formulations’

correctness. This specific goal of constructing new mathematical knowledge has

important consequences for the role of computation in our participants’ work process,

as we show.

Although both the theoreticians and the engineers share the same broad goal, the

specific output of their work differs. For the theoretical mathematicians, the output

of their work tends to be a formalized mathematical narrative. The purpose of the

narrative is to describe the transformation of mathematical entities from an initial form

to another, more desirable form and to prove the correctness of this transformation.

The narrative itself is a mixture of prose, mathematical expressions, and graphs and
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Math Software in Expert Problem Solving 235

diagrams of the mathematical phenomena under study (e.g., Figure 2D). It is a highly

structured document following established conventions in rhetorical style and the

visual presentation of mathematical material.

For the engineers, the output of their work tends to be a mathematically

formulated model or controller (where a controller is a set of laws defining how

a modeled entity should behave to achieve a particular goal), and a demonstration of

correctness. We expand on each of these specific outcomes next.

Mathematical Narratives

The theoreticians’ mathematical narrative serves dual purposes: It communicates

the mathematical phenomena to others, but just as important, it argues for the

correctness of the work. Thus, although the end result may be the derivation of a new

mathematical formula, it is the description of the derivation and the argumentation

for its correctness that form the primary contributions of the work.1 Consequently,

the mathematical narrative simultaneously contains and constitutes the results of the

mathematician’s work.

As an example, T3 examines properties of perfect numbers—numbers whose

divisors sum to equal the original number. His work involves finding properties and

bounds on these numbers, as he describes with the following quote:

Every single one of them that is known is even, but they have no proof why there’s

no odd ones. But they do come up with these bizarrely insane large upper bounds.

Like: ‘‘If there is one then it has to be bigger than 10300.’’ ‘‘If there is one it has

to have more than 75 factors.’’ : : : these bizarrely large upper bounds: : : : You

can’t just use a brute-force algorithm and search all odd numbers up to 10300
: : :

So you have to use some somewhat sophisticated methods, which involve a lot

of symbolic computation. [T3]

Although T3’s problem can be plainly stated, developing a mathematically rig-

orous, tight, and compete description of the phenomenon under study is elusive.

Progress on this problem moves forward piecemeal, with individual mathematicians

making small contributions bit by bit. Accordingly, as each new component of this

problem’s larger solution is discovered, it must be rigorously argued and defended in

a mathematical narrative.

Engineers’ Models

The engineers, on the other hand, have the goal of developing a mathematical

model that will (typically) have some real-world application. The engineers in our

study modeled a wide range of phenomena. For example, in the following quote, E14

describes work on modeling flames. Other types of phenomena being modeled by

1Note that although we use ‘‘formula’’ here as an example, the role of the narrative is the same for other types

of mathematical work, such as proving a mathematical relationship or concept.
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236 Bunt, Terry, Lank

our participants included air-traffic control patterns and circuits for use in quantum

computers.

Quite a lot [of the work involves math] because I work in modeling. So I do

numerical simulations of flames. So of course there is [the] physical or even

chemical engineering aspect, but there is even more applied math aspects to it

because we use numerical methods: : : : We obviously use computers. We have : : :

equations for species and we look at : : : how to model some of the terms in these

equations. [E14]

As with the theoreticians, it is critical that the mathematical formulations derived

are accurate, as this participant underscores:

We do physically accurate simulations of materials. So, it’s not so much about how

it renders on the screen, it’s the actual mathematics, are they correct or not. [E19]

The method by which the engineers demonstrate the correctness of their work

differs somewhat from the theoreticians. For most of the engineers we studied,

demonstrating the correctness of their work consists of graphically depicting the

results of a simulation and arguing that it matches either expectations or experimentally

gathered data (which may be collected and published by other researchers). Thus, for

these participants, there is less of an emphasis on mathematical proofs or arguments

about how the model was derived, and more emphasis on demonstrating that the

output of the model matches expectations.

Summarizing Goals of Both Groups

Although the specific goals of the theoreticians and engineers differ, both groups

are attempting to derive and defend new mathematical formulations. In the case of

the theoreticians, the goal is to demonstrate that, based on a logical argument (a

proof), new insight into the structure of mathematics has been created. In the case

of the engineers, the goal is to demonstrate that the mathematics applied to the

problem at hand accurately models the behavior of the phenomenon, or maintains

the desired behavior of a system over time. Out of necessity, both groups must employ

sophisticated mathematical concepts and transformations to achieve their respective

goals. It is this manipulation of mathematics for novel ends that interests us in this

work, as prior work has examined computational support for mathematics almost

solely in educational contexts.

4.2. Workflow

Across both groups, we observed a common pattern of problem solving, even

though the precise details and objects of concern necessarily differ between partic-

ipants. The overall process is akin to design practices, such as those described by
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Schon (1983) in the Reflective Practitioner: It is an iterative process in which the solution

gradually evolves to become more and more refined.

T6, a theoretician, provides a cursory summarization of this process:

Okay, this is how I work. First of all, I think about the problem. I draw some

meaningless figures like this [artifact] and then I translate what I see to some equa-

tions. Then I write my equations down [in a way] that is readable by someone

else, like this [artifact]: : : : And then I type it and then I submit it. [T6]

Although somewhat dismissive of the utility of some of his practices (specifically,

the ‘‘meaningless figures’’ which nonetheless play an important role in understanding

the problem space), T6’s rough description of his workflow is indicative of other

participants’ work practices. For example, E11 describes a similar step-by-step process

for problem solving:

[E11] And so basically you’ll start to, well more or less brainstorming, seeing what

choices of these control inputs can influence : : : you know, first of all we try to

formulate the objective mathematically.

[Interviewer] Would that [paper artifact] be an example?

[E11] Well this is a bit further along. This is where, at this point, what I was

trying to do is come up with a simulation. So basically the idea is we first develop

the theory on paper, once that we’re convinced that it’s correct, we try and do

a simulation. Although of course, it is not so Step 1, Step 2. It’s like, as we’re

developing the theory : : : we’re not sure : : : that we’re on the right track. You

say ‘‘OK this seems to be correct. I have this conjecture that seems to be correct.

Let’s verify first by simulation.’’ If it works in simulation, then we’ll try to formally

prove it mathematically.

In the preceding description, we see a gradual development of a solution that

moves from initial, rough representations (brainstorming to a theory sketched out on

paper) to gradually more refined representations (simulation, followed by a formal

mathematical proof). This overall process was echoed by our other participants,

as well.

If we more carefully analyze the work artifacts and descriptions of partici-

pants’ problem-solving process, we can break down the workflow into the following

problem-solving phases:

� Ideation: A brainstorming phase where solution ideas are generated (theoreticians

and engineers).
� Evolution: Ideas are explored and examined in detail by solving, deriving, and

constructing mathematical proofs (theoreticians), or by developing mathematical

models (engineers). It is important to note that both groups continually validate
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238 Bunt, Terry, Lank

the correctness of their evolving solution using means appropriate to the problem

space.
� Formalization: The results of the previous two phases are refined such that

the work becomes a more complete mathematical narrative (theoreticians) or

functional model (engineers).
� Dissemination: The work is prepared so it can be presented to others, either via

publication or a more formal presentation to a supervisor (theoreticians and

engineers).

