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Abstract— Applying visual analytics to large software systems 

can help users comprehend the wealth of information produced 

by source repository mining. One concept of interest is the co-

evolution of test code with source code, or how source and test 

files develop together over time. For example, understanding how 

the testing pace compares to the development pace can help test 

managers gauge the effectiveness of their testing strategy. A 

useful concept that has yet to be effectively incorporated into a 

co-evolution visualization is co-change. Co-change is a quantity 

that identifies correlations between software artifacts, and we 

propose using this to organize our visualization in order to enrich 

the analysis of co-evolution. In this paper, we create, implement, 

and study an interactive visual analytics tool that displays source 

and test file changes over time (co-evolution) while grouping files 

that change together (co-change). Our new technique improves 

the analyst’s ability to infer information about the software 

development process and its relationship to testing. We discuss 

the development of our system and the results of a small pilot 

study with three participants. Our findings show that our 

visualization can lead to inferences that are not easily made using 

other techniques alone. 

Index Terms— Co-evolution, co-change, mining software 

repositories, information visualization, temporal data 

visualization, 3D visualization, visual analytics. 

I. INTRODUCTION 

The relative changes between pairs of software artifacts 

over a system’s development is known as co-evolution and can 

be facilitated through the mining of software repository data. 

The co-evolution of source code and test files in software is of 

particular interest to members of industry and academia [1]. 

For example, a project manager may compare how many test 

files changed compared to source files at the beginning of a 

project to see if the development team was properly testing 

from an early stage. Co-change is another concept that has 

been introduced in previous work on mining software 

repositories for software evolution [2] and software 

visualization [3]; co-change is a metric that estimates the level 

of coupling between various software entities based on the 

assumption that logically related files tend to be included in the 

same source repository commit. We believe that co-change can 

improve the analysis of source and test co-evolution by 

revealing periods of coupling between these artifacts to 

analysts, allowing them to infer information about the software 

development process and its relationship to testing. 

In this paper, we present ChronoTwigger (Fig. 1), an 

interactive tool for exploring and understanding the co-

evolution of source and test files. Following the approach of 

recent visual analytics systems [4], we apply information-

visualization techniques to assist the understanding of large 

data sets that can result from mining a source repository. Our 

visualization is created automatically from data we mine from 

Git repositories. Using known effective temporal visualization 

methods [5], we improve on current co-evolution visualizations 

[1] that organize files spatially by their commit ID [2]. Our new 

temporal visualization visually organizes source and test 

artifacts using Beyer's co-change energy minimization function 

[3], which groups artifacts spatially by their level of coupling. 

 

Fig. 1. Our ChronoTwigger visual analytics tools shows integrated 2D (a) and 

3D (b) visualizations of mined repository data. The 3D visualization shows 
co-evolution of source and test files (green and violet nodes, respectively) 

over time on the vertical axis. Interaction is controlled via the 2D interface, 

which shows an overall co-change clustering [3]. 



For example, Beyer’s visualization method groups files likely 

to be related closer to each other, while files that are probably 

unrelated are spatially far apart. However, unlike Beyer’s 

visualization, which summarizes a complete project history in a 

single, static visualization, our visualization layers many time 

slices, allowing analysts to trace co-change over time. 

Our visualization technique allows software analysts to 

identify items of interest that may not be readily visible with 

existing techniques. Some examples of such motivating 

patterns are shown in Fig. 2. For instance, existing temporal 

software visualizations (e.g. [1, 2]) may reveal the 

simultaneous creation of large groups of test or source files at 

the start of a project. However, our visualization of temporal 

co-change information provides additional details about 

subsequent coupling of between test and source files, as 

depicted in Fig. 2a. This may provide some evidence about the 

testing strategy (e.g., test driven development) and the extent to 

which it is used in a project. Temporal co-change information 

can also indicate instances of tight coupling among larger 

groups of loosely-coupled files (Fig. 2b) or draw attention to 

files that migrate between clusters (Fig. 2c).  

Although these simple examples are shown in two 

dimensions, our 3D adaptation of Beyer’s 2D co-change 

function is capable of handling data sets with much greater 

complexity. The user’s comprehension is enhanced by her 

ability to view the 3D shape from different perspectives. To 

enable fine control over the viewing angle and the amount of 

data viewed at one time, we introduce features for interactive 

exploration of the software project in real-time. Using rotation 

and selection controls, along with temporal and artifact filters, 

analysts can gain insights about a project’s co-evolution details 

by viewing any desired group of files over any span in the 

project’s timeline. As a result, we derive the name 

ChronoTwigger from the Greek word for time, “chronos," and 

“twig,” as our 3D visualization often resemble complicated 

branching structures such as twigs in a tree or bush. 

