
ChronoTwigger:
A Visual Analytics Tool for Understanding Source and Test Co-Evolution

Barrett Ens, Daniel Rea, Roiy Shpaner, Hadi Hemmati, James E. Young, Pourang Irani

Department of Computer Science, University of Manitoba

Winnipeg, Canada

{bens, daniel.rea, roiy, hemmati, young, irani}@cs.umanitoba.ca

Abstract— Applying visual analytics to large software systems

can help users comprehend the wealth of information produced

by source repository mining. One concept of interest is the co-

evolution of test code with source code, or how source and test

files develop together over time. For example, understanding how

the testing pace compares to the development pace can help test

managers gauge the effectiveness of their testing strategy. A

useful concept that has yet to be effectively incorporated into a

co-evolution visualization is co-change. Co-change is a quantity

that identifies correlations between software artifacts, and we

propose using this to organize our visualization in order to enrich

the analysis of co-evolution. In this paper, we create, implement,

and study an interactive visual analytics tool that displays source

and test file changes over time (co-evolution) while grouping files

that change together (co-change). Our new technique improves

the analyst’s ability to infer information about the software

development process and its relationship to testing. We discuss

the development of our system and the results of a small pilot

study with three participants. Our findings show that our

visualization can lead to inferences that are not easily made using

other techniques alone.

Index Terms— Co-evolution, co-change, mining software

repositories, information visualization, temporal data

visualization, 3D visualization, visual analytics.

I. INTRODUCTION

The relative changes between pairs of software artifacts

over a system’s development is known as co-evolution and can

be facilitated through the mining of software repository data.

The co-evolution of source code and test files in software is of

particular interest to members of industry and academia [1].

For example, a project manager may compare how many test

files changed compared to source files at the beginning of a

project to see if the development team was properly testing

from an early stage. Co-change is another concept that has

been introduced in previous work on mining software

repositories for software evolution [2] and software

visualization [3]; co-change is a metric that estimates the level

of coupling between various software entities based on the

assumption that logically related files tend to be included in the

same source repository commit. We believe that co-change can

improve the analysis of source and test co-evolution by

revealing periods of coupling between these artifacts to

analysts, allowing them to infer information about the software

development process and its relationship to testing.

In this paper, we present ChronoTwigger (Fig. 1), an

interactive tool for exploring and understanding the co-

evolution of source and test files. Following the approach of

recent visual analytics systems [4], we apply information-

visualization techniques to assist the understanding of large

data sets that can result from mining a source repository. Our

visualization is created automatically from data we mine from

Git repositories. Using known effective temporal visualization

methods [5], we improve on current co-evolution visualizations

[1] that organize files spatially by their commit ID [2]. Our new

temporal visualization visually organizes source and test

artifacts using Beyer's co-change energy minimization function

[3], which groups artifacts spatially by their level of coupling.

Fig. 1. Our ChronoTwigger visual analytics tools shows integrated 2D (a) and

3D (b) visualizations of mined repository data. The 3D visualization shows
co-evolution of source and test files (green and violet nodes, respectively)

over time on the vertical axis. Interaction is controlled via the 2D interface,

which shows an overall co-change clustering [3].

For example, Beyer’s visualization method groups files likely

to be related closer to each other, while files that are probably

unrelated are spatially far apart. However, unlike Beyer’s

visualization, which summarizes a complete project history in a

single, static visualization, our visualization layers many time

slices, allowing analysts to trace co-change over time.

Our visualization technique allows software analysts to

identify items of interest that may not be readily visible with

existing techniques. Some examples of such motivating

patterns are shown in Fig. 2. For instance, existing temporal

software visualizations (e.g. [1, 2]) may reveal the

simultaneous creation of large groups of test or source files at

the start of a project. However, our visualization of temporal

co-change information provides additional details about

subsequent coupling of between test and source files, as

depicted in Fig. 2a. This may provide some evidence about the

testing strategy (e.g., test driven development) and the extent to

which it is used in a project. Temporal co-change information

can also indicate instances of tight coupling among larger

groups of loosely-coupled files (Fig. 2b) or draw attention to

files that migrate between clusters (Fig. 2c).

Although these simple examples are shown in two

dimensions, our 3D adaptation of Beyer’s 2D co-change

function is capable of handling data sets with much greater

complexity. The user’s comprehension is enhanced by her

ability to view the 3D shape from different perspectives. To

enable fine control over the viewing angle and the amount of

data viewed at one time, we introduce features for interactive

exploration of the software project in real-time. Using rotation

and selection controls, along with temporal and artifact filters,

analysts can gain insights about a project’s co-evolution details

by viewing any desired group of files over any span in the

project’s timeline. As a result, we derive the name

ChronoTwigger from the Greek word for time, “chronos," and

“twig,” as our 3D visualization often resemble complicated

branching structures such as twigs in a tree or bush.