Although these phases are represented above as discrete entities, in practice the

boundaries between them are nebulous, with much overlap. For example, as noted by

E11 earlier, if a simulation doesn’t work out, then E11 returns to ‘‘Step 1, Step 2,’’ that

is, ideation and evolution, to develop a new simulation. Despite the fluidity between

phases, they are useful in considering how mathematical software tools can best fit

into the overall problem-solving process. We describe how these phases are realized

by each of the groups next.

Theoreticians: Developing the Mathematical Narrative

In the early stages of the theoreticians’ work, a given problem is represented using

rough sketches; basic diagrams; and the informal use of text, mathematical formulae,

and rudimentary mathematical argumentation. Figure 2A shows one mathematician’s

whiteboard at an early stage, whereas Figure 2B shows early work on a piece of

paper. Although one can observe some of the elements and conventions eventually

used in a final narrative (e.g., the use of whitespace, indentation, and labels to

visually structure the document), these initial representations are intended for the

mathematician himself, rather than a third party. These practices are indicative of

the ideation phase and the early evolution of the final solution.

Work appears to progress in theoretical mathematics through continual manip-

ulation of the mathematical entities on the physical media. Figure 2C and Figure 3

show snapshots of this early work, embellished with notes, content crossed out, and

the manipulation of expressions into other forms.

As the theoretician becomes more and more confident in his solution, the

workflow enters the formalization phase and the narrative begins to form. In this

stage, the representational forms become more structured and detailed, and the

arguments become more explicit and refined. This gradual move to more formal

representations not only helps prepare the document for eventual presentation to a

third party but also serves as a problem-solving tool itself. More specifically, as one

moves to more formal representations and argumentation, the problem is subjected

to increasing levels of mathematical rigor, which can uncover flaws not obvious with

earlier, rougher, higher level representational forms. For example, Figure 2D shows a

solution at an advanced stage where the presentation has achieved a fairly high degree

of formalization. However, the ‘‘slash’’ through the page indicates that the solution
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Math Software in Expert Problem Solving 239

FIGURE 3. Another example of early work using pen and paper. Of note are the use of

annotations at an angle to distinguish them from the primary narrative and short-hand notation

for matrix definition (on middle, right-hand side of the paper). (Color figure available online.)

was found to be incorrect at this late stage.2 After reaching a final, formalized form

that the theoretician believes to be valid, the work can move to the dissemination

phase, which includes preparing a submission for a conference or journal.

One thing that should be emphasized about the theoreticians’ workflow is the

primary use of physical media throughout the problem-solving phases.

Engineers: Developing and Validating the Models

In the more applied domain of the engineers, problem solving shows the same

progression from an initial, rough ideation phase to a more structured, evolution

phase. Figure 4 shows paper-based artifacts that correspond to these phases of

problem solving.

Like the theoreticians, the engineers also continually validate the correctness

of their solution as it evolves. However, validation of their mathematical formula-

tions tends to proceed through model derivation, and simulation, as opposed to formal

mathematical argumentation. Model derivation is the process of developing a math-

ematical representation of the phenomena in question (e.g., circuits or flames) and

involves manipulating and transforming mathematical entities to better approximate

2The slash could also represent the fact that the material is no longer needed, but in this case, it represents a

dead end.
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240 Bunt, Terry, Lank

FIGURE 4. Example images illustrating a subset of the timeline present in the engineers’

work. Similar to the theoreticians, we see the work progressing for a rough initial state (a) to a

more structured derivation (c). Absent from the timeline for this group, however, are instances

of formalized narratives within physical media. (Color figure available online.)

assumptions or experimental data. Simulation, on the other hand, involves testing

the model under a range of cases and examining the output for correctness. This

two-stage process has clear analogues to the theoretician’s work in the sense that

model derivation represents an informed conjecture (equivalent to the initial kernel

of a solution for a theoretician), while simulation argues for the model’s correctness

(equating to the formal argumentation for a theoretician).

As engineers emerge from the evolutionary phase, we see a key difference

between their workflow and that of the theoreticians: Although many theoreti-

cians prefer to formalize their narrative using physical media prior to entering the
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computational realm, we did not see evidence of argument formalization within

the engineers’ paper artifacts (see Figure 4 as a representative artifact timeline for

engineers). The lack of argument formalization on paper can be accounted for by

the engineers’ need to enter the computational realm to analyze experimental data

and to create simulations of the phenomenon under study. As noted by E14 earlier,

model validation often involves complex simulations that are infeasible to do by hand.

As such, computational tools play a more critical role for engineers than theoreticians.

However, we later show that both groups have serious reservations about fully relying

on computational tools to validate their work.

Summarizing Workflow: Commonalities and Differences

In both groups, we observed a common process of developing new mathe-

matical formulations, though there were some notable differences in the tools and

methods employed. Both groups begin with rough ideas that are sketched out using

informal notation, prose, and diagrams. Our participants then evolve these informal

sketches and arguments to the point where they represent either formal narratives

(theoreticians), or mathematically sound models or controllers (engineers). Validation

during the evolution phase differs between the two groups. For the theoreticians, it

tends to be through argumentation alone, whereas for the engineers, there is often

an additional simulation step, where the model/controller is simulated across a range

of scenarios to demonstrate its correctness.

We also found overlap in the tools used in the different phases of work, with

some crucial differences between the two groups, where these differences are largely

attributable to the nature of the work being performed. Although both groups make

heavy use of physical media for ideation, the role of computational tools during

evolution and formalization differs between the two groups. Many theoreticians prefer

to use physical media almost exclusively during these phases of work. Engineers,

on the other hand, perform much of their model derivation on paper but begin to

enter the computational realm for simulation, where hand computations are infeasible.

The work artifacts suggest that this group appears to do more formalization within

the computational realm than the theoreticians we studied.

From this overall description of work practices, we turn now to the specific

roles computational tools play for both groups.

4.3. Computational Tools for Mathematics

The primary computational tools that our participants reported using are CAS for

symbolic computation and matrix-based mathematics tools for performing mathemat-

ics, simulations, and data visualization. The two other computational tools mentioned

during our interviews were Adobe FrameMaker [E10] and Microsoft Excel [E12].

Symbolic computation software is used by all of the theoreticians in our study

and by three of the engineers. Of these 12 participants, 11 participants reported using
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242 Bunt, Terry, Lank

Maple and one participant indicated using Mathematica. The engineers in our study

all use Matlab, matrix-based mathematics software.

In this study, we found that members of both groups use software to

� Manipulate, or verify the manipulation of, complex expressions.
� Search through large solution spaces for examples or counterexamples of po-

tential solutions to a problem.
� Perform rapid experimentation.

In addition, engineers in our study use computer tools to

� Simulate models of the phenomenon under study.
� Make sense of the large data sets that arise from model validation.

Before describing these uses in more detail, we note that the extent to which

computational tools are applied was much less than anticipated. In Section 5, we return

to this latter point and explain why computational tools are reluctantly employed by

our participants.