To evaluate our system’s ability to convey information to 

analysts, we conducted a small pilot study. We asked 

participants to explore software projects with ChronoTwigger 

and check if it allows them to answer questions such as “Can 

we determine periods of intensified development or testing?” or 

“Can we detect testing strategies such as test-driven 

development?” Participants were able to use ChronoTwigger’s 

interactive features to find patterns in two open source projects. 

They were also able to clearly identify periods of concurrent 

activity in source and test files, as well as periods where testing 

activity tapered off or intensified at different points in the 

project. Many of the insights gained are either difficult or not 

possible to obtain using previous visualization tools alone. 

The result of our work is a visual-analytics solution for 

analyzing source and test file co-change and co-evolution. Our 

contributions include:  

(1) a novel 3D visualization technique that displays the 

co-evolution of source and test files organized by 

temporal co-change. Our visual analytic tool also 

includes an extension of Beyer’s system that explicitly 

differentiates source and test files and acts as a control 

for the linked 3D view 

(2) an interactive prototype tool for both immersive 3D 

and desktop-based interfaces 

(3) an initial, proof-of-concept user evaluation 

II. RELATED WORK 

We divide much of the related work into two primary areas 

of co-change and co-evolution. We flank these sections with a 

brief introduction of the overarching subject of software 

evolution and a closing discussion of temporal visualization. 

A. Software Evolution 

The study of software evolution is concerned with the 

detailed analysis of a software system’s growth over time by 

leveraging the information contained in a source code 

repository. This helps project managers gain insight into, for 

example, the coupling of a project’s subsystems, which can be 

used to improve software reliability and reduce development 

costs [6]. Researchers have also used repository data to 

understand the potential benefits and drawbacks of open and 

closed source development practices [7]. Others learned about 

a software team’s efficiency by adding code documentation 

and email records to their analysis [8]. ChronoTwigger builds 

on these approaches as a visual analytics tool [9] by enabling 

the quick analysis of a software project’s source and test file 

co-evolution by visualizing how potentially coupled files 

changed together (co-change) throughout the project history. 

B. Co-change 

Co-change is a measure of how often files change together 

in a project and can be used to extract logical relationships 

between code that are not apparent in the physical directory 

structure. It relies on the assumption that files committed 

together frequently are likely to be functionality dependent on 

each other, even if there is no explicit reference in the code 

itself. Co-change is known to be a reasonable heuristic for 

estimating the impact of code changes on an entire system [10], 

is correlated with the frequency of bugs in a system [11], and 

can be used to suggest files that may need to be changed to 

prevent bugs in the current commit [12]. A common theme in 

these works is that their results became stronger when people 

Fig. 2. Example cases where ChronoTwigger’s amalgam of co-evolution and 

co-change provides information not readily available with existing software 

visualization: test files (violet squares) created during test-driven development 
subsequently couple with different source files (green circles) (a); tight 

coupling of source and test files among looser couplings (b); and migration of 

files between modules (c). 



assisted the analysis. Therefore, one of ChronoTwigger’s 

intents is to present co-change information to users to assist 

analysis of a software system’s co-evolution. 

Co-change has previously been visualized to present 

module coupling in an intuitive way [13], but was focused on 

small software systems with a few files. Further work used an 

energy based clustering algorithm to produce an intuitive 

visualization of the relationships between software artifacts [3]. 

This work was later improved to an “animated” version [14] 

that showed change over short periods of time through a 

sequence of storyboards. The  researchers chose to juxtapose 

static panels because the animation method makes analysis of 

long projects difficult as the user has to replay the animation 

many times. ChronoTwigger also shows co-change over time, 

but addresses the problem of analyzing long projects by using a 

static temporal visualization that enables the user to view an 

entire time series at once. We apply co-change visualization to 

the problem of co-evolution analysis, where we use its 

properties to help the viewer focus on relationships between 

test files and source files that were changed together frequently. 

C. Co-evolution  

Co-evolution is an idea that focuses on exploring how 

software and its associated tests evolve together. Since test and 

source code can change at different rates and times, observing 

their co-evolution can give insights into aspects how testing 

was used during development [1]. There have also been studies 

in co-evolution of other parts of a software system, such as 

source code, test, and build files [15]. 