To evaluate our system’s ability to convey information to

analysts, we conducted a small pilot study. We asked

participants to explore software projects with ChronoTwigger

and check if it allows them to answer questions such as “Can

we determine periods of intensified development or testing?” or

“Can we detect testing strategies such as test-driven

development?” Participants were able to use ChronoTwigger’s

interactive features to find patterns in two open source projects.

They were also able to clearly identify periods of concurrent

activity in source and test files, as well as periods where testing

activity tapered off or intensified at different points in the

project. Many of the insights gained are either difficult or not

possible to obtain using previous visualization tools alone.

The result of our work is a visual-analytics solution for

analyzing source and test file co-change and co-evolution. Our

contributions include:

(1) a novel 3D visualization technique that displays the

co-evolution of source and test files organized by

temporal co-change. Our visual analytic tool also

includes an extension of Beyer’s system that explicitly

differentiates source and test files and acts as a control

for the linked 3D view

(2) an interactive prototype tool for both immersive 3D

and desktop-based interfaces

(3) an initial, proof-of-concept user evaluation

II. RELATED WORK

We divide much of the related work into two primary areas

of co-change and co-evolution. We flank these sections with a

brief introduction of the overarching subject of software

evolution and a closing discussion of temporal visualization.

A. Software Evolution

The study of software evolution is concerned with the

detailed analysis of a software system’s growth over time by

leveraging the information contained in a source code

repository. This helps project managers gain insight into, for

example, the coupling of a project’s subsystems, which can be

used to improve software reliability and reduce development

costs [6]. Researchers have also used repository data to

understand the potential benefits and drawbacks of open and

closed source development practices [7]. Others learned about

a software team’s efficiency by adding code documentation

and email records to their analysis [8]. ChronoTwigger builds

on these approaches as a visual analytics tool [9] by enabling

the quick analysis of a software project’s source and test file

co-evolution by visualizing how potentially coupled files

changed together (co-change) throughout the project history.

B. Co-change

Co-change is a measure of how often files change together

in a project and can be used to extract logical relationships

between code that are not apparent in the physical directory

structure. It relies on the assumption that files committed

together frequently are likely to be functionality dependent on

each other, even if there is no explicit reference in the code

itself. Co-change is known to be a reasonable heuristic for

estimating the impact of code changes on an entire system [10],

is correlated with the frequency of bugs in a system [11], and

can be used to suggest files that may need to be changed to

prevent bugs in the current commit [12]. A common theme in

these works is that their results became stronger when people

Fig. 2. Example cases where ChronoTwigger’s amalgam of co-evolution and

co-change provides information not readily available with existing software

visualization: test files (violet squares) created during test-driven development
subsequently couple with different source files (green circles) (a); tight

coupling of source and test files among looser couplings (b); and migration of

files between modules (c).

assisted the analysis. Therefore, one of ChronoTwigger’s

intents is to present co-change information to users to assist

analysis of a software system’s co-evolution.

Co-change has previously been visualized to present

module coupling in an intuitive way [13], but was focused on

small software systems with a few files. Further work used an

energy based clustering algorithm to produce an intuitive

visualization of the relationships between software artifacts [3].

This work was later improved to an “animated” version [14]

that showed change over short periods of time through a

sequence of storyboards. The researchers chose to juxtapose

static panels because the animation method makes analysis of

long projects difficult as the user has to replay the animation

many times. ChronoTwigger also shows co-change over time,

but addresses the problem of analyzing long projects by using a

static temporal visualization that enables the user to view an

entire time series at once. We apply co-change visualization to

the problem of co-evolution analysis, where we use its

properties to help the viewer focus on relationships between

test files and source files that were changed together frequently.

C. Co-evolution

Co-evolution is an idea that focuses on exploring how

software and its associated tests evolve together. Since test and

source code can change at different rates and times, observing

their co-evolution can give insights into aspects how testing

was used during development [1]. There have also been studies

in co-evolution of other parts of a software system, such as

source code, test, and build files [15].

Co-evolution can reveal aspects of a software project that

help promote good development practices. In recent work,

Hurdugaci and Zaidman [16] use co-evolution enforce test case

code-coverage checks on commits to maintain test quality

throughout development. In their work, co-evolution was

derived by explicitly checking which tests ran on which code

which they noted was time-consuming, while others have

measured co-evolution using various association rules built on

probabilities [1, 17]. These works highlight the benefits of

understanding the co-evolution of a system, and so we target

ChronoTwigger as a tool that will help developers analyze the

test and source co-evolution their systems. We also propose

that co-change would be an effective way to investigate co-

evolution, as source and test files that are committed to a

source repository together should be detectable by co-change.

Zaidman et al. [18] explored visualization for co-evolution

based on a previous tool for software evolution by Van

Rysselberghe and Demeyer [2], where files are organized by

their date of creation in the project. By inspection of Zaidman

et al.’s visualization, analysts can determine whether testing

happens synchronously or in phases, locate areas where test-

writing effort is increased, and identify testing strategies such

as Test Driven Development. Our visualization will explore the

use of newer visualization techniques, and extend previous co-

evolution visualizations by organizing files by their

relationships with each other as calculated by Beyer’s co-

change method [3]. This organization was lacking from

previous work, and should help the user recognize additional

aspects of co-evolution such as impact on test files after

changes in source files because these files would be visually

grouped together.