Manipulating Complex Expressions

One of the most common uses of computational tools by our participants is to

solve, simplify, or integrate an expression that they find too long or too ‘‘tedious’’

to compute by hand. T1, T3, and E15 all speak to this type of use:

Usually if it is a complicated expression that I can’t resolve myself, : : : the kind

of tedious work that is sort of boring and uninteresting but where it is easy to

make mistakes. [T1]

If I have some horrible expression that I don’t like, some large amount of tedious

computation, ‘‘integrate this’’ or ‘‘reduce this giant mess to something useful,’’

then sometimes I’ll stick it in Maple to see if it can solve the problem for me. [T3]

So supposed you have an ugly expression like this. You find the second derivative

and you want to set it equal to zero. It was [a] huge expression, but [the symbolic

toolbox in Matlab] simplifies that for you. [E15]

When solving these types of expressions, participants (both theoreticians and

engineers) said that they use paper to formulate the expressions, use symbolic software

to solve or simplify the expression (e.g., using Maple or the symbolic toolbox in

Matlab), then transfer the result back to their paper work. Figure 5 illustrates an

example of this process. In this snapshot, the participant has jumped to Maple to

perform a calculation, copied the result back onto paper, and explicitly noted this use of

Maple among their notes. Indicating that Maple was used can serve multiple purposes.

First, it can act as a reminder of the path taken to arrive at the solution. It can, however,

also relate to issues of trust in the software and its output, which is sometimes suspect.

We explore this latter issue in a later discussion.
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Math Software in Expert Problem Solving 243

FIGURE 5. A portion of a participant’s pen-and-paper work where he or she has used Maple

and noted so directly within the narrative under construction. (Color figure available online.)

When participants choose to work with complex expressions by hand, they

sometimes will use mathematics software to verify their work. E11 describes how he

often ends up solving messy expressions by hand, which he then verifies using Maple:

: : : especially when you are dealing with non-linear systems : : : you end up with

these really ugly symbolic calculations that you have to do, that I typically make a

mistake when I do them by paper. So for example, taking a bunch of derivatives of

a function, sometimes I’ll make a mistake, you know taking these derivatives. So

I do find it is useful for me to do it in Maple because I can verify my calculations

and check that I’m not making mistakes.

Thus, participants across both groups indicated that they work out the details by

hand and then subsequently use the CAS to confirm hand-derived solutions. For the

theoreticians, who tended to prefer to do the majority of their work using physical

media, verifying hand-derived work or solving otherwise unsolvable expressions were

by far the most frequently reported (or only reported) use cases.

Model Simulation and Making Sense of Large Data Sets

The most common use of computational tools for engineers is to test or validate

a model through simulation. This process tends to involve computing the model’s

output for a large number of cases, as described by E19:

So we actually perform the same simulation, we’ll do it like a million times, or

ten millions times. So it’s obviously all done by computer. And then at the end

we take those results and we graph them and compare them to measured data to

see just how close we can get.
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To validate their models, the engineers either use the computational tools to

produce graphs that they can inspect visually (as just described by E19) or, as E11

indicates, use the tool to programmatically verify that all assumptions are held:

So basically I—once I found the curve I used Matlab to check our assumptions. So

that’s what this script does : : : [is] show you the curve we’re trying to follow and

basically, um, numerically checking various conditions hold, that must hold for

this theory to apply.

The most common tool used by our participants for performing simulations was

Matlab. However, some indicated having to program the simulations from scratch

using C or Fortran either because Matlab is too slow, the algorithms and functions it

provides too generic, or because they preferred not to rely on proprietary software:

And so in that sense, a lot of the Matlab, or these pre-packaged routines, isn’t

sufficient, because we need really tight memory control. You know, we essentially

need to work at almost machine level in order to do this type of thing. So then

we end up programming it ourselves, typically either in Fortran or in C. [E13]

I think it’s a question of speed and, as well, we don’t want to rely too much on a

commercial package : : : for example, we have a cluster with several processors,

we won’t have Matlab installed on all of these machines. It is more for flexibility,

as well: : : : We don’t need a specific package to do the work, but : : : we need

compilers, obviously, but that’s it. [E14]

Searching for Examples or Counterexamples

In addition to using computational tools to solve complex expressions, a small

number of participants in both groups use the tools to perform exhaustive searches

through a solution space. In particular, two participants (one theoretician and one

engineer) reported using Maple or Matlab to search through a space of solutions for

counterexamples that violate one or more mathematical properties:

It’s a matter of just testing all possible solutions to see if they are solutions or

not. And the algorithms are really the fastest way I can test that. [T2]

So we have a controller that I tested to make sure that it satisfied what we think the

bounds are going to be, it worked and didn’t exceed [the bounds]. So obviously

the easiest way to disprove something is to find a counterexample. [E20]

In these cases, the computer’s ability to quickly test potential solutions enables

the mathematicians to verify their assumptions about the correctness of a potential

solution, a task that is infeasible to do by hand.

Rapid Experimentation

In a few select cases, participants from both groups also reported using com-

putational tools to help explore ideas through rapid experimentation. For example,
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one of our participants (T1) indicated using Maple in the Ideation phase to experiment

with the output of a number of similar expressions, whereas another participant (E12)

indicated doing a similar type of rapid experimentation in Excel. A third participant

(T2) showed us how he writes code to have Maple generate multiple plots, which he

then examines visually to see if he can detect patterns. These uses cases, however,

were not frequently discussed, with most participants across both groups primarily

using physical media during the early phases of their work.

Summarizing the Use of Computational Tools

As noted, the extent to which computational tools assist with mathematics was

less than anticipated. For many of the theoreticians, the only reported use case was

manipulating complex expressions, and most reported doing so only infrequently.

The engineers, in contrast, make greater use of computational tools, but primarily for

creating simulations and analyzing data. It is important to note that these simulations

are sometimes created using more general-purpose programming environments (as

evidenced by the preceding quotes from E13 and E14), which suggests that the

required capabilities of current mathematical tools are present in more general purpose

programming environments.

In short, although mathematics software is clearly utilized by our participants,

it is also not the focal point of the problem-solving process. In the next section, we

delve into the reasons why mathematical tools play only a limited role for professional

mathematics work.

5. LIMITATIONS OF COMPUTATIONAL TOOLS

FOR MATHEMATICS

In our study, we discovered a number of issues in the design of current math-

ematical software that lead our participants to prefer working with physical media

during many phases of the problem-solving process. These issues can be summarized

as follows:

� A need for transparency in the problem-solving process.
� A lack of clear boundaries for a tool’s capabilities.
� A need for free-form 2D representations.
� Transcription problems.
� A need for collaboration.

We elaborate on each of these issues in turn.

5.1. Need for Insight and Transparency

Through our interviews, we discovered that even when performing individual

calculations, our participants seek more than just an answer from the system: They also
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seek to further their understanding of the problem under study. For our participants,

this deeper understanding is achieved by directly engaging with the problem by

hand, and by being able to clearly see all manipulations of the evolving solution.

We characterize these two themes as the need for insight and transparency in problem

solving.