Co-evolution can reveal aspects of a software project that 

help promote good development practices. In recent work, 

Hurdugaci and Zaidman [16] use co-evolution enforce test case 

code-coverage checks on commits to maintain test quality 

throughout development. In their work, co-evolution was 

derived by explicitly checking which tests ran on which code 

which they noted was time-consuming, while others have 

measured co-evolution using various association rules built on 

probabilities [1, 17]. These works highlight the benefits of 

understanding the co-evolution of a system, and so we target 

ChronoTwigger as a tool that will help developers analyze the 

test and source co-evolution their systems. We also propose 

that co-change would be an effective way to investigate co-

evolution, as source and test files that are committed to a 

source repository together should be detectable by co-change. 

Zaidman et al. [18] explored visualization for co-evolution 

based on a previous tool for software evolution by Van 

Rysselberghe and Demeyer [2], where files are organized by 

their date of creation in the project. By inspection of Zaidman 

et al.’s visualization, analysts can determine whether testing 

happens synchronously or in phases, locate areas where test-

writing effort is increased, and identify testing strategies such 

as Test Driven Development. Our visualization will explore the 

use of newer visualization techniques, and extend previous co-

evolution visualizations by organizing files by their 

relationships with each other as calculated by Beyer’s co-

change method [3]. This organization was lacking from 

previous work, and should help the user recognize additional 

aspects of co-evolution such as impact on test files after 

changes in source files because these files would be visually 

grouped together. 

D. Using 3D to Visualize Time 

Our work aims to reveal patterns of co-evolution by 

visualizing a project’s temporal dimension. In visualization 

literature, there are two well-studied methods for representing 

time: One method is through animation and the second is to 

map time to one available spatial dimension [5]. An example of 

animations for showing different authors’ influence on a 

project’s development history is Caudwell’s Gource [19]. Since 

animations require a span of time to watch, Beyer and Hassan 

[14], used storyboards as an alternative to animation to show 

important events in a project’s co-change history. 

ChronoTwigger is inspired by visual analytics systems [9] 

such as Jigsaw by Stasko et al. [4], which uses multiple 

interlinked views of a set of complex information to assist in 

analytical tasks. The analysis of a software project’s co-

evolution, with perhaps thousands of files modified over a 

series of thousands of commit events, is difficult to 

comprehend with a single visualization alone. For our project, 

we chose one of the views to be a 3D visualization to help us 

display co-change and temporal information alongside software 

repository data. 3D visualizations have previously been used to 

help understand large, complex software systems. Caserta et al. 

[20], for example, use a “software city” metaphor to create an 

intuitive graph showing relationships between subsystems. In 

our ChronoTwigger prototype, we use the third dimension to 

represent time. Known as a space-time cube, this well-used 

visualization technique displays time alongside two spatial 

dimensions, making it a good candidate for adding a time 

component to Beyer’s 2D clustering visualization [3]. The 

space time cube originated in social science [21], and is often 

used for the visualization of geospatial data, though any 

temporal data with two dimensions can be used. Although the 

resulting 3D layout can increase visual complexity, a study by 

Kristensson et al. [22] provided empirical evidence that the 

space time cube can lead to faster analysis when considering 

complex questions. 

III. SYSTEM DESIGN 

To create our ChronoTwigger solution, we first looked at 

Beyer’s work in CCVisu, a tool that takes file-relation (RSF) 

files as input and displays a visualization (Fig. 3). This 

visualization is the result of an energy-based clustering 

algorithm that groups code files, or other software artifacts, 

based on their relative amount of co-change; files that are 

changed together often are attracted to one another, and all 

others are repelled. (See Beyer’s paper [14] for a full 

description of the clustering algorithm). We could see that this 

kind of visual representation would be beneficial in making 

conclusions about the co-evolution of source and test files. The 

main drawback of this visualization was the lack of information 

about the process of evolution throughout the project, limiting 

conclusions that can be drawn about development; CCVisu 

displays the final clustering based on co-change over the entire 

duration of the project, which gives a robust view of the 

software system but does not provide insight about specific 



points in time. It also does not differentiate between source and 

test files. 

We developed a 3D visualization that is based on Beyer’s 

work, but spreads the project data over time in a space-time 

cube. In this way, we show the progression of file clustering 

and commit behaviour throughout the life of the system, or in 

particular time periods that are of important interest to the user. 

We chose a space-time cube as it is a well-researched way to 

show progression of data over time [22], and we hypothesized 

it could be useful if combined with the layout results from the 

CCVisu algorithm.  

To promote user interactivity, we created a single interface 

to control both visualizations (improved 2D and 3D). We 

expanded the existing CCVisu interface with communications 

to the 3D application. This means that any command issued on 

the 2D interface will be transmitted to the 3D application, and 

create a simultaneous effect in that visualization as well. Due to 

the nature of the clustering algorithm, there is no direct 

correcpondance between the positions of nodes across the 2D 

and 3D visualizations, however the two views complement 

each other, offering different views on the same data.  