D. Using 3D to Visualize Time

Our work aims to reveal patterns of co-evolution by

visualizing a project’s temporal dimension. In visualization

literature, there are two well-studied methods for representing

time: One method is through animation and the second is to

map time to one available spatial dimension [5]. An example of

animations for showing different authors’ influence on a

project’s development history is Caudwell’s Gource [19]. Since

animations require a span of time to watch, Beyer and Hassan

[14], used storyboards as an alternative to animation to show

important events in a project’s co-change history.

ChronoTwigger is inspired by visual analytics systems [9]

such as Jigsaw by Stasko et al. [4], which uses multiple

interlinked views of a set of complex information to assist in

analytical tasks. The analysis of a software project’s co-

evolution, with perhaps thousands of files modified over a

series of thousands of commit events, is difficult to

comprehend with a single visualization alone. For our project,

we chose one of the views to be a 3D visualization to help us

display co-change and temporal information alongside software

repository data. 3D visualizations have previously been used to

help understand large, complex software systems. Caserta et al.

[20], for example, use a “software city” metaphor to create an

intuitive graph showing relationships between subsystems. In

our ChronoTwigger prototype, we use the third dimension to

represent time. Known as a space-time cube, this well-used

visualization technique displays time alongside two spatial

dimensions, making it a good candidate for adding a time

component to Beyer’s 2D clustering visualization [3]. The

space time cube originated in social science [21], and is often

used for the visualization of geospatial data, though any

temporal data with two dimensions can be used. Although the

resulting 3D layout can increase visual complexity, a study by

Kristensson et al. [22] provided empirical evidence that the

space time cube can lead to faster analysis when considering

complex questions.

III. SYSTEM DESIGN

To create our ChronoTwigger solution, we first looked at

Beyer’s work in CCVisu, a tool that takes file-relation (RSF)

files as input and displays a visualization (Fig. 3). This

visualization is the result of an energy-based clustering

algorithm that groups code files, or other software artifacts,

based on their relative amount of co-change; files that are

changed together often are attracted to one another, and all

others are repelled. (See Beyer’s paper [14] for a full

description of the clustering algorithm). We could see that this

kind of visual representation would be beneficial in making

conclusions about the co-evolution of source and test files. The

main drawback of this visualization was the lack of information

about the process of evolution throughout the project, limiting

conclusions that can be drawn about development; CCVisu

displays the final clustering based on co-change over the entire

duration of the project, which gives a robust view of the

software system but does not provide insight about specific

points in time. It also does not differentiate between source and

test files.

We developed a 3D visualization that is based on Beyer’s

work, but spreads the project data over time in a space-time

cube. In this way, we show the progression of file clustering

and commit behaviour throughout the life of the system, or in

particular time periods that are of important interest to the user.

We chose a space-time cube as it is a well-researched way to

show progression of data over time [22], and we hypothesized

it could be useful if combined with the layout results from the

CCVisu algorithm.

To promote user interactivity, we created a single interface

to control both visualizations (improved 2D and 3D). We

expanded the existing CCVisu interface with communications

to the 3D application. This means that any command issued on

the 2D interface will be transmitted to the 3D application, and

create a simultaneous effect in that visualization as well. Due to

the nature of the clustering algorithm, there is no direct

correcpondance between the positions of nodes across the 2D

and 3D visualizations, however the two views complement

each other, offering different views on the same data.

We created a mining application to analyze the commit data

of projects and create the necessary files which will be used to

display the data. A diagram of our system architecture is shown

in Fig. 4. We discuss each of the components in more detail in

the next few sub-sections.

A. Mining Application

We created an application to mine open source Git

repositories. The input is the output of the command git log
--name-status, which returns each commit ID, the author of

the commit, the time it took place, the commit comment, and

all files in the commit and whether they were added, deleted, or

modified. This output is automatically sorted by time.

We parsed this data into a format that CCVisu can

understand: an RSF file. This is a general file format that is

used to store relational information (such as a relational

database). In this case, it is used to store the commits as a

directed graph, where each edge connects a file with the

commit it appears in, where the source of the edge is the

commit node.

To display this data over time, we took the entire commit

history and divided it into smaller time slices, grouping

commits that occurred within the same slice. For proof of

concept, we found that a granularity of eight equal slices

adequate, although more slices would allow a more detailed

analysis. Preprocessing could also be adapted to provide the

user multiple levels of granularity; with the multiple resulting

“layers”, temporal relationships could be viewed at varying

levels of detail using a temporal “zooming” functionality.

For each individual time slice, we applied Beyer’s co-

change minimization algorithm. However, because each slice

was run without data from the previous commits, nodes

common across slices (files included in multiple commits) had

unpredictable and inconsistent mapping to spatial positions

from one 2D slice to the next. This lack of common

information across each time slice often resulted in the same

node appearing in entirely different locations in different slices,

making the temporal visualization difficult to interpret.