For the types of problems they solve, our participants feel they are able to

gain better insight and can better detect patterns when manually solving problems,

compared to using a computational tool. The following quotes from participants

illustrate these perceptions:

Computers are great for running through large amounts of examples, but you

don’t get the same insights. Whereas if you did something by hand, sometimes

you just get more insight and can figure out the general pattern. [T2]

You can notice patterns better if you’ve done it yourself rather than just the way

Maple has grouped it. [T9]

Notably, these quotes echo some of the very same issues that have been iden-

tified in studies examining mathematical software use in educational contexts, where

students report feeling that they learn more when solving problems by hand (Pierce

& Stacey, 2001).

For E18 and E19, doing work by hand helps them understand the relationships

between the different elements of the problem, and how the different pieces influence

one another:

The other aspect of this [work] is to actually see the math behind it. And it’s well

and good to produce the plots but it’s also a good exercise to actually see the

algebra and where these tones are actually coming from. And so for that, I’ve

actually done some by hand. [E18]

If something else does it for me, something like Maple, I don’t—I find I don’t learn

the formulas as well, whereas if I do it by hand, I can see the direct relationship

between everything. Like something I like to do, which I’ve done in here, I’ll

compute units by hand because I find it really helps me learn the formulas and

see how the relationships between the different parameters work. [E19]

When doing work by hand, each of the steps taken in deriving the solution is

visible. In contrast, when offloading tasks to the computer, much of the work being

performed is not visible or tangible to the user. In short, there is a lack of transparency

when performing tasks using a computer.

The lack of transparency in current tools leads to a fundamental distrust of

computer-generated results for many of our participants:

Sometimes the computer algebra, it skips steps, or you can’t see, or in the end

you have to go back : : : [T9]

I tend to not trust the results from the symbolic toolbox: : : : Although it is very

infrequent that the results are incorrect. [T6]
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With respect to T6’s comment, it is important to note that mathematical software,

like any other piece of software, has bugs. Consequently, it can produce incorrect

output through no fault of the user. (In fact, many websites document the various

bugs present in current offerings.) Thus, although the software may rarely produce

incorrect output, it is still a possibility that T6 must consider when performing work.

Because current tools do not list the operations performed to arrive at their

output, our participants cite a need to verify results, as T1 and T2 indicate:

Whenever you do something in Maple, you’d like to be able to re-produce it by

hand. [T1]

Sometimes the software package comes back with something even more hor-

rible than you expected and it is hard to translate that back to something you

understand. [T2]

T2’s problem of interpreting the output mirrors issues identified in educational

contexts, where students sometimes have difficulty understanding CAS output when

it differs significantly from the expressions inputted (Artigue, 2002).

More generally, the need for our participants to be able to reproduce the work

of the mathematics software is clear: For our participants, they must clearly commu-

nicate their results and argue for their correctness. Thus, although the mathematics

software may be relatively quick in producing an answer (and relatively reliable as

well), the participants must still invest time to re-create the operations performed

to communicate these operations to others, as well as verify their correctness and

appropriateness.

Although the lack of transparency is especially problematic for the theoreticians

when doing symbolic manipulation, engineers also expressed concerns in relying too

heavily on the output of mathematics software. For E20, issues of transparency and

trust are amplified as more and more layers of third-party code are required to solve

a problem:

And they keep kind of adding new and new functions to do more and more

complicated things. And those functions kind of call the lower functions and you

keep kind of building up like that. And as you keep going up, it’s like you are more

‘‘black-boxing it’’ over knowing what you’re doing. And the more you go to that

black box thing, the more you’re putting your trust that this guy programming

it has done the right thing, for your particular application. Which can be very

difficult, right? Because as you keep building these things up, it is more and more

likely that something in there won’t necessarily work for that particular thing that

you’re doing. [E20]

In essence, as E20 expresses, as the complexity of the system increases, so too

does the likelihood of errors in the system. These increases in software complexity

also make it more and more difficult to achieve transparency in any practical sense.

In sum, although our participants regularly rely on mathematics software (par-

ticularly the engineers), they do so reluctantly and with reservation. Current tools can
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248 Bunt, Terry, Lank

often produce output very quickly, but it is nonetheless subject to verification, which

adds to the overall costs of using these systems. Accordingly, manual work still has a

very strong foothold in the problem-solving process for our participants.

5.2. Lack of Clear Boundaries for Tool Capabilities

The lack of transparency in current tools also makes it difficult for users to

establish robust mental models of the boundaries of the tool’s capabilities, that is, the

boundaries that delimit the types of problems the tool can be relied upon to correctly

solve, and the types of problems it is likely to fail on. E20 describes this experience

of dealing with a problem that straddles the limits of the tool’s capabilities:

We know with Matlab, we certainly run into things where it screws up. And so,

it’s just like—to do it by hand you feel more confident, kind of thing, would

maybe be the best way of putting it?: : : You’re inverting matrices, and stuff like

this, and it will spit out a number, when it maybe shouldn’t be. It should probably

be telling us this number is garbage, right? Just, you know, you’re inverting like a

very small matrix kind of thing, all of these like numerical sensitivities and stuff

like that: : : : You get like some number times 10�32 or something like that. And

[you think,] ‘‘ok, that’s actually zero.’’ : : : You can just kind of accept that [it is

zero], as opposed to if you’re trying to publish something at the end, you really

have to be more careful and make sure that’s actually zero and not just some

small number. [E20]

This quote exemplifies the issue of fuzzy tool boundaries: The software is not

always aware of its own limitations in calculating results, and the user must make an

educated guess as to what the ‘‘true’’ solution is (which must be mathematically proved

later). Stated another way, the tool is failing to distinguish between an expression or

computation that falls within its domain of valid input (and for which it can produce

a definitively correct result) and one that lies outside of its capabilities. The lack of

appropriate feedback from the system about potential limitations in the validity of the

output thus leads to difficulty in identifying the tool’s boundaries, as T1 indicates: ‘‘I

don’t have a good understanding of what kinds of things [Maple] trips on’’ [T1].

Not having clear boundaries on valid input is particularly problematic when

deriving new mathematical knowledge, where researchers are not easily able to dis-

tinguish between an error and an unexpected result, as what is ‘‘correct’’ is still being

defined as part of the work. E20 deals with these uncertainties by trying to match

tool output with his expectations, which can be difficult to do when exploring new

phenomena:

That’s why I always like to try to—‘‘what do I think I should be seeing’’—and

then compare that to what it gives me: : : : As a general rule of thumb with any

computer system, I would say that they all have bugs. I believe that’s a fairly fair

statement. So how do you know that you’re not finding that one case that’s going

to be a bug, and especially when you are doing math research where no one has

necessarily done what you’re doing before? [E20]
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Math Software in Expert Problem Solving 249

As E20 indicates, when the tool produces unexpected output, the researcher

must both question his or her thinking and the tool itself, resulting in a significant

amount of diagnostic work. More specifically, he must examine the model derivation,

his implementation of the model within the tools, and finally the applicability and

correctness of the tool’s functionality given his specification of the problem:

My first thought would have been to take my controller and make sure that it

satisfies all the theorems that we have to show that it should be stable and then

kind of going back in [to the tool] and saying ‘‘OK, it has got to be something

that’s causing this.’’