We created a mining application to analyze the commit data 

of projects and create the necessary files which will be used to 

display the data. A diagram of our system architecture is shown 

in Fig. 4. We discuss each of the components in more detail in 

the next few sub-sections. 

A. Mining Application 

We created an application to mine open source Git 

repositories. The input is the output of the command git log 
--name-status, which returns each commit ID, the author of 

the commit, the time it took place, the commit comment, and 

all files in the commit and whether they were added, deleted, or 

modified. This output is automatically sorted by time. 

We parsed this data into a format that CCVisu can 

understand: an RSF file. This is a general file format that is 

used to store relational information (such as a relational 

database). In this case, it is used to store the commits as a 

directed graph, where each edge connects a file with the 

commit it appears in, where the source of the edge is the 

commit node. 

To display this data over time, we took the entire commit 

history and divided it into smaller time slices, grouping 

commits that occurred within the same slice. For proof of 

concept, we found that a granularity of eight equal slices 

adequate, although more slices would allow a more detailed 

analysis. Preprocessing could also be adapted to provide the 

user multiple levels of granularity; with the multiple resulting 

“layers”, temporal relationships could be viewed at varying 

levels of detail using a temporal “zooming” functionality.  

For each individual time slice, we applied Beyer’s co-

change minimization algorithm. However, because each slice 

was run without data from the previous commits, nodes 

common across slices (files included in multiple commits) had 

unpredictable and inconsistent mapping to spatial positions 

from one 2D slice to the next. This lack of common 

information across each time slice often resulted in the same 

node appearing in entirely different locations in different slices, 

making the temporal visualization difficult to interpret. 

To maintain some consistency between the positions of 

nodes, we applied a sliding window to ensure that each 

adjacent slice contained a high number of common information. 

For each time slice, we enforced a substantial overlap with the 

previous window (Fig. 5). For proof of concept, we chose 75% 

overlap after trial-and-error, although the optimal overlap will 

require future investigation. We kept the size of the slices the 

same at one eighth of the commit history. The overlapping 

window results in the generation of many additional segments, 

providing a greater resolution for data exploration. This sliding 

window method has an effect analogous to interpolating 

between keyframes of an animation, smoothing the transition 

between them and reducing node movement due to different 

sets of files in each slice.  

Fig. 5. Each time slice of the source revision history overlaps the previous 

slice by 75%. This sliding window method is necessary to create a set of 
change graphs that interpolate smoothly between consecutive states. 

Fig. 3. Beyer’s original CCVisu output [3]. Nodes closer to each other are 
likely to be related (changed together in commit logs). The size of the node 

shows its amount of change of the project’s history (number of commits). 

Fig. 4. ChronoTwigger system architecture. 



We ran each of the resulting RSF files through Beyer’s 

algorithm. The output of the algorithm is a layout file that holds 

the final location of each node clustered by co-change, along 

with its degree, which represents the number of nodes that are 

connected to that node. The file also holds the name (including 

the file path) of each node, from which we can reliably 

determine whether the node corresponds to a test file (assuming 

the common practice of storing test files in explicitly named 

directories). This layout data is used by our 3D visualization, 

described in Section 3.3. 

B. 2D Visualization 

Once the input data is created by the mining application, we 

import it to the data visualization software. Our 2D 

visualization and control interface is a modified version of 

CCVisu [3]. In short, nodes in the resulting visualization are 

grouped by how often they are changed together in commits: 

nodes that are closer together are more likely to be logically 

coupled than nodes that are farther apart. Node size represents 

the total amount of change for that node throughout the project. 

The resulting visualization is a summary of co-change over the 

selected time period. The algorithm used to decide positions of 

nodes is the same as provided in CCVisu. 

As noted previously, our aim was to produce a visualization 

that contrasts source and test files, enabling users to analyze 

co-evolution. To accomplish that we changed the color of test-

related files in the project to violet, and changed their shape to 

squares instead of circles (Fig. 6). This simple but significant 

difference gives a much clearer view of the couplings and 

allows for immediate conclusions for the testing behaviour in 

the system (e.g., are source files and test files developed 

together? What are the logical test groupings in the system?). 

We also added features to enable a closer look at a specific 

file’s evolution with respect to files changed with it during its 

evolution. In our updated version the user can select a file node 

to show only the files that had changed with the target file. This 

change targets developer questions such as “Which test file 

should I modify after editing a certain source file?” and “Which 

source files should I investigate if a certain test fails?” 

