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Abstract

We present an approach for the semi-automatic generation of gesture mappings for
devices with low gestural resolution such as the Myo Armband, an off-the-shelf EMG
capture device. As an exemplar interactive task, we use text-entry: a pervasive and highly
complex interaction. We quantify data related to interaction combining systematic
studies (i.e., error, speed, accuracy) and semi-structured workshops with experts (e.g.,
cognitive load, heuristics). We then formalize these factors in a mathematical model and
use optimization algorithms (i.e. simulated annealing) to find an optimum gesture
mapping. We demonstrated our method in a text-entry application (i.e., complex
interactive dialogue) comparing our approach with other computationally determined
mappings using naive cost functions. Our results showed that the designers mapping
(with all factors weighted by designers) presented a good balance on performance in all
factors involved (speed, accuracy, comfort, memorability, etc.), consistently performing
better than purely computational mappings. The results indicate that our hybrid
approach can yield better results than either pure user-driven methodologies or pure
data-driven approaches, for our application context featuring a large solution space and
complex high-level factors.
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1 Introduction

Gestures play an inherent role in our everyday communication, to the extent that we
make use of them even when our interlocutor is not present, such as when speaking on
the phone [26]. Gestures can be used to communicate meaningful information
(semiotic), manipulate the physical world (ergotic) or even to learn through tactile
exploration (epistemic) [4]. Semiotic gestures have been of particular interest to the HCI
community as a powerful way to communicate with computers [23, 27].

The creation of interfaces involving gestural interaction remains a challenge. On one
hand, advances in hardware have been remarkable. Gestural interaction is no longer
restricted to data-gloves [7, 16, 34], and there is an increasing range of potential devices,
allowing gesture tracking on un-instrumented hands or even in mobile formats. On the
other hand, the methods and approaches to design these experiences have followed a
much slower progression, not copying with the increasing number of devices available,
and still relying on iterative methods and designers’ expertise [9, 30].

As a result, interaction designers are faced with a very challenging task, with many
factors involved in the creation of the gestural interface. While some factors will be easy
to assess (e.g., device’s comfort, accuracy, speed), others will be more complex (e.g.,
social acceptability and cognitive load). Particularly challenging is the elicitation of the
most appropriate gestures and their mapping to tasks, which can easily lead to a
combinatorial explosion. For instance, our example case study (text entry) offers more
than 35K ways to map gestures to input commands and more than 12K ways to map
these to actual letters. While iterative methodologies, designers’ intuition and heuristics
might help, it will be costly to navigate this vast solution space and identify the optimum
interactive dialogue. In contrast, computational approaches might struggle to capture the
complex subjective factors (i.e. social acceptability or cognitive load).

Unlike previous methods, we propose a hybrid approach, merging designer-led methods
and computational approaches for the generation of robust gestural mappings under
such challenging conditions (i.e. large solution space involving complex high-level
factors). More specifically, we present an expert-guided, semi-automated design of
interactive dialogues for low gestural resolution devices. Our approach consists of four
steps: (i) quantify low-level factors (gesture error rates, speed or accuracy); (ii) semi-

https://doi.org/10.1007/978-3-030-29381-9_38
https://link.springer.com/content/pdf/10.1007%2F978-3-030-29381-9_38.pdf


12/13/2019 Designer Led Computational Approach to Generate Mappings for Devices with Low Gestural Resolution | SpringerLink

https://link.springer.com/chapter/10.1007%2F978-3-030-29381-9_38 3/29

structured workshops with designers (identify higher-level factors, such as cognitive
load and experts’ heuristics); (iii) formalization & optimization (using objective and
designers’ knowledge to produce a mathematical model, and compute an optimum
mapping); and (iv) comparative evaluations (to guide the iterative interface design, in a
cost-effective manner).