You want to look at what you’re doing and you want to come up with an idea of

what you expect to see happen. And if Matlab gives you something that you don’t

expect to see happen, then you need to—you can’t just go—clearly, you can’t

just jump to the conclusion that ‘‘what I thought should happen doesn’t actually

happen.’’ You can look at how you’ve coded that: : : : And I’d say the more

layered—the more things the [Matlab] function you’re trying to use is doing, the

more careful you need to be as well. [E20]

Clearly related to the aforementioned issues of transparency and software com-

plexity, the inability to define clear operational boundaries for these tools increases

the burden of their use by requiring users to verify the correctness of the system’s

output, especially when it deviates from expected results.

5.3. Lack of Free-Form 2D Representational Forms

Throughout problem solving, both groups of participants make use of expres-

sions, diagrams, free-form annotations, and prose to represent and manipulate the

evolving solution. Our participants found physical media, such as paper, well suited

to working with these various items, in contrast to current computational systems,

which provide very restrictive and highly structured 2D representational forms for

mathematical entities, diagrams, and text. In this subsection, we describe how the

properties of physical media and physical space are employed by our participants and

the difficulties in achieving similar results with computational tools.

When interacting with physical media, we found numerous examples of partici-

pants directly interacting with the objects of interest: items are annotated, embellished,

edited, and crossed out in-place. This in-place interaction is an important feature of

the problem-solving process, as it documents the process of transforming the initial

state into the more desirable end state. It also serves to document the approaches

that don’t work. T7 comments on this process:

And I don’t even necessarily work down the page: : : : I just sort of have everything

all in one spot. Obviously it’s not very neat or easy to deal with, but just having

everything on one page kind of makes a big difference: : : : I think it’s easy

having everything all in one spot. It just stops me from forgetting anything. [T7]

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

an
ito

ba
 L

ib
ra

ri
es

] 
at

 0
8:

44
 2

1 
M

ar
ch

 2
01

3 



250 Bunt, Terry, Lank

Participant T2 also describes this iterative process, and the benefits of using

physical media to support the work:

So it is sort of an iterative process: : : : So at first you figure out how you might

approach a problem. You try it and it either works or it doesn’t: : : : I think this

[paper artifact] went through a couple more refinements before it turned into an

actual argument. [T2]

With the physical media, we saw a range of embellishments, including individual

terms crossed out in a derivation; entire proofs crossed out that didn’t work; and a

three-level rating scheme with happy, sad, and neutral faces (see Figure 6). In contrast

to physical media, making these types of free-form annotations with computational

tools requires workarounds, such as marking up a printout of the output, as shown

in Figure 7.

Despite being marked with annotations and embellishments, in some cases it

is possible to discern the progression of the solution from one form to another

through the symbols and prose on paper, particularly when expressions are written

sequentially, in a top-down fashion (e.g., Figure 2C). In other cases, the flow of the

work is less obvious, as in the cases of diagrams, which may include many in-place

modifications as the understanding of the problem evolves.

We also found physical space itself serve as a tool for our participants: Space

is used to communicate information through the arrangement of elements within a

single document, large surfaces (such as physical tables) are used to lay out multiple

sheets of paper to obtain an overview of the entire problem, and related papers are

grouped into folders and special notebooks. As an example, E18 uses the whiteboard

because the large surface enables him to view all information relevant to the current

problem simultaneously:

And what it helps to do is I can make sure I don’t lose any key features of what

I’m talking about. [E18]

FIGURE 6. Participant E16’ s three-level rating scheme for his work: happy faces for successful

approaches (left), a sad face for unsuccessful approaches (right, bottom of page), and a neutral

face when ‘‘I don’t know whether what I’ve just done is relevant’’ (right, top of page). (Color

figure available online.)
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Math Software in Expert Problem Solving 251

FIGURE 7. Participant T3’s embellishmentof a printout of Maple’s output. (Color figure avail-

able online.)

One participant was particularly enthused about the features one notebook

offered her to assist with the organization of her work:

I’m very excited about the notebook. This is why: so these ones, they’re from

France, and the pages are removable. So they are like a binder, so that you can

take the pages out and back in. And one thing that’s nice is I do different things

and I can group together stuff and if I finish a notebook and I haven’t quite

finished the project then I can take the stuff and put it back in. [T9]
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252 Bunt, Terry, Lank

In contrast to the free-form, unstructured nature of paper and physical space,

commonly available computational tools tend to enforce a highly linear, rigid structure

on data. Even tools that allow a mixture of text, mathematics, and figures (such as

Mathematica) still rigidly divide the space into discrete areas that follow a top-down

organization. As a result, users cannot use space to organize or encode information

with current software offerings, and they are likewise very limited in how they can

annotate and embellish information in the system.

Many computational tools for mathematics (in particular, CAS) also offer min-

imal (if any) support for free-form diagramming. When diagramming is possible,

creating and editing diagrams is typically not a lightweight procedure, and there is

usually very limited control over how the diagrams are integrated with the text.

Finally, current systems have limited means by which one can choose an appro-

priate level of formalism when representing content computationally. For example,

using a CAS to manipulate expressions requires some terms, like matrices, to be

formally defined. Short-hand notation cannot be used (as is done for the matrix in

Figure 3). Instead, tools such as CAS impart their own level of formalism that cannot

readily be adjusted to suit the current problem-solving context.

5.4. Transcription Problems

Although we noticed a clear preference for physical media, our participants

sometimes must transfer their work to computational forms. This transcription pro-

cess can introduce complications and otherwise disrupt the flow of work.

One particularly challenging transcription problem is transcribing equations into

a form that allows the computational tool to manipulate them. If done imperfectly,

unexpected results can arise. When unexpected results do arise, our participants must

determine whether there was actually a transcription error, or whether the unexpected

results are due to other factors, such as a potential error in the system itself (as

described in Section 5.2):

I’ll type in an expression, I’ll have spent an hour trying to figure out what it means

and what the results are, and then I realize I’ve made an error typing. [T1]

The only concern is that sometimes you end up having too many brackets.

Although [Matlab] has [parentheses matching] I still find it sometimes tricky

and it is very easy to make mistakes, stupid mistakes. [T6]

[Expression entry] is such a barrier, to do any kind of manipulation. I mean I

actually am really excited because I think our new printer at home has OCR, and

can recognize the hand-written stuff. [E12]

Part of the transcription problem is due to the reduction in dimensionality of

the information: Participants must reduce a 2D expression into a 1D representation

inputted via a keyboard. Another problem, however, is the inability for the system to

perform sophisticated error-checking on the input. In contrast to natural language,
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where tools such as spell checkers and grammar checkers can help detect errors,

error detection in mathematical input is primarily limited to rudimentary syntax

checking, such as checking for missing parentheses. Mathematician themselves may

have difficulty performing error-checking, as they are still becoming familiar with the

problem and thus less tuned to what the expression ‘‘should’’ look like.