Additionally, an important element for the project was the 

time aspect of the visualization. We wanted a way to have all 

visualizations display data for only a time period controlled by 

the user. We expanded the CCVisu control window to include 

sliders that control the start and end time for the commit data 

that will be displayed (Fig. 6). These controls enable the user to 

focus on the critical time points during development. When the 

user selects a time period, the 2D visualization shows the result 

of Beyer’s algorithm using only the commits within that period. 

The 3D and 2D interactions are synchronized over a 

network. We send all commands from the 2D interface directly 

to the 3D application, along with the IDs of nodes that should 

be displayed. This allows the 2D and 3D applications to display 

related data, and lets the user use both visualizations to analyze 

the data.  

C. 3D Visualization 

Our 3D visualization (Fig. 1b) uses a space-time cube 

representation to depict the co-change relationships between 

objects over time. Whereas the space-time cube is often used to 

represent geographical space, we instead use two spatial 

dimensions to represent the relative degree of co-change, 

precisely as is done in Beyer’s static visualization (nodes that 

are likely to be logically coupled are drawn closer together). 

However, since we calculate the co-change function for each 

individual time slice (as described in Section III.A), changes in 

the degree of co-change between nodes over time are now 

visible. We use the vertical axis to represent time, with time 

flowing in the “up” direction. Node size represents the total 

change to the corresponding source or test file within a given 

time slice.  

For a selected group of nodes and chosen span of time, the 

nodes are scaled to fill a 0.5 m
2
 × 2 m high volume for an 

immersive 3D environment. Users without such equipment can 

view it on a 2D display monitor, where the volume is scaled 

down to fill the display screen. The spatial dimensions are 

scaled such that the greatest distance between any two nodes 

spans the full cube width. Time slices are also scaled such that 

each slice is separated by a distance of       (   )⁄ , where 

n is the number of available slices and height is the length of 

the time axis. Since one file object can exist in multiple layers, 

the corresponding entities are connected with line segments; 

each node is connected to the corresponding node (i.e. sharing 

the same file ID) in the previous layer. If a file does not 

undergo any change for a period of time, some levels may be 

skipped and the node is connected to the next counterpart found. 

As mentioned in the previous subsection, interaction with 

the 3D visualization is done through the 2D visualization and 

control panel. Although interactivity would benefit from two-

way communication, selection and control over 3D objects is a 

difficult problem and a topic of current research. Thus, we limit 

the control flow of our prototype to one direction (from the 2D 

Fig. 6. Top: Control window display, controls both visualization 

simultaneously. Bottom: 2D visualization (violet squares are test-related 

files, green circles are source files). 



to the 3D visualization). Because there may be no obvious 

connection in the appearance the 2D and 3D structures, control 

mechanisms, such as “select node”, can also help users 

translate between the two views. 

A summary of the control mechanisms available in our 

prototype is shown in Fig. 7. We give a detailed description of 

each as follows: 

Select node – selecting a node on the 2D display (i.e. the 

magenta node in Fig. 7) causes the corresponding set of nodes 

and their connecting line to be highlighted (in magenta) in the 

3D visualization. 

Band select/zoom – a basic rectangle selection for selecting 

a set of nodes on the 2D display that causes the corresponding 

nodes to be shown on the 3D display. All other nodes are 

hidden and both 2D and 3D displays zoom to the selected set. 

Show co-change – right-clicking on a node selects all nodes 

that are co-changed with that node at any point in the project 

history. The selected node is also highlighted in the 3D 

visualization. 

Time filter – two sliders on the 2D control panel delineate 

the start and end points of the selected timespan. In the 2D 

display, any nodes that did not have any change events within 

this timespan are hidden. Meanwhile, the 3D visualization 

shows only those time slices that lie fully within the selected 

start and end points. These slices are then expanded to fill the 

entire height of the 3D volume. 

D. Implementation Platform 

Our 2D visualization and control panel were extended from 

CCVisu [3], which is written in Java and made freely available 

online by its creators. We modified the program into a network 

client which connects with a host program that updates the 3D 

visualization. 