To maintain some consistency between the positions of

nodes, we applied a sliding window to ensure that each

adjacent slice contained a high number of common information.

For each time slice, we enforced a substantial overlap with the

previous window (Fig. 5). For proof of concept, we chose 75%

overlap after trial-and-error, although the optimal overlap will

require future investigation. We kept the size of the slices the

same at one eighth of the commit history. The overlapping

window results in the generation of many additional segments,

providing a greater resolution for data exploration. This sliding

window method has an effect analogous to interpolating

between keyframes of an animation, smoothing the transition

between them and reducing node movement due to different

sets of files in each slice.

Fig. 5. Each time slice of the source revision history overlaps the previous

slice by 75%. This sliding window method is necessary to create a set of
change graphs that interpolate smoothly between consecutive states.

Fig. 3. Beyer’s original CCVisu output [3]. Nodes closer to each other are
likely to be related (changed together in commit logs). The size of the node

shows its amount of change of the project’s history (number of commits).

Fig. 4. ChronoTwigger system architecture.

We ran each of the resulting RSF files through Beyer’s

algorithm. The output of the algorithm is a layout file that holds

the final location of each node clustered by co-change, along

with its degree, which represents the number of nodes that are

connected to that node. The file also holds the name (including

the file path) of each node, from which we can reliably

determine whether the node corresponds to a test file (assuming

the common practice of storing test files in explicitly named

directories). This layout data is used by our 3D visualization,

described in Section 3.3.

B. 2D Visualization

Once the input data is created by the mining application, we

import it to the data visualization software. Our 2D

visualization and control interface is a modified version of

CCVisu [3]. In short, nodes in the resulting visualization are

grouped by how often they are changed together in commits:

nodes that are closer together are more likely to be logically

coupled than nodes that are farther apart. Node size represents

the total amount of change for that node throughout the project.

The resulting visualization is a summary of co-change over the

selected time period. The algorithm used to decide positions of

nodes is the same as provided in CCVisu.

As noted previously, our aim was to produce a visualization

that contrasts source and test files, enabling users to analyze

co-evolution. To accomplish that we changed the color of test-

related files in the project to violet, and changed their shape to

squares instead of circles (Fig. 6). This simple but significant

difference gives a much clearer view of the couplings and

allows for immediate conclusions for the testing behaviour in

the system (e.g., are source files and test files developed

together? What are the logical test groupings in the system?).

We also added features to enable a closer look at a specific

file’s evolution with respect to files changed with it during its

evolution. In our updated version the user can select a file node

to show only the files that had changed with the target file. This

change targets developer questions such as “Which test file

should I modify after editing a certain source file?” and “Which

source files should I investigate if a certain test fails?”

Additionally, an important element for the project was the

time aspect of the visualization. We wanted a way to have all

visualizations display data for only a time period controlled by

the user. We expanded the CCVisu control window to include

sliders that control the start and end time for the commit data

that will be displayed (Fig. 6). These controls enable the user to

focus on the critical time points during development. When the

user selects a time period, the 2D visualization shows the result

of Beyer’s algorithm using only the commits within that period.

The 3D and 2D interactions are synchronized over a

network. We send all commands from the 2D interface directly

to the 3D application, along with the IDs of nodes that should

be displayed. This allows the 2D and 3D applications to display

related data, and lets the user use both visualizations to analyze

the data.

C. 3D Visualization

Our 3D visualization (Fig. 1b) uses a space-time cube

representation to depict the co-change relationships between

objects over time. Whereas the space-time cube is often used to

represent geographical space, we instead use two spatial

dimensions to represent the relative degree of co-change,

precisely as is done in Beyer’s static visualization (nodes that

are likely to be logically coupled are drawn closer together).

However, since we calculate the co-change function for each

individual time slice (as described in Section III.A), changes in

the degree of co-change between nodes over time are now

visible. We use the vertical axis to represent time, with time

flowing in the “up” direction. Node size represents the total

change to the corresponding source or test file within a given

time slice.

For a selected group of nodes and chosen span of time, the

nodes are scaled to fill a 0.5 m
2
 × 2 m high volume for an

immersive 3D environment. Users without such equipment can

view it on a 2D display monitor, where the volume is scaled

down to fill the display screen. The spatial dimensions are

scaled such that the greatest distance between any two nodes

spans the full cube width. Time slices are also scaled such that

each slice is separated by a distance of ()⁄ , where

n is the number of available slices and height is the length of

the time axis. Since one file object can exist in multiple layers,

the corresponding entities are connected with line segments;

each node is connected to the corresponding node (i.e. sharing

the same file ID) in the previous layer. If a file does not

undergo any change for a period of time, some levels may be

skipped and the node is connected to the next counterpart found.