We demonstrate this approach applying it to the design of a text entry technique using a
Myo device. Figure 1(g) shows the result – a multi-level mapping between the input
gestures and characters for text entry. To assess the value of our approach, we compared
the mapping produced from our hybrid approach (incorporating designers’ high-level
factors) to several purely computational, naïve mappings. Particularly, we defined 6
alternative cost functions (i.e. models to assess the quality of a mapping) optimizing for
time and accuracy, and explored up to 2.7 billion possible mappings, finding the
optimum mapping for each of the 6 naïve cost functions.

Fig. 1.

From left to right (Top), the resulting mappings from the full optimization
using different training database and cost function’s factors. Below each
layout, its histogram is shown. The cost per layout is represented along all
histograms using color code (M_C1 = green, M_C2 = blue, M_C3 = yellow,
M_C4 = magenta, M_C5 = cyan, M_C6 = black and M_D = red). (Color
figure online)

Figure 1 shows histograms for all these mappings according to: the naïve computational
metrics (a–f) and our approach (g). The optimum mappings computed are also
highlighted within each histogram (bars). These show that, while naïve functions are
highly ranked according to the designers-led metric (i.e. low scores, in Fig. 1g), the
designers-led mapping ranked relatively poorly according to each of the 6 naïve cost
functions used (red bar showing high values in Fig. 1(a–f)). This could either point
towards designers’ insight being irrelevant (or even harmful) or to computational
methods failing to capture the complexity of the task. The results from our study show
that the designers-led mapping actually showed a good balance on performance in all
factors involved (speed, accuracy, comfort, memorability, etc.), consistently performing
better than purely computational mappings. This reveals an untapped power in the
designers’ ability to identify a good cost function, with our approach helping to produce a
suitable formalization to exploit the exploratory potential of computational approaches.

We finish the paper reflecting on these results and on how they should open a discussion
on the added value of designers’ intuition and heuristics when exploring gestural
interfaces, and the need to make these an integral part of current design methodologies,
for large solution spaces.

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-29381-9_38/MediaObjects/486811_1_En_38_Fig1_HTML.png
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2 Related Work

2.1 Gestural Input Devices: A Growing Landscape

An increasing number of device options are available to support gestural interaction.
Early instances included data gloves and tracking systems, mostly used for Virtual
Reality [34] and multimodal interaction. These provide high gestural resolution (i.e. high
number of distinct gestures), but require user instrumentation, hindering their
applicability (i.e. users cannot simply walk-up and use them, wires limit mobility, etc).
Wireless tracking systems (e.g., Leap Motion, Kinect, Project Soli) can improve
applicability [6, 33] but their sensors are typically fixed, constraining the user to specific
working spaces.

Mobile solutions have also been proposed. Kim et al. [17], presented a wrist-mounted
optical system, allowing for hand gestural interaction. Myo armbands use
Electromyography (EMG) to record and analyse electrical activity, allowing lightweight
mobile gestural input, without hindering the use of our hands and avoiding self-occlusion
problems. EMPress [22], combines EMG and pressure sensors, providing the same
affordances of Myo bands, but with improved gestural resolution. Solutions to extend
smartwatch interaction with around device gestural interaction have also been explored
[20], but they either provide limited gestural resolution [15] or involve instrumenting the
user’s gesturing hand [36].

2.2 Gestures and Mappings: Point Studies

The HCI literature has produced a plethora of studies, which can help designers deal with
the increasing number of device options available. Sturman et al. [31] explored and
provided guidelines to improve gestural interaction in VR. Studies from Rekimoto [25],
Wu and Balakrishnan [35] provide insight in the context of interactive surfaces, and
Grossman et al. [12] explored the topic in the context of 3D volumetric displays, just to
mention some. However, these illustrate how information related to gestural interaction
is scattered across individual point studies, focused on specific tasks and contexts.