Our 3D visualization was implemented using the OpenGL 

framework. For view management and other utilities, we use 

additional frameworks: for the desktop implementation, we use 

the GLUT framework; for the immersive projected display, we 

use VR Juggler, which handles perspective mapping based on 

head-tracking input. The large display is a Visbox Viscube C2-

HD. This consists of two pairs of projectors which display 4-

metre wide stereoscopic renderings on a back-lit screen and on 

the floor. Standing on the projected floor while wearing the 

head-tracked 3D glasses provides a feeling of immersion, 

where the 3D visualization appears before the user. In this 

setting, 3D glasses do not impede the use of the 2D interface, 

which we run on a handheld tablet computer. While such 

immersive environments may be beyond reach of small 

companies, our system could easily be adapted for use with 3D 

monitors or wearable virtual reality systems, which are 

becoming available at low cost. Nonetheless, our 3D 

visualization does not require stereoscopic viewing equipment 

of any kind; ChronoTwigger can be displayed on a standard 2D 

monitor, in which case a sense of the 3D structure can be 

revealed by controlling its rotation.  

E. Example Visualizations 

To demonstrate how ChronoTwigger works in practice, we 

compared two open source software projects. The first is 

Checkstyle, a tool for evaluating Java coding standards, written 

in Java. It has over 2500 files and a similar number of commits 

from 2001 to 2013. For the second example, we chose the 

mailnews component of the Mozilla project, which has nearly 

8000 files and about 13000 commits from 2003 to 2012. 

Fig. 8 shows all nodes from both projects after 100 

iterations of Beyer’s energy function (the default value). Our 

modification for highlighting co-evolution shows some clear 

groupings of source and test files in the Checkstyle project (Fig. 

8a). It appears there is strong coupling between a large group of 

source files on the bottom left side and a close but separate 

group of test files on the bottom right. The Mozilla project (Fig. 

8b) has much less visible structure, which suggests lower 

cohesion of sub-groups and greater overall coupling throughout 

sections of the project. However, we believe this may be due to 

the large size of the project (approximately four times the 

number of files and commits from Checkstyle), which may 

require additional iterations of Beyer’s minimization algorithm 

to define a visible structure.  

We look at some sub-groups of the projects’ files. Fig. 9 

shows relatively large selections from both projects. In the 3D 

visualization, we again see more structure in the Checkstyle 

group (Fig. 9a) than in the Mozilla selection (Fig. 9b). 

However, we can see some immediate differences between the 

timelines of the two selections. In the Checkstyle project, there 

is a significant amount of development in the early stage of the 

selected files, which tapers off as the project progresses (the 

Fig. 7. A summary of the interactive features that allow control 

of the 3D visualization from the 2D display. 
Fig. 8. All files from the Checkstyle (a) and Mozilla (b) projects as they 

appear in our modified 2D visualization, each after 100 iterations. 



majority of nodes disappear near the upper end of the timeline). 

In the Mozilla selection, on the other hand, development seems 

to remain fairly constant throughout, possibly with  major 

refactoring near the middle, indicated by the larger source 

nodes in the central region of the 3D view. In the Checkstyle 

project, we can also see several thick strands in the 3D view, 

suggesting closely coupled files. No similar structure is visible 

in the Mozilla example. One common feature between both 

projects is the large number of test files created at the start of 

the project (bottom of the 3D views). 

Our visualization also allows us to see features not visible 

in the 2D view alone. For example ChronoTwigger allows us to 

see how the clusters of source and test files evolve over time; 

while the 2D view shows a tight cluster of test nodes in both 

projects, the 3D view reveals that these couplings are not static 

throughout the project: in both projects we can see a group of 

violet test nodes diverge from a cluster near the bottom of the 

timeline, but they become mixed with the source files as 

development continues. This indicates that many of the test 

files were created together at the beginning of the project. 

These groups of test files disperse over time as they migrate 

closer to their (presumably) associated source files, indicating 

development focused on single features or bugs. This pattern 

cannot be extrapolated from the 2D visualization alone. 

In Fig. 10 we see a smaller selection of files from each 

project (Checkstyle, Fig. 10a and Mozilla, Fig. 10b). Once 

again, a stronger organization is apparent in the Checkstyle 

project than in Mozilla. In the 2D visualization of Checkstyle, 

we see several clear subgroupings of source and related test 

files. As in the previous large selection, the 3D view tells us 

some additional information about the evolution of these 

groups that is not apparent in the 2D visualization: there is a 

tight grouping at the start of the timeline, as most of the files 

seem to have been created together. In later revisions, however, 

this large group diverges into several smaller tight groups, 

likely corresponding to the groups visible in the 2D graph. 

Again, we see that development tapers off at the end, where 

only a few nodes remain in the change logs. 

In the Mozilla selection, we can see one large source node 

that was changed with many other files. The 3D view allows us 

to follow this file’s history (the large green nodes along the 

center of the 3D view). Over time, we see many other source 

and test files, pulled repeatedly towards, and then away from, 

this file. Likely, there is more to the story, as these motions are 

affected by other files out of view. However, we can see that a 

majority of these concurrent changes happened in the first half 

of the project where the nodes are largest (like the 2D 

visualization, node size in the 3D visualization is proportional 

to the number of files changed with that node).  