As mentioned in the previous subsection, interaction with

the 3D visualization is done through the 2D visualization and

control panel. Although interactivity would benefit from two-

way communication, selection and control over 3D objects is a

difficult problem and a topic of current research. Thus, we limit

the control flow of our prototype to one direction (from the 2D

Fig. 6. Top: Control window display, controls both visualization

simultaneously. Bottom: 2D visualization (violet squares are test-related

files, green circles are source files).

to the 3D visualization). Because there may be no obvious

connection in the appearance the 2D and 3D structures, control

mechanisms, such as “select node”, can also help users

translate between the two views.

A summary of the control mechanisms available in our

prototype is shown in Fig. 7. We give a detailed description of

each as follows:

Select node – selecting a node on the 2D display (i.e. the

magenta node in Fig. 7) causes the corresponding set of nodes

and their connecting line to be highlighted (in magenta) in the

3D visualization.

Band select/zoom – a basic rectangle selection for selecting

a set of nodes on the 2D display that causes the corresponding

nodes to be shown on the 3D display. All other nodes are

hidden and both 2D and 3D displays zoom to the selected set.

Show co-change – right-clicking on a node selects all nodes

that are co-changed with that node at any point in the project

history. The selected node is also highlighted in the 3D

visualization.

Time filter – two sliders on the 2D control panel delineate

the start and end points of the selected timespan. In the 2D

display, any nodes that did not have any change events within

this timespan are hidden. Meanwhile, the 3D visualization

shows only those time slices that lie fully within the selected

start and end points. These slices are then expanded to fill the

entire height of the 3D volume.

D. Implementation Platform

Our 2D visualization and control panel were extended from

CCVisu [3], which is written in Java and made freely available

online by its creators. We modified the program into a network

client which connects with a host program that updates the 3D

visualization.

Our 3D visualization was implemented using the OpenGL

framework. For view management and other utilities, we use

additional frameworks: for the desktop implementation, we use

the GLUT framework; for the immersive projected display, we

use VR Juggler, which handles perspective mapping based on

head-tracking input. The large display is a Visbox Viscube C2-

HD. This consists of two pairs of projectors which display 4-

metre wide stereoscopic renderings on a back-lit screen and on

the floor. Standing on the projected floor while wearing the

head-tracked 3D glasses provides a feeling of immersion,

where the 3D visualization appears before the user. In this

setting, 3D glasses do not impede the use of the 2D interface,

which we run on a handheld tablet computer. While such

immersive environments may be beyond reach of small

companies, our system could easily be adapted for use with 3D

monitors or wearable virtual reality systems, which are

becoming available at low cost. Nonetheless, our 3D

visualization does not require stereoscopic viewing equipment

of any kind; ChronoTwigger can be displayed on a standard 2D

monitor, in which case a sense of the 3D structure can be

revealed by controlling its rotation.

E. Example Visualizations

To demonstrate how ChronoTwigger works in practice, we

compared two open source software projects. The first is

Checkstyle, a tool for evaluating Java coding standards, written

in Java. It has over 2500 files and a similar number of commits

from 2001 to 2013. For the second example, we chose the

mailnews component of the Mozilla project, which has nearly

8000 files and about 13000 commits from 2003 to 2012.

Fig. 8 shows all nodes from both projects after 100

iterations of Beyer’s energy function (the default value). Our

modification for highlighting co-evolution shows some clear

groupings of source and test files in the Checkstyle project (Fig.

8a). It appears there is strong coupling between a large group of

source files on the bottom left side and a close but separate

group of test files on the bottom right. The Mozilla project (Fig.

8b) has much less visible structure, which suggests lower

cohesion of sub-groups and greater overall coupling throughout

sections of the project. However, we believe this may be due to

the large size of the project (approximately four times the

number of files and commits from Checkstyle), which may

require additional iterations of Beyer’s minimization algorithm

to define a visible structure.

We look at some sub-groups of the projects’ files. Fig. 9

shows relatively large selections from both projects. In the 3D

visualization, we again see more structure in the Checkstyle

group (Fig. 9a) than in the Mozilla selection (Fig. 9b).

However, we can see some immediate differences between the

timelines of the two selections. In the Checkstyle project, there

is a significant amount of development in the early stage of the

selected files, which tapers off as the project progresses (the

Fig. 7. A summary of the interactive features that allow control

of the 3D visualization from the 2D display.
Fig. 8. All files from the Checkstyle (a) and Mozilla (b) projects as they

appear in our modified 2D visualization, each after 100 iterations.

majority of nodes disappear near the upper end of the timeline).

In the Mozilla selection, on the other hand, development seems

to remain fairly constant throughout, possibly with major

refactoring near the middle, indicated by the larger source

nodes in the central region of the 3D view. In the Checkstyle

project, we can also see several thick strands in the 3D view,

suggesting closely coupled files. No similar structure is visible

in the Mozilla example. One common feature between both

projects is the large number of test files created at the start of

the project (bottom of the 3D views).