A more general approach to designing gestural interaction has been to formalize user
elicitations [10, 14]. Designers seek end-user input on mapping gestures to tasks,
classifying gestures into high-level groupings based on salient properties (e.g., the
direction of movement, finger poses, etc). Elicitation studies have been successfully used
in a number of contexts, but have also been criticized for biasing results by basing them
on input from populations unfamiliar with the task or capabilities of a device [5, 10].

Alternatively, designers can gain insight about the mapping between gestures and tasks
from related literature. Focusing on text entry (closest to our case study), the QWERTY
keyboard serves as a preeminent example of discrete mapping, enforcing a 1:1 mapping
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between each key (gesture) and a letter (task). It also illustrates a mapping designed
around the mechanical limitations of past typing machines, rather than its
appropriateness for human input.

Computational approaches have proved to be valid tools to identify better mappings.
Zhai et al. showed clear improvements for clarity (avoid gesture ambiguity) and typing
speed for the most common digraphs in English [2] by simply swapping two keys (I and
J). Bi et al. [1] explored alternative mappings by swapping a few neighbouring keys, to
get a layout with better performance on speed, while retaining QWERTY similarity.
Smith et al. showed a similar approach, improving clarity, speed and QWERTY similarity
for 2D gesture typing. Alternatives for situations where 1:1 mappings are not available
(e.g., mobile phones) have also been tackled using computational approaches, mostly
through predictive text entry models [11, 24]. Other works have focused on exploring the
extent of human hand’s dexterity, creating mappings that benefit from all its bandwidth.
Oulasvirta et al. [29] explored the biomechanical features of the hand (flexion levels,
inter-digit dependencies), while PianoText [8] leverages users’ musical skills, using a
piano keyboard and chords to create an ultrafast text-entry system. In all cases, the
benefits of computational approaches are limited by the use of low-level, quantifiable
factors.

This situation motivates our approach. Interface designers might rely on methods that
introduce biases into the process and will struggle to iteratively explore large solution
spaces. Alternatively, computational approaches have great exploratory power, but they
might fail to capture higher-level aspects of such complex tasks as they tend to bias/limit
their results towards quantifiable factors that are easy to assess. Our approach intends to
bridge this gap, being the first one to put together the benefits of both approaches
(designers-led vs computational solutions), by blending designers’ methods/insight and
computational approaches.

3 Our Approach: Semi-automatic Mappings for
Low Input Resolution

Our method aims to bridge the differences between designer-led and computational
solutions, capturing designers’ tacit knowledge of the domain, and formalizing it to be
exploited by computational approaches. We thus combine quantitative
parameterization of relevant factors with domain expert knowledge elicitation, into a
structured approach. We refine these into a formal model quantifying the quality of each
mapping and using a global optimization algorithm to explore the solution space,
finding (potentially) the best solution. Our approach is compatible with iterative
methodologies and can be seen as the tasks required for one iteration cycle. The outline
of our approach can be divided into four stages:

(i) Quantification of Low-level Factors and Constraints
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This stage involves the experiments and in-lab tests required to measure and quantify
low-level factors and constraints. Low-level factors are simple parameters (e.g., time,
errors) associated with the device or modality that might influence the design of the
mapping and are easily quantifiable. Low-level constraints represent limitations within
the device or the way it is used. Using our case study as an example, factors can include
time to perform each Myo gesture, while excluding the double tap gesture due to its low
accuracy can be an example of a constraint.

These quantified values will be used in the two following stages: First, they will inform
designers, to help produce mappings and formulate heuristics; Second, they provide
quantifiable data, used by our optimization methods.

(ii) Domain Expert Knowledge Elicitation

We use small teams of experts as a way to elicit the relevant factors that need
consideration to design the interactive dialogue. Different methodologies can be used
(e.g., workshops, elicitation studies, prototypes), which help on addressing a broad
spectrum of aspects that cannot be covered by computational approaches alone (e.g.,
interface design, feedback elements, definition of the interactive dialogue, etc.).