IV. RESEARCH QUESTIONS 

We hypothesize that representing co-change (grouping 

source and test files that change together) in a clear co-

evolution (temporal relations between source and test files) 

visualization will provide important information about the 

Fig. 9. A selection of a relatively large group of files from both the 

Checkstyle (a) and Mozilla (b) projects. Fig. 10. A selection of a smaller group of files from both the Checkstyle 
(a) and Mozilla (b) projects. 



software development process to the viewer. In particular, we 

ask the following research questions: 

RQ1: Can we identify periods of intensified testing activity 

during the history of a project/subsystem? 

RQ2: Can we infer testing patterns and determine how 

these evolved during the project’s development? 

V. EVALUATION 

We performed a pilot user study with three participants who 

each used our system for approximately 30 minutes. These 

participants are proficient software developers (at minimum at 

computer science graduate student level); two males and one 

female. The 2D visualization was displayed on a tablet PC and 

the 3D visualization was displayed in an immersive 3D display. 

The system under scrutiny was the open source project 

Checkstyle, which has been used in previous works, including 

Zaidman et al.’s co-evolution visualization [18].  

The study was performed in a workshop style; we explained 

the meaning of the 2D and 3D visualizations, and then asked 

participants to investigate any part of the software they wished 

while thinking out loud. We took notes on their insights, and 

present some qualitative findings below. 

VI. RESULTS 

RQ1: Can we identify periods of intensified testing activity 

during the history of a project/subsystem? 

In Fig. 11a, a participant is inspecting a large subsystem of 

Checkstyle by zooming in on a large cluster of source and test 

files he noticed in the 2D visualization. Upon inspection in the 

3D portion of ChronoTwigger, he noticed the large cluster of 

nodes at the beginning of the project, thinning out towards the 

top. He noted that testing and source changes occurred about 

uniformly throughout this intense development, but towards the 

end of the project where there is less development, test node 

changes outweigh the source file changes. He stipulated that 

this implies a significant testing phase at the end of the project, 

at least for this part of Checkstyle.  

Our users picked out areas with unbalanced amounts of 

violet test nodes and green source nodes. Due to the co-change 

clustering related files together, they were able to also notice 

such periods on a smaller scale: in large projects, teams in 

charge of certain features may test better than other teams. This 

information would be available to project managers when they 

inspect projects with ChronoTwigger.  

In Zaidman’s temporal co-evolution visualization [1], this 

question can be clearly answered on a project-wide scale. 

However, Zaidman’s visualization organizes files by ID, 

grouping modules as they are added throughout a project. This 

organization by file ID can make it extremely difficult to find 

relationships between closely coupled files that are added at 

different times (e.g. a source file and corresponding test file). 

ChronoTwigger makes answering this question easier on a per-

module basis because of the structured nature of the 

visualization: as in Beyer’s visualization, related nodes are 

spatially grouped, allowing the observer to easily identify 

modules. However, such a question cannot be answered by 

Beyer’s co-change alone, due to its non-temporal nature. 

 

RQ2: Can we infer testing patterns and determine how 

these evolved during the project’s development? 

In another inspection, one participant was inspecting Fig. 

11b. The participant suggested this was, perhaps, a stub, being 

just a small data generation program (just a few files) that was 

later fully implemented about two-thirds into the project (as the 

related file count increases, shown by the increased node count). 

He also noted the continual testing visible throughout this 

subsystem’s development, with a proportional increase of 

source and test files throughout the structure; which suggests 

an agile-like development methodology. He also noticed the 

proportion of test to source files, suggesting the test files likely 

hold tests corresponding to many source files: at the early 

phase of the project, where there are less files, he observed that 

the test file would move together with one source file at one 

point, and then move parallel to another source file at a 

different level, indicating that the test file covers multiple 

source files and may need to be refactored into multiple test 

files. While this conclusion is noticeable in Beyer’s 

visualization (many source files by a single test file), 

ChronoTwigger makes such observations easier by explicitly 

marking test files in the 2D visualization, and more informative 

by including the temporal dimension which allowed our user to 

notice at what times (which commits) the test node moved 

closer to different source nodes, possibly aiding refactoring. 