Our visualization also allows us to see features not visible

in the 2D view alone. For example ChronoTwigger allows us to

see how the clusters of source and test files evolve over time;

while the 2D view shows a tight cluster of test nodes in both

projects, the 3D view reveals that these couplings are not static

throughout the project: in both projects we can see a group of

violet test nodes diverge from a cluster near the bottom of the

timeline, but they become mixed with the source files as

development continues. This indicates that many of the test

files were created together at the beginning of the project.

These groups of test files disperse over time as they migrate

closer to their (presumably) associated source files, indicating

development focused on single features or bugs. This pattern

cannot be extrapolated from the 2D visualization alone.

In Fig. 10 we see a smaller selection of files from each

project (Checkstyle, Fig. 10a and Mozilla, Fig. 10b). Once

again, a stronger organization is apparent in the Checkstyle

project than in Mozilla. In the 2D visualization of Checkstyle,

we see several clear subgroupings of source and related test

files. As in the previous large selection, the 3D view tells us

some additional information about the evolution of these

groups that is not apparent in the 2D visualization: there is a

tight grouping at the start of the timeline, as most of the files

seem to have been created together. In later revisions, however,

this large group diverges into several smaller tight groups,

likely corresponding to the groups visible in the 2D graph.

Again, we see that development tapers off at the end, where

only a few nodes remain in the change logs.

In the Mozilla selection, we can see one large source node

that was changed with many other files. The 3D view allows us

to follow this file’s history (the large green nodes along the

center of the 3D view). Over time, we see many other source

and test files, pulled repeatedly towards, and then away from,

this file. Likely, there is more to the story, as these motions are

affected by other files out of view. However, we can see that a

majority of these concurrent changes happened in the first half

of the project where the nodes are largest (like the 2D

visualization, node size in the 3D visualization is proportional

to the number of files changed with that node).

IV. RESEARCH QUESTIONS

We hypothesize that representing co-change (grouping

source and test files that change together) in a clear co-

evolution (temporal relations between source and test files)

visualization will provide important information about the

Fig. 9. A selection of a relatively large group of files from both the

Checkstyle (a) and Mozilla (b) projects. Fig. 10. A selection of a smaller group of files from both the Checkstyle
(a) and Mozilla (b) projects.

software development process to the viewer. In particular, we

ask the following research questions:

RQ1: Can we identify periods of intensified testing activity

during the history of a project/subsystem?

RQ2: Can we infer testing patterns and determine how

these evolved during the project’s development?

V. EVALUATION

We performed a pilot user study with three participants who

each used our system for approximately 30 minutes. These

participants are proficient software developers (at minimum at

computer science graduate student level); two males and one

female. The 2D visualization was displayed on a tablet PC and

the 3D visualization was displayed in an immersive 3D display.

The system under scrutiny was the open source project

Checkstyle, which has been used in previous works, including

Zaidman et al.’s co-evolution visualization [18].

The study was performed in a workshop style; we explained

the meaning of the 2D and 3D visualizations, and then asked

participants to investigate any part of the software they wished

while thinking out loud. We took notes on their insights, and

present some qualitative findings below.

VI. RESULTS

RQ1: Can we identify periods of intensified testing activity

during the history of a project/subsystem?

In Fig. 11a, a participant is inspecting a large subsystem of

Checkstyle by zooming in on a large cluster of source and test

files he noticed in the 2D visualization. Upon inspection in the

3D portion of ChronoTwigger, he noticed the large cluster of

nodes at the beginning of the project, thinning out towards the

top. He noted that testing and source changes occurred about

uniformly throughout this intense development, but towards the

end of the project where there is less development, test node

changes outweigh the source file changes. He stipulated that

this implies a significant testing phase at the end of the project,

at least for this part of Checkstyle.

Our users picked out areas with unbalanced amounts of

violet test nodes and green source nodes. Due to the co-change

clustering related files together, they were able to also notice

such periods on a smaller scale: in large projects, teams in

charge of certain features may test better than other teams. This

information would be available to project managers when they

inspect projects with ChronoTwigger.

In Zaidman’s temporal co-evolution visualization [1], this

question can be clearly answered on a project-wide scale.

However, Zaidman’s visualization organizes files by ID,

grouping modules as they are added throughout a project. This

organization by file ID can make it extremely difficult to find

relationships between closely coupled files that are added at

different times (e.g. a source file and corresponding test file).

ChronoTwigger makes answering this question easier on a per-

module basis because of the structured nature of the

visualization: as in Beyer’s visualization, related nodes are

spatially grouped, allowing the observer to easily identify

modules. However, such a question cannot be answered by

Beyer’s co-change alone, due to its non-temporal nature.

RQ2: Can we infer testing patterns and determine how

these evolved during the project’s development?

In another inspection, one participant was inspecting Fig.

11b. The participant suggested this was, perhaps, a stub, being

just a small data generation program (just a few files) that was

later fully implemented about two-thirds into the project (as the

related file count increases, shown by the increased node count).