However, while designers must consider the mapping of gestures to tasks, the ultimate
intent of this process is not the specific mapping they create (computational searches will
help make this specific choice). Instead, we focus on the designers’ rationale that they use
to determine what might be a good choice of gestures and mapping.

We reflect this rationale as constraints (i.e. conditions that must be obeyed) and high-
level factors (i.e. non-obvious aspects or heuristics affecting interaction, such as social
acceptance). These will help our following formalization process and the weighting of the
relative importance of each of these factors.

(iii) Formalization & Optimization

In order to optimize our mappings, we first need to provide a metric for the quality of any
given mapping. We formalize the quality of a mapping M as a cost function C computed
as a weighted average of the factors identified by the experts, with lower values
identifying better mapping:

(1)
The different factors are all normalized to a homogeneous range [0, 1), according to the
maximum and minimum values observed from the quantification. The value for k
(influence of a given Factor  in the mapping M) needs to be estimated from the experts’
impressions and analysis (further details follow). This assures that the contribution of
each factor to the quality of M is the result of the designer’s insight, and not the result of

C (M) =∑ ⋅ (M)C M kkii FactorFactorii M

i

i
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the factors’ relative orders of magnitude. In our example, the sum of factor weights (Σk )
equals one (factor as a ratio), but any other weight distribution reflecting the expert’s
impressions can be used. We then use a global optimization method to explore the
solution space, converging towards an optimized solution given the factors and weighing
values identified. Although our case study used Simulated Annealing [18], other
optimization approaches can also be used.

(iv) Comparative-Summative Evaluation

While the normalization of the factors identified follows quantitative criteria, the
estimation of the weight distribution (k ) does not, and it relies on the subjective
assessment of domain experts. Different weight distributions might reveal different ways
of thinking about the solution (e.g., how more relevant is minimizing time over cognitive
load?). Computing optimized mappings, according to different weight distributions, and
comparing them through summative evaluations can allow for the best mapping to be
identified. This reduces the exploration of the solution space to a few candidates (each
resulting from a different weighting strategy), and integrates easily with iterative
methodologies for gestural interaction, such as [9].

4 Case Study with Myo: Compute vs Design

We tested our approach using a Myo device (i.e. very low gestural resolution) for a text-
entry task, both as a worst-case scenario and as an obvious match to Foley’s analogy
between natural language and a general interactive dialogue. The in-built IMU was not
used and only the muscle activation was considered. This reduces our gestural resolution
even further (more challenging solution space) but it also lends itself to interesting
application scenarios. IMU-based gestures are defined relative to the body, and might be
restricted during our daily life (i.e. while sitting in a bus, walking or inside a busy
elevator). In contrast, our gestures remain relative to the hand, being still available in any
situation where the wrist can be moved.

Finally, we also wanted to assess the added value of our designers’ guided approach when
compared to unconstrained computational approaches, based on observable and
quantifiable factors alone. We replace the last stage of the method (iv), by a description
of the naïve computational mappings used, and a comparison against the results
provided by these alternative approaches.

4.1 Problem Delimitation

Although Myo supports up to five gestures, at the time when this work was carried out
“Double tap” was a recent addition with known inconsistencies in its detection [32]. Also,
any fast and consecutive pair of gestures was detected as “Double tap” (i.e. false
positives), conflicting with the use of other potential gesture chains For that reason, only
the four remaining gestures were used (see spread (S), fist (F), wave-out (WO) and wave-

i

i
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in (WI), in Fig. 2). We quantified the performance of 16 possible 2-step chain gestures
(consecution of two gestures, as in Fig. 3). Such 2-step chains require an intermediate
relax action (i.e. hand returning to a neutral status between gestures) to be recognized by
the system.

Fig. 2.

Gestures possible with a Myo armband. We used the enclosed gestures in
this work.

Fig. 3.

Two-step chain gestures under designers’ categories.