A different testing pattern was seen in Fig. 12. Upon 

inspection of the 2D visualization (Fig. 12c), it seemed the 

source and test files were related in some way, though the two 

types of files were clearly separated. The participant inspected 

each group separately (Fig. 12a, b). He noted that a similar 

structure appears in both source and test groups over time: a 

compact, strong branch at the beginning of the project moving 

Fig. 11. A participant inspects a section of Checkstyle in an immersive 3D 

display (a). A group of tightly coupled, highly related files (b). Note how 

the lateral movements (co-change) match between source and test files, 
especially towards the top of the timeline. This implies the files were often 

being changed together, as they stick together despite moving in the co-

change dimension, likely due to co-changes with files off-screen. 



to a more dispersed, chaotic looking mid-project section, and 

ending in the thinner and spread out end of the project. The 

participant observed the beginning is probably due to many 

files being created at once, with the middle having different 

features being developed at different times by different authors, 

ending with smaller localized bug-fixes at the end. The 

participant concluded that it was possibly a test-driven 

development methodology due to the strong parallels in shape 

of both source and test nodes. They thought the source and test 

were separated possibly because the authors developed the tests 

and committed them before developing the appropriate source 

code. 

Our users made clear deductions about general practices in 

project development styles, however we cannot confirm such 

speculations without detailed analysis of the source repository. 

For example, one participant deduced that test-driven 

development was used in the code visualized in Fig. 13, but 

also suggested that it was difficult to be sure: it could be agile 

development with a test-last methodology as well. The 

participant also noted it is hard to compare large groups of files 

on a detailed time schedule. It is important to restate that our 

3D visualizations shows groups of commits (commits 

occurring in the same time slice), not individual commits, 

blurring the exact time of change. However, since, in our 

examples, source and test files appear together over long 

periods of time, we can say with relative certainty that this 

project mostly tested alongside source development.  

As with the previous question, the organization by file ID in 

the visualization by Zaidman et al. makes it difficult to identify 

related files. Whereas this visualization can show when tests 

and source were written in relation to each other [1], it is 

difficult to tell how the relationship between source and test 

nodes changes over time. However, with ChronoTwigger’s use 

of Beyer’s co-change function, we can easily identify points 

where nodes converge or diverge during the project timeline. 

Again, Beyer’s visualization shows only the sum of changes 

over the entire project, while ChronoTwigger’s temporal nature 

allows Co-change to be observed over time. 

VII. LIMITATIONS 

While our participants used ChronoTwigger to infer 

properties of a software system’s development, there are many 

factors that still need to be explored.  For example, we noticed 

our visualization of Mozilla’s mailnews component does not 

have as much structure as Checkstyle, suggesting that different 

sized projects (mailnews was about four times larger) may 

require more iterations of Beyer’s algorithm to converge. In 

addition, the number of time slices for our 3D visualization (we 

picked eight) may affect what conclusions can be drawn from 

the visualization: more time slices would allow more detailed 

temporal analysis, but may impede the observer because the 

visualization would become cluttered. Additionally, our sliding 

window overlap method has a strong effect on the Beyer’s 

layout result of each slice due to the inclusion or exclusion of 

files. Foresighted graph drawing techniques [23] may help 

mitigate this issue by initializing node positions to correspond 

with those in the prior layer. Likewise, the ideal amount of 

overlap between time slices requires further study. The overall 

user experience with our 3D visualization will benefit from 

additional features (e.g. text labels) and by allowing interaction 

Fig. 13. A view of group of related source and test files, with some files 

branching off. This was a time filtered result, showing only the first 25% 
of commits containing these files. 

Fig. 12. A participant individually inspects large groups of source files (a) and 

test files (b). Both groups are shown together in the 2D view (c). 



directly with the 3D structure as well as through the 2D view. 

We also require a larger user study to generalize our results. 

These studies should ideally include actual project managers 

analyzing their own projects with ChronoTwigger, to provide 

expert insight into the benefits and drawbacks of our system in 

real-world situations. 

VIII. CONCLUSION 

We have created a fully functional visual analytics system 

with interlinked 2D and 3D display views of mined Git 

repository data. Building on the work of Beyer [3] and 

Zaidman [1], we provide an interactive tool that can help find 

insights that are difficult to observer with previous tools alone 

because ChronoTwigger shows co-change as a function of time 

and allows users to filter by time or by connectivity of file 

artifacts. We ran a pilot user study to understand the potential 

benefits of our system and found that ChronoTwigger can help 

to: 

(1) identify periods of intensified test or source 

development 

(2) understand co-evolution at the level of logical 

subsystems  

(3) understand aspects of a software project’s  general 

development style 

While further, more rigorous user studies remain as 

important future work, we conclude that ChronoTwigger is a 

step forward in the visualization of co-evolution and in its 

current state can already show useful information to project 

managers and test engineers. 
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