When considering transcription problems, it is important to realize that errors

can arise due to the design of the system (e.g., complex syntax requirements), or

simply through human error, as E12 indicates:

This would all be derived by hand, all hand-derived : : : usually 3 or 4 times

because you get to the end and you say ‘‘Hmm. It says [the planes] have to be

1000 miles apart. I don’t think I’ve done this right.’’ And you go through and you

can find ‘‘OK, I had something squared and I dropped it from one line to the

next.’’ That part’s frustrating.

Some participants indicated that current systems’ expression syntax overhead

is prohibitive, or that expression entry can be error prone or unnatural when using

current mathematical software. However, although transcription problems arose as

an issue with current mathematics software, we had expected it to be a more dominate

issue for our participants. We were thus surprised at the rarity of these types of

comments, particularly in relation to the other issues identified through our interviews.

Between the two groups, transcription issues appeared to be more problematic and

a greater barrier for theoreticians than engineers. This result may in part be due to

the need for engineers to develop simulations, which requires them to deal with

programming languages and syntax more frequently than theoreticians.

5.5. Lack of Support for Collaboration

A final limitation of current computational tools for mathematics is limited

support for collaboration. Many of our participants, and the majority of the theo-

reticians, commented on the colocated collaborative nature of their work. Colocated

collaboration is particularly prevalent during Ideation as described by participant E13:

So we do, we do a lot of sharing of ideas, sort of on the blackboard and stuff like

that. And when I’m teaching my students in here. You know lots of times, you

know, we derive the models, talk aloud about the algorithms on the chalkboard,

and stuff like that.

When collaborating, participants tend to gather around a large surface, typically

a whiteboard, and manipulate content in a highly interactive fashion. Collaboration

around these physical media is fairly lightweight, flexible, and fluid. In contrast,

colocated collaboration with computational tools is far more constrained. For ex-

ample, participants must either take turns using a single input device or designate one

participant to enter expressions. Both of these strategies require far more coordination
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than colocated collaboration around physical media and can interrupt the flow of new

ideas.

We also observed a tendency to use different colored ink and markers to

distinguish between contributors. Current mathematical software, on the other hand,

provides very limited, or no, support for tracking and viewing changes by various

participants.

Although it is not as large of a deterrent to use as the issues described in previous

sections, collaboration plays a significant role within mathematics work, and as such,

the lack of any real support in current mathematical software offerings means they

tend not to be used during collaborative activities.

6. DISCUSSION

In the previous sections, we detailed the ways in which mathematical tools help

or hinder problem solving in professional contexts. In this section, we compare our

findings with previous results from educational research and draw design implications

from our findings. Finally, we describe limitations of our study.

6.1. Comparison to CAS Use in Educational Settings

As mentioned, prior human-centered work on computational tools for mathe-

matics has focused mainly on CAS use in educational settings. We found a number

of similarities in how our participants view CAS when compared to these educational

perspectives, despite the differing levels of mathematical experience.

Past research in educational contexts has found that some students feel they are

able to learn more by doing mathematics work by hand (Pierce & Stacey, 2001). We

were surprised to see such intellectual advantages expressed by our expert mathemati-

cians, because these users have mastered the basic concepts. Despite their high levels

of expertise, our participants still feel that they gain more insight into the problem

domain by solving expressions by hand.

Our participants also indicate that they have difficulty making sense of CAS

output when it doesn’t match expectations, as has been found with students (Artigue,

2002).

Finally, past research in educational settings has found that students feel that

‘‘real mathematics’’ is done by hand, not by computers (Pierce & Stacey, 2001). The

descriptions of our participants’ work practices suggest that expert mathematicians

might share this perception: The type of tasks relegated to a CAS were often described

by our participants as the tedious, ‘‘ugly’’ tasks where one was unlikely to gain insights

into the nature of the problem. Our participants preferred to do as much work by

hand as possible, to gain confidence in the correctness of the solution.

There were a few notable differences between these settings. First, whereas

educational research has suggested that CAS can enable higher level understandings
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of problems through rapid experimentation, this type of usage was not frequently

mentioned by our participants. Instead, our participants use CAS for more targeted

purposes, such as simplifying an individual expression. Although one might assume

that the simulations created by the engineers are providing a form of rapid experimen-

tation, this use of the software can still be considered a very targeted use of the tools

intended to confirm mathematical models, rather than explore possibilities. In short,

the tools are not used by the experts in our study to engage in ‘‘what-if’’ scenarios. In

a similar vein, past educational research has also suggested that CAS is well suited to

promote higher level problem understanding by taking care of low-level calculations

(e.g., Artigue, 2002). However, as alluded to previously, our participants feel that it is

precisely these low-level operations that lead to insights and a deeper understanding

of the mathematical entities under manipulation. Thus, although ‘‘tedious’’ work is

relegated to CAS, our participants still prefer to do as much work by hand to better

understand the problem.

6.2. Implications for Design

Physical media such as pen and paper, whiteboards, and blackboards are free-

form, unstructured media that enable a wide range of expression in problem solving.

In our study, we found participants leverage these media’s free-form characteristics

to sketch, write expressions, manipulate expressions in place, and write explanatory

prose to describe and clarify concepts. Using these media, individual elements can

be freely arranged and organized, and one can be as formal or informal as desired

in expressing one’s ideas. However, these media provide no explicit support for

mathematical problem solving.

Computer-based tools, on the other hand, offer the promise of providing

assistance by actually manipulating mathematical entities. However, these capabilities

currently come at the cost of conforming to a rigid, formal syntax and a highly

structured medium.

In this section, we consider how the advantages of both media could be synthe-

sized to create a better computational tool for expert mathematics work. We structure

our discussion by considering the specific limitations of current tools uncovered by

our study.

Increasing Transparency

When users enter an expression into most mathematical software, the system

responds with a result but no explanation of how that result was obtained. In our

study, we found that more information is generally required to provide insight into the

problem space. Consequently, a promising area of future work is designing systems

to provide greater transparency in communicating intermediate steps to the user.

Although no support for transparency is included within Maple (the CAS used

by most of our participants), this is not the case for all commercially available CAS.

A previous version of Mathematica, for instance, provided some transparency within
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256 Bunt, Terry, Lank

their student edition, showing the steps of certain derivations. Wolfram Alpha (a web-

based service that provides functionality similar to Mathematica) includes a ‘‘show

steps’’ feature that shows the intermediate steps required to obtain a result. Whether

this functionality currently scales to the types of problems encountered by expert

mathematicians is unclear, but it is a step in the right direction. Finally, the Derive

system can also display the steps of a simplification, along with the rules used in the

transformation (http://www.chartwellyorke.com/derive.html). Our findings suggest

these efforts will be welcomed by both students and expert users of such systems.

One of the challenges in exposing the internal workings of a computational tool

for mathematics may be that the methods employed do not easily lend themselves

to display to end-users. That is, the heuristics used may not easily translate to clear

explanations for end-users. As such, one barrier to fully realizing these concepts may

simply be the additional work required to develop usable explanations.