We asked our designers to categorize the 2-step chain gestures and they identified three
different groups: opposite, orthogonal and repeat. Opposite chains combine gestures
that activate opposing muscles. Orthogonal chains invoke orthogonal muscle groups;
and Repetitive chains contain two instances of the same gesture (see Fig. 3). For
example, WI+WI is a Repeat, WI+WO is of type Opposite, and WI+F is of type
Orthogonal. We will borrow this for the analysis in this section (even if the distinction
only appeared during the later workshops), as its analysis allows us to assess to what
extent designers’ insight reflects trends in data, or if some aspects pointed by designers
would be likely to be included or ignored by alternative purely computational
approaches. Finally, we also conducted a similar study for 3-step chain gestures.
However, designers soon disregarded these chains during the later workshop (only use 2-
chain gestures – C1), so our results for 3-step chains are omitted here for brevity.

(i) Quantification of Relevant Factors.

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-29381-9_38/MediaObjects/486811_1_En_38_Fig2_HTML.png
https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-29381-9_38/MediaObjects/486811_1_En_38_Fig3_HTML.png
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We conducted a quantitative study, where participants performed a series of 2-step chain
gestures under different input speeds to evaluate potentially relevant factors (i.e. errors,
ergonomics, and preferred 2-step chain gestures). We calibrated the Myo for each
individual participant and allowed them to become familiar with the 4 Myo gestures
(Fig. 2) and our 2-step chain gestures (Fig. 3). They were then asked to perform the 2-
step chain gestures shown on a display, which changed at regular speeds (i.e. each single
gesture shown during 0.6 s, 0.8 s, 1.0 s or 1.2 s). Participants were asked to complete the
gestures accurately and within the length of the prompts, which helped us identify the
appropriate “typing speed”.

The experiment consisted of 4 blocks (one block for each input speed) including three
repetitions of each of the sixteen 2-step chains gesture, resulting in 192 trials per
participant. To avoid participants fatigue given this number of trials, each block was
designed to be completed in about 4 min giving participants a 3 min break between
blocks. Due to fatigue could potentially affect participants’ performance, we ensured that
each block duration was short with enough time to rest. The full experiment duration was
then about 30 min, including calibration, training and breaks between blocks.

We counterbalanced the order of the input ratios using a Latin Square design, but gesture
order was randomly selected. Time per gesture chain and accuracy (whether the gesture
was recognized by Myo or not) were recorded. After each block (i.e. input speed),
participants also filled in a Borg CR10 Scale [3] questionnaire (i.e. specially designed to
quantify perceived exertion and fatigue [3, 28]) for each of the 16 2-step chain gestures.
The experiment was performed by twelve participants (4 females), with an average age of
23.53 (21 to 30) SD = 2.98, with the study being approved by the local ethics board. The
recruitment criteria were: (i) all participants right-handed; (ii) normal or correct-to-
normal vision; (iii) no affections/injuries on their hands and wrists; and (iv) no prior
experience with hand gesture interaction. Outliers were removed from the data (i.e.
mean ± 2 standard deviation), filtering out 129 trials (5.59% of samples). We then
conducted factorial repeated measures ANOVA (p = 0.05 to determine significance) on
the factors measured, which we report in the following subsections.

Time Per Gesture (F1).

Figure 4(a) shows the results of time for each 2-step chain. This analysis revealed
significant effects of gesture type on time performance (p < 0.001), justifying its later
inclusion as a factor (F1), even for a purely computational approach. Post-hoc tests with
Bonferroni corrections show significant differences between certain gestures (e.g.,
WI+WO vs F+WO, p = 0.03; WI+WI vs F+F, p < 0.001), but the high number of pairs to
compare (120), made such analysis poorly informative. Therefore, we did analyse time
performance based on the categories proposed by the designers (Repeat, Orthogonal and
Opposite). Opposite gestures performed best (M = 1.965 s; SD = 0.229 s), with significant
differences (p < 0.001) between the duration of Opposite and Repeat gestures
(M = 2.022 s; SD = 0.255 s) and also between Opposite and Orthogonal gestures
(M = 2.028 s; SD = 0.240 s; p = 0.001). On the other hand, clustering techniques (for
time, accuracy or comfort) did not lead to identifying these categories. Thus, this is
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considered designers’ tacit knowledge and would not be captured by purely
computational approaches.