He also noted the continual testing visible throughout this

subsystem’s development, with a proportional increase of

source and test files throughout the structure; which suggests

an agile-like development methodology. He also noticed the

proportion of test to source files, suggesting the test files likely

hold tests corresponding to many source files: at the early

phase of the project, where there are less files, he observed that

the test file would move together with one source file at one

point, and then move parallel to another source file at a

different level, indicating that the test file covers multiple

source files and may need to be refactored into multiple test

files. While this conclusion is noticeable in Beyer’s

visualization (many source files by a single test file),

ChronoTwigger makes such observations easier by explicitly

marking test files in the 2D visualization, and more informative

by including the temporal dimension which allowed our user to

notice at what times (which commits) the test node moved

closer to different source nodes, possibly aiding refactoring.

A different testing pattern was seen in Fig. 12. Upon

inspection of the 2D visualization (Fig. 12c), it seemed the

source and test files were related in some way, though the two

types of files were clearly separated. The participant inspected

each group separately (Fig. 12a, b). He noted that a similar

structure appears in both source and test groups over time: a

compact, strong branch at the beginning of the project moving

Fig. 11. A participant inspects a section of Checkstyle in an immersive 3D

display (a). A group of tightly coupled, highly related files (b). Note how

the lateral movements (co-change) match between source and test files,
especially towards the top of the timeline. This implies the files were often

being changed together, as they stick together despite moving in the co-

change dimension, likely due to co-changes with files off-screen.

to a more dispersed, chaotic looking mid-project section, and

ending in the thinner and spread out end of the project. The

participant observed the beginning is probably due to many

files being created at once, with the middle having different

features being developed at different times by different authors,

ending with smaller localized bug-fixes at the end. The

participant concluded that it was possibly a test-driven

development methodology due to the strong parallels in shape

of both source and test nodes. They thought the source and test

were separated possibly because the authors developed the tests

and committed them before developing the appropriate source

code.

Our users made clear deductions about general practices in

project development styles, however we cannot confirm such

speculations without detailed analysis of the source repository.

For example, one participant deduced that test-driven

development was used in the code visualized in Fig. 13, but

also suggested that it was difficult to be sure: it could be agile

development with a test-last methodology as well. The

participant also noted it is hard to compare large groups of files

on a detailed time schedule. It is important to restate that our

3D visualizations shows groups of commits (commits

occurring in the same time slice), not individual commits,

blurring the exact time of change. However, since, in our

examples, source and test files appear together over long

periods of time, we can say with relative certainty that this

project mostly tested alongside source development.

As with the previous question, the organization by file ID in

the visualization by Zaidman et al. makes it difficult to identify

related files. Whereas this visualization can show when tests

and source were written in relation to each other [1], it is

difficult to tell how the relationship between source and test

nodes changes over time. However, with ChronoTwigger’s use

of Beyer’s co-change function, we can easily identify points

where nodes converge or diverge during the project timeline.

Again, Beyer’s visualization shows only the sum of changes

over the entire project, while ChronoTwigger’s temporal nature

allows Co-change to be observed over time.

VII. LIMITATIONS

While our participants used ChronoTwigger to infer

properties of a software system’s development, there are many

factors that still need to be explored. For example, we noticed

our visualization of Mozilla’s mailnews component does not

have as much structure as Checkstyle, suggesting that different

sized projects (mailnews was about four times larger) may

require more iterations of Beyer’s algorithm to converge. In

addition, the number of time slices for our 3D visualization (we

picked eight) may affect what conclusions can be drawn from

the visualization: more time slices would allow more detailed

temporal analysis, but may impede the observer because the

visualization would become cluttered. Additionally, our sliding

window overlap method has a strong effect on the Beyer’s

layout result of each slice due to the inclusion or exclusion of

files. Foresighted graph drawing techniques [23] may help

mitigate this issue by initializing node positions to correspond

with those in the prior layer. Likewise, the ideal amount of

overlap between time slices requires further study. The overall

user experience with our 3D visualization will benefit from

additional features (e.g. text labels) and by allowing interaction

Fig. 13. A view of group of related source and test files, with some files

branching off. This was a time filtered result, showing only the first 25%
of commits containing these files.

Fig. 12. A participant individually inspects large groups of source files (a) and

test files (b). Both groups are shown together in the 2D view (c).

directly with the 3D structure as well as through the 2D view.

We also require a larger user study to generalize our results.

These studies should ideally include actual project managers

analyzing their own projects with ChronoTwigger, to provide

expert insight into the benefits and drawbacks of our system in

real-world situations.

VIII. CONCLUSION

We have created a fully functional visual analytics system

with interlinked 2D and 3D display views of mined Git

repository data. Building on the work of Beyer [3] and

Zaidman [1], we provide an interactive tool that can help find

insights that are difficult to observer with previous tools alone

because ChronoTwigger shows co-change as a function of time

and allows users to filter by time or by connectivity of file

artifacts. We ran a pilot user study to understand the potential

benefits of our system and found that ChronoTwigger can help

to:

(1) identify periods of intensified test or source

development

(2) understand co-evolution at the level of logical

subsystems

(3) understand aspects of a software project’s general

development style

While further, more rigorous user studies remain as

important future work, we conclude that ChronoTwigger is a

step forward in the visualization of co-evolution and in its

current state can already show useful information to project

managers and test engineers.