There is also a question as to how much commercial software companies wish

to reveal their underlying algorithms, given that they may be considered trade secrets

and a part of their competitive advantage. However, there are powerful open source

equivalents to proprietary CAS and matrix-manipulation software that could be used

to research these concepts. In particular, Maxima is a CAS with a decades-long history

of development, and the open source matrix software Octave clones much of Matlab’s

language and core functionality. Both of these systems provide means for researching

these concepts without any concern toward intellectual property.

Increased Awareness of Tool Boundaries

Better communicating the boundaries of a tool’s capabilities presents a number

of open research challenges because of the number of different ways errors can be

introduced into results. However, there are a number of potential paths forward.

One of the most obvious ways to assist users with this problem is to provide

better documentation for the functionality provided, clearly describing the domain of

input and types of problems each feature can reasonably operate on. Although simply

stated, one of the challenges of this approach is foreseeing all of the different ways

end-users may want to apply the software. To combat this issue, the documentation

could be put online, with the capability for users to comment on the documentation.

This practice is becoming more commonplace as it allows the community to refine

and clarify the documentation over time (see, e.g., documentation for the open source

databases MySQL or PostgreSQL, both of which allow users to add comments to

the online documentation). Providing easily accessible and searchable FAQs and

‘‘knowledge bases’’ are additional ways to help communicate the boundaries of tool

capabilities.

Sophisticated uses of computer algebra systems and matrix-based mathematics

software share some similarities with programming in general, as evidenced by many of

the engineers in our study who translate their work to general-purpose programming

environments when speed and efficiency are important. Parallels can thus be drawn

to the domain of programming, where understanding a system’s boundaries is akin to
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understanding the limitations of a programming API. Consequently, there is the

opportunity to translate research results that examine how to support software devel-

opers to the domain of mathematics software. For example, recent work has examined

how search engines can be utilized to help software developers find relevant code

snippets or to debug compiler errors and run-time errors (Brandt, Guo, Lewenstein,

Dontcheva, & Klemmer, 2009; Hartmann, MacDougall, Brandt, & Klemmer, 2010).

Similar assistance may be possible for mathematics software, helping users find the

best method for solving a particular type of problem, or helping them understand

whether the system is potentially at fault when an unexpected result is encountered.

Support for Free-Form Input

One of the most obvious design implications arising from our study is that

there is a need for more informal, unstructured modes of input when interfacing with

mathematical software. As we found when examining work artifacts, our participants

regularly employ freehand diagramming; utilize multiple colors of pens to distinguish

elements; and align, tag, and cross-reference items in the documents they create. Ex-

isting mathematics software, on the other hand, supports very few of these operations.

Among commercial offerings, Mathematica arguably provides the most support for

mixing prose, diagrams, and mathematics in its notebooks, but the notebooks are still

highly structured and compartmentalized. As such, they are less suitable for the early

stages of problem solving. Accordingly, there is a clear opportunity to provide more

unstructured, flexible spaces for mathematicians to work through problems by hand,

with the services of a CAS or matrix-based tool available when necessary.

Pen-based research prototypes for CAS are beginning to address some of these

needs by providing support for free-form input. For instance, the designers of

MathPad2 have investigated integrating free-form diagrams with text (LaViola &

Zeleznik, 2004), whereas the designers of MathBrush have explored the possibility

of recognizing common short-hand representations of matrices, typically employed

in early phases of problem solving (Tausky, Labahn, Lank, & Marzouk, 2007). It is

not difficult to imagine expanding on these ideas to create a system in which users

can define their own short-hand templates that expand to full sets of terms when

recognized.

Also of note is MathJournal, whose flexible environment supports a wide range

of annotations (e.g., free-form diagrams, different colors, alignment; http://www.

xthink.com/MathJournal.html). MathJournal’s backend, however, is not as powerful

as a CAS and, therefore would not likely be sophisticated enough for our participants.

One obvious advantage of pen-based systems is that users interface with the

system in a way most akin to how they currently do mathematics—with a pen.

Utilizing a pen as input has the promise of more easily entering the 2D entities of

mathematics, whether they are equations or diagrams. In addition, pen-based input

has the potential to alleviate transcription errors that can arise when transferring

mathematics from other media to the more formal syntax required of current systems

(though recognition errors are still a factor).
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Notably, multiple options exist for pen-based input: One could use physical

media (e.g., an Anoto pen or a whiteboard with sensing technology) or directly

interface with a computer using a tablet or a Tablet PC. Given some participants’

desire to use physical space as a tool (e.g., using space to group related documents

or arranging them on a large surface), a Tablet PC might not suit all users’ needs.

Instead, something similar to Paper Augmented Digital Documents (Guimbretiere,

2003) might be more appropriate. With Paper Augmented Digital Documents, users

could continue to use paper but also have access to computational power by docking

the pen when CAS functionality is needed. At this point, the user could enter into a

dialogue with the system to define terms more formally, if necessary, and select the

appropriate manipulations. The system could also verify the sequence of operations

the user undertook, looking for potential errors at each step. In this way, the system

could support a practice already engaged in by our participants—using CAS to validate

work done by hand.

Additional inspiration for ways to support flexible input with access to compu-

tational power can be found in research on computational tools to support designers,

whose work practices share a number of similarities to those observed here. For

example, Gross and Do (Do & Gross, 2001; Gross & Do, 1996) found that, similar

to our participants, architects go through a phase of exploring ideas followed by an

iterative refinement phase, with sketches playing an important role in architects’

workflow. They also found that imprecision and abstraction were critical to the

exploration and advancement of designs. Their solution, the Electronic Cocktail

Napkin, allows architects to continue working in this imprecise, abstract, and free-

form fashion. At the same time, the tool also attempts to recognize constraints

between diagram entities and maintain these constraints as the architect refines his

or her sketch.

Bailey and colleagues (Bailey & Konstan, 2003; Bailey, Konstan & Carlis, 2001)

studied designers of interactive multimedia applications, finding reluctance to move

to the computational realm despite difficulties in communicating an application’s

behaviour using physical media alone. Their DEMAIS system allows designers to

create free-hand sketches but also to design executable behaviors through a set of

gestures. In the area of software design, Damm, Hansen, and Thomsen (2000) found

that when creating UML diagrams, programmers want a continuum of formality to

choose the level of formality appropriate to the current stage of the design. Their

Knight system allows users to work in a free-form sketch mode, with the option

of switching to a UML mode. In UML mode, strokes are recognized by the system

and converted into formal UML elements. These types of dual-mode solutions are

promising avenues for future exploration within the domain of mathematics as well.

Support for Collaboration

Collaboration during the early phases of problem solving is a common practice

among our participants. Many results from the fields of computer-supported collab-

orative work and ubiquitous computing are applicable to address these collaboration
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needs, with capture and access systems particularly well suited to supporting initial

problem-solving work. For example, large surfaces that allow multiple, simultaneous

input would be useful to support existing whiteboard work. Coupling capture and

access capabilities to these surfaces would help document and share work with others.

Commercially available systems such as SmartBoards, or research systems such as the

ZombieBoard (which uses a camera and special glyphs to initiate capture; Saund,

1999), are examples of existing systems that could provide such services.