Fig. 4.

(a) Time per chain gestures for Opposite, Orthogonal and Repeat categories
(Mean in seconds); (b) Accuracy per chain gestures (Mean in %); (c) Effort
results per chain gesture.

Accuracy Per Gesture (F2).

Figure 4(b) shows our results for accuracy, revealing overall accuracy is low (70%–90%).
An ANOVA analysis revealed an effect of gesture on accuracy (used as factor F2). Again,
significant differences were found between specific pairs of gestures, but we focus the
analysis on designers’ categories. We only found significant differences between Repeat
(M = 86.8%; SD = 21.57%) and Orthogonal categories (M = 81.28%; SD = 24.45%;
p = 0.032), but with reduced effect size. Also, no clear patterns could be observed by
looking at the categories (values well above and below the mean are present in all
categories, in Fig. 4(b).

Gesture Comfort ( F3 ).

Comfort was rated by participants using a Borg CR10 Scale [3] questionnaire (Fig. 4(c)
shows the average of participants’ effort per gesture). According to their answers, we
found Repeat gestures as the most comfortable (M = 1.5, SD = 0.33) followed by opposite
gestures (M = 1.66 BCR10 and SD = 0.2) and the most uncomfortable reported were
orthogonal gestures (M = 2.35 BCR10, SD = 0.38). It is worth mentioning that due to the
number of trials (192) during the experiment, fatigue could potentially affect
participants’ performance. However, as shown in Fig. 4(c), the maximum score of effort
was about 3.2 (in a scale from 0 to 10) suggesting that although we could observe
differences in effort (e.g. orthogonal gestures were more uncomfortable), participants
gave generally low scores in effort and therefore we considered unlikely that these low
scores represent a negative effect on participants’ performance during the experiment.

Typing Speed of 1 s (C2).

The effects of typing speed on gesture time (Fig. 5(a)) and accuracy (Fig. 5(b)) were also
analyzed. This revealed the first gesture (M = 0.783 s; SD = 0.119 s) is significantly
shorter than the second one (M = 0.843 s; SD = 0.109 s), and also more accurate

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-29381-9_38/MediaObjects/486811_1_En_38_Fig4_HTML.png
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(p = 0.012). Using an input speed of 0.8 s users barely could keep up with the input
speed (first gesture > 0.8 s, accuracy significantly smaller than input at 1.2 s (p < 0.001)).
It is interesting how users (even if allowed more time) did not take more than 0.97 s to
perform each gesture. No significant differences were found for typing speeds of 1 s or
1.2 s. Thus, we included typing speed of 1 s (C2) as a low-level constraint (i.e. fastest
speed allowing sustained typing).

Fig. 5.

(a) Average time for the first and second gesture; (b) Average accuracy for
the first and second gesture. Error bars represent standard error.

(ii) Designer’s Workshop.

After obtaining the relevant low-level factors, we carried out a workshop with interaction
designers, as a way to identify the design rationale they use in producing their mappings.
We motivated the workshop around the concept of gestural text-entry, a challenging
context forcing them to explore the topic in depth.

We recruited four UX designers (no specific expertise on text-entry) from Anonymous
University HCI group (other than where the main study was conducted), to produce a
design scheme for the system. The workshop session lasted four hours. To encourage a
broad perspective towards the design of an effective interactive dialogue, designers were
encouraged to think about these four questions: How to map gestures with letters? What
is a good interface layout? What feedback elements are required? Is the operation easy
to remember? The workshop was kept open-ended to encourage creative thinking, but
one researcher stayed in the room, to answer designers’ questions. It must be noted that
the quantitative results from (i) (e.g., speed, accuracy) were only provided if and when
specifically requested by designers, to not bias their thoughts.