REFERENCES

[1] A. Zaidman, B. Van Rompaey, S. Demeyer , A. van Deursen,

“Mining software repositories to study co-evolution of

production & test code,” In Proc. of Software Testing,

Verification, and Validation, 2008, pp. 220-229.

[2] F. Van Rysselberghe and S. Demeyer, “Studying software

evolution information by visualizing the change history,” In

Proc. of Software Maintenance, 2004, pp. 328-337.

[3] D. Beyer, “Co-change visualization,” In Proc. of Software

Maintenance (ICSM '05), Industrial and Tool Volume, 2005, pp.

89-92.

[4] J. Stasko, C. Görg and Z. Liu, “Jigsaw: supporting investigative

analysis through interactive visualization,” In Proc. of Visual

Analytics Science and Technology (VAST '07), 2007, pp. 131-

138.

[5] G. Andrienko, N. Andrienko, H. Schumann, C. Tominski, U.

Demsar, D. Dransch, J. Dykes, S. Fabrikant, M. Jern and M.-J.

Kraak, “Space and time,” in Mastering the Information Age:

Solving Problems with Visual Analytics, D. Keim, J.

Kohlhammer, G. Ellis and F. Mansmann, Eds. Goslar, Germany:

Eurographics, 2010, pp. 57-86.

[7] M. Godfrey and Q. Tu, “Evolution in open source software: A

case study,” In Proc. of Software Maintenance, 2000, pp. 131-

142.

[8] D. German, “Using software trails to rebuild the evolution of

software,” Journal of Software Maintenance and Evolution, vol.

16, no. 6, 2004, pp. 367-384.

[9] D. Keim, J. Kohlhammer, G. Ellis and F. Mansmann, Mastering

the Information Age: Solving Problems with Visual Analytics,

Goslar, Germany: Eurographics, 2010.

[10] A. E. Hassan and R. C. Holt, “Predicting change propagation in

software systems,” In Proc. of Software Maintenance, 2004,

pp.284-293.

[11] J. S. Shirabad, T. C. Lethbridge and S. Matwin, “Mining the

maintenance history of a legacy software system,” In Proc. of

Software Mantenance, 2003, pp. 95-104.

[12] T. Zimmermann, A. Zeller, P. Weissgerber and S. Diehl,

“Mining version histories to guide software changes,”

Transactions on Software Engineering, vol. 31, no. 6, 2005, pp.

429-445.

[13] N. Hanakawa, “Visualization for software evolution based on

logical coupling and module coupling,” In Proc. of Software

Engineering, 2007, pp. 214-221.

[14] D. Beyer and A. Hassan, “Animated visualization of software

history using evolution storyboards,” In. Proc. of Working

Coference on Reverse Engineering, 2006, pp. 199-210.

[15] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei and A. E.

Hassan, “An empirical study of build maintenance effort,” In

Proc. of Software Engineering, 2011, pp. 141-150.

[16] V. Hurdugaci and A. Zaidman, “Aiding software developers to

maintain developer tests,” In Proc. of Software Maintenance and

Reengineering (CSMR '12), 2012, pp, 11-20.

[17] Z. Lubsen, A. Zaidman, M. Pinzger, M. W. Godfrey and J.

Whitehead, “Studying co-evolution of production and test code

using association rule mining,” In Proc. of Mining Software

Repositories (MSR '09), 2009, pp. 151-154.

[18] A. Zaidman, B. Van Rompaey, A. van Deursen and S. Demeyer,

“Studying the co-evolution of production and test code in open

source and industrial developer test processes through repository

mining,” In Proc. of Empirical Software Engineering, vol. 16,

no. 3, 2011, pp. 325-364.

[19] A. H. Caudwell, “Gource: visualizing software version control

history,” In Object Oriented Programming Systems Languages

and Applications Companion (SPLASH '10), 2010, pp. 73-74.

[20] P. Caserta, O. Zendra and D. Bodenes, “3D hierarchical edge

bundles to visualize relations in a software city metaphor,” In

Proc. of Visualizing Software for Understanding and Analysis

(VISSOFT '11), 2011, 1-8.

[21] T. Hägerstrand, “What about people in regional science,” Papers

in Regional Science, vol. 24, no. 1, 1970, pp. 7-24.

[22] P. O. Kristensson, N. Dahlback, D. Anundi, M. Bjornstad, H.

Gillberg, J. Haraldsson, I. Martensson, M. Nordvall and J. Stahl,

“An evaluation of space time cube representation of

spatiotemporal patterns,” Visualization and Computer Graphics,

vol. 15, no. 4, pp. 696-702, 2009.

[23] S. Diehl and C. Görg. “Graphs, they are changing,” In Proc. of

Graph Drawing (GD '02), 2002, pp. 23-30.