Electronic document sharing and synchronization systems such as revision

control systems may also be useful for later stages of problem solving. Although

we did not specifically ask participants whether they currently use such systems, an

interesting area of future research is to consider how these systems could be catered

to the specific needs of mathematical work. For example, there is a question of how

best to represent differences between mathematical formulae. Although there is a

mature body of research that examines how to display differences between natural

language documents and source code, we are not aware of any work that specifically

targets the problem of visualizing the differences between mathematical equations.

6.3. Study Limitations

There are two aspects of our study design that could impact the generalizability

and validity of our findings. The first pertains to the size and composition of our

participant group, and the second pertains to our data collection methods.

In this study, we interviewed a group of 20 professional mathematicians who

conduct research in a university setting. Although we interviewed two different

classes of mathematicians within this setting, it is possible that the work practices

and attitudes of our participants are not representative of all expert mathematicians.

For example, in industrial settings, users might be less focused on argumentation and

more interested in obtaining answers to individual questions. Consequently, there may

be less of a need for tool transparency for these users because of a diminished need

to formally defend one’s solutions. On the other hand, transparency may be equally

important in industry to justify a given solution among alternatives, with respect to

cost and/or safety concerns.

We also did not encounter any mathematicians through our recruiting who

specifically use computers to prove theorems. It is quite possible that mathematicians

who do this type of work are more trusting and welcoming of computational tools.

Finally, our sample size was not large enough to systematically study the impact

of individual characteristics, such as age, computer experience, or prior training with

computational tools for mathematics.

A second limitation of our study is the self-reported nature of the interview data.

To address this limitation, we also collected work artifacts to provide evidence that

our participants’ statements are reflective of their actual work practices. We found the

artifacts useful in documenting the existence of different phases of mathematical work

and to illustrate the extent to which participants rely on free-form 2D representations

with physical media. Other findings, however, rely solely on self-reports, such as

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

an
ito

ba
 L

ib
ra

ri
es

] 
at

 0
8:

44
 2

1 
M

ar
ch

 2
01

3 



260 Bunt, Terry, Lank

frequency of and reasons for tool use. In-situ observations, experience sampling, and

software instrumentation could be used to more precisely quantify and qualify these

self-reports.

Given the aforementioned limitations, our study should be considered a first

step in understanding use and perceptions of computational tools in professional

work practices. Additional studies are required to determine the prevalence of the

themes uncovered here.

7. SUMMARY AND FUTURE WORK

Whereas most prior work on computational support for mathematics has fo-

cused on novice users still learning basic mathematics techniques, this research

has examined the work practices of a collection of mathematical researchers who

are experts in their field. The goals of these two different groups—students and

professionals—are obviously quite different, which leads to differing requirements

from the tools they use. The results of this research are thus important as they suggest

distinct use cases and requirements for mathematics software when used by experts:

Whereas students are attempting to learn and integrate new knowledge and problem-

solving skills, professionals are seeking to generate new knowledge. Thus, although

there are some commonalities in perceptions of current tools across students and

professionals, these commonalities arise for different reasons. For example, both

students and professionals would benefit from increased transparency from the tools

to better understand how a result was derived. For the students, this transparency

helps them to better learn the concepts being taught. For the professionals, the

transparency helps them verify the output and demonstrate its correctness to others.

Designs intended to support transparency can thus be developed to separately satisfy

these two divergent sets of needs.

To summarize the results of our study, we found that computational tools are

used very reluctantly and sparingly by the theoretical mathematicians we studied,

and more frequently by the engineers. For the engineers, computer-based tools

enable them to build and validate models, typically through computational simulation.

Computer-based tools also allow them to analyze large data sets, a task that would

not be feasible by hand. However, despite these uses of computational systems,

we found both groups express reservations about relying solely on mathematical

software to perform their work. Both groups tend to prefer to prove the mathematical

concepts by hand using traditional techniques and argumentation; for neither group

is it acceptable to use a result from a computational system as the definitive and only

proof of correctness for a particular argument. Instead, results from computational

systems are used to complement work done by hand and to provide further evidence

of the correctness of one’s work. These select uses of mathematics software are

borne out of limitations in current offerings—numerical instability, the lack of clear

operational boundaries for functionality provided, and the existence of bugs all
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contribute to a tendency to prefer mathematics performed by hand, rather than

through a computer-based system.

For both groups, physical media are also the preferred media for problem solving,

as they afford a number of advantages not found in current software offerings. More

specifically, current systems lack the ability to create rich annotations, they require a

degree of formality and structure unsuitable to early phases of work, and they hide

intermediate steps when producing a result.

To address the issues identified in current mathematics software, there are a

number of promising avenues for future research in this field, some of which are

already being pursued by researchers developing pen-based interfaces to mathematical

systems. We also note the potential for research supporting software developers to be

fruitfully applied to this problem domain. Like the engineers in our study, software

developers are tasked with developing large, complex systems. As such, it is likely

that many results from this field of inquiry could be applicable to the design of

mathematics software.

In addition to exploring new design possibilities, there are additional areas in need

of further research in this space. As discussed in the previous section, little is known

about users’ needs in industry. Although we expect there to be some commonalities

between users’ needs in industry and the needs of the engineers in our study, there

are likely to be some key differences due to the forces and constraints at play in a

commercial environment. Understanding these differences will help develop a richer

picture of what types of features are needed for these tools’ users. Also, although we

did not see any obvious effects of age, gender, or computer training on computational

tool usage and perception, a larger study is needed to tease out the role of individual

differences. In a similar vein, it would be interesting to see whether providing training

with computational tools to illustrate their potential capabilities would lead to more

positive perceptions and higher usage.

Finally, it would be beneficial to gather more detailed information about actual

software usage across all user groups. For example, open source systems such as

Octave or Maxima could be instrumented to collect data to understand common

usage patterns. For similar reasons, it would be interesting to collect these types of

data from pen-math systems, such as MathBrush or MathPad2. These data would

provide more concrete, quantitative descriptions of use and provide benchmarks for

comparing designs and their impact. As an example, instrumentation data could be

used to determine whether the increased flexibility provided by pen-based systems

leads to more use across the various phases of problem solving. Similarly, if a system

provided mechanisms to increase the transparency of the software’s intermediate

steps, instrumentation data could be used to determine whether users increased usage

of the software, or performed fewer tests to verify the correctness of the outputted

solution. An observational study could also provide further insight into when and

why breakdowns occur both with computational tools and physical media.

Returning to the discussion that introduced this article, computational tools are

clearly enabling engineers to do work that would not otherwise be possible to do by

hand. For the theoretical mathematicians we studied, current mathematics software
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262 Bunt, Terry, Lank

plays a more minor role in their work. However, across both groups, much of the

fundamental mathematical work is still performed by hand. Although current systems

are a boon to some tasks (e.g., simplifying expressions, checking work done by hand),

they do not play an overwhelmingly dominate role in mathematicians’ work. As

such, current mathematical tools both realize and fall short of visionaries’ ideals for

computer-based tools: They excel at working with large sets of data and modeling

complex systems but lack the affordances, features, and robustness necessary to be

relied upon for more purely mathematical work.
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