At the beginning of the workshop, designers considered using chained gestures right
away. Three-chain gestures were soon discarded by designers, due to their high cognitive
load (too many potential gestures to remember) and discomfort (orthogonal and
opposite gestures). Thus, they limited their search to 2 step-chain gestures (C1) and a

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-29381-9_38/MediaObjects/486811_1_En_38_Fig5_HTML.png
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predictive text entry. This used 8 categories, mapping 4 letters to each gesture/category
and addressing 32 characters: the 26 letters from the English alphabet and the 6 most
common punctuation characters (space, period, comma, question mark, exclamation
mark and hyphen). They also felt inclined to explore alternatives beyond the constraints
defined (such as using both hands or using continuous gestures, using the duration of the
gesture as a variable). At the end of the workshop, designers were asked to present their
interface layout and to reflect on it, as a way to verbalize their rationale. In the next
subsection, we report these observations as high-level factors and constraints.

From Designers’ Rationale to Factors and Constraints.

Designers soon got interested in the time (F1) and accuracy (F2) of each gesture and
experimented the level of comfort (F3) afforded by each gesture by performing them
casually. They considered the WI gesture to be the most ‘natural’ gesture, and WO as the
least comfortable. They also found the F and S gestures hard to perform. Designers also
became interested in the frequency of using each letter, using the ENRON corpus [19] to
inform this aspect.

At the end of the workshop, they presented their proposed interface design (see
Fig. 6(a)), reflecting both the appropriate interface design and the way the interactive
dialogue should work. The UI layout consisted of several concentric circles, working as a
decision tree with choices at each node. Users would identify the target letter in the
external level/ring and then follow the path through the ring from the inside out,
performing the gestures to reach the chosen letter. The interface should highlight the
rings, as gestures are recognized, e.g., Figure 6(b), shows Fist + Spread gestures used to
type ‘q’, and feedback displayed.

Fig. 6.

(a) Interface layout proposed by designers; (b) Final design using their
factors and our search method. Typing a “q” requires to perform the chain
gesture fist (F) - spread (S).

The final scheme presented reflected aspects of their rationale (high-level factors), highly
relevant for our approach. For instance, they attempted to maximize the usage of WI
(F4), while avoiding WO (F5) and S gestures (F6). They also found the use of orthogonal

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-29381-9_38/MediaObjects/486811_1_En_38_Fig6_HTML.png
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gestures very uncomfortable and suggested avoiding them (C3).

As a second major concern, designers also attempted to reduce the cognitive load of the
mapping, by applying several heuristics. For instance, they suggested keeping all vowels
clustered together (in two categories only) (F7). They also placed alphabetically adjacent
letters in the same categories (e.g., “abcd”), which was considered as a relevant factor
(F8). These techniques were meant to facilitate users’ ability to remember the layout.

Designers also tried to assign the comfortable and fast gestures to the most frequent
characters. They attempted to build a mapping solving the problem in an optimal way,
and including all identified factors. However, they failed to find a clear candidate
mapping, illustrating the challenge designers face when addressing large solution spaces.

(iii) Formalization & Optimization.

We used the constraints (C1–C3) and factors (F1–F8) identified in the previous stages to
refine our definition of the problem and to formalize the description of our candidate
mappings. Due to our constraints, we limited our search to 2-step chain gestures (C1),
with typing speed 1 s (C2) and used only “opposite” and “repeated” gestures (C3),
resulting in only 8 possible gesture chains (see Fig. 3).

Each factor was formalized (quantified), with the common criteria that lower values
represent a better mapping. Let D be our dictionary (we use the ENRON database [19],
with duplicates to represent word frequency). Let W be a word and L a letter. Let Time
(L), Accuracy (L) and Exertion (L) be the mean time, accuracy and effort (i.e. the inverse
of comfort) of the gesture associated with letter L, as measured from our quantitative
studies from (i).

Time Factor (F1).

This factor favours fast typing speeds, by quantifying the “average time to input a letter
according to our dictionary”.

(2)

Accuracy Factor (F2).

This factor enforces mappings with gestures of high accuracy recognition, by quantifying
the “probability to make one (or more) errors in a word”.

(3)

F1 (M) =∑W in D ∑L in W
Time

|D| |W |

F2 (M) =∑W in D∑L in W
1 − Accuracy (L)

|D|
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Comfort Factor (F3).

This factor measures the “amount of exertion required to input a letter”, to minimize
effort.

(4)

Wave-in Factor (F4).

This factor encourages the use of WI gesture, considered comfortable by designers. This
factor computes “the average density of non-WI gestures per letter”.

(5)

Wave-out Factor (F5).

This factor discourages the use of WO gesture, as it was considered less comfortable.
Particularly, it quantifies “average density of WO gestures per letter”.

(6)

Spread Factor (F6).

This factor penalizes the use of S gestures, as they were considered less comfortable. This
factor computes the “average density of S gestures per letter”.

(7)

Vowels Factor (F7).

This factor counts the “number of categories containing vowels”, to favour vowels are
grouped in a few categories.

(8)

Consecution Factor (F8).

F3 (M) =∑W in D∑L in W
Exertion (L)

|D| |W |

F4 (M) =∑W in D ∑L in W
isNot Wi (L)

|D| |W |

F5 (M) =∑W in D∑L in W
is Wo (L)

|D| |W |

F6 (M) =∑W in D∑L in W
is S (L)

|D| |W |

F7 (M) = max (|V |) , V ⊂ C/∀c ∈ V , {a, e, i, o, u} ∩ c ≠ ∅
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This factor benefits mappings where letters are assigned to categories in consecutive
order. Thus, it measures the “number of non-consecutive (NC) letter per category (C)”.

(9)

Determining the Weight of Each Factor and Optimization.

Each factor was normalized to a [0, 1) range, as in Table 1. This allows the relevance of
each factor to be assessed in terms of weight alone (and not according to the factor’s
scale). Constants s  and l  represent the length of the shortest and longest words in D,
respectively; m  and M  stand for the minimum and maximum gesture times, and m  and
M  stand for the minimum and maximum gesture accuracy respectively. Weights were
then determined based on the designers’ insight. It must be noted that this was the
interpretation of the research team (i.e. two transcribing and cross-validating notes from
the experiment, and two translating them into the weights described in Table 1), as we
had no further access to the designers involved in (ii).

Table 1.

Factors used use for MDes (our proposed mapping), ranges and weights (ki).

 F1 F2 F3 F4 F5 F6 F7 F8

Min 0.125 0 0 0 2 0

Max 1.75 1 1 1 5 1

Ki 0.35 0.20 0.1 0.05 0.05 0.05 0.1 0.1

We used these weights (cost function as described by Eq. (1)) and simulated annealing
(SA) [18] to find the optimum mapping. Initially, letters were randomly assigned to the 8
categories (only “opposite” and “repeated” gestures, see Fig. 3) and neighbour states
were computed by permutation of single letters between two random categories
(diameter = 32). Transition acceptance between states follows the traditional method by
Kirkpatrick [18]. The cooling schedule was empirically tuned with N  = 20 step
adjustments per temperature step, N  = 7 temperatures steps per temperature change, R
= 0.85 (Cooling factor). The initial temperature was set in T(0) = 180. The final mapping
is shown in Figs. 7(b) and (c).

F8 (M) =
NC (C [0] , C [1]) + NC (C [1] , C [2]) + NC (C [2] , C [3])

3

w w

t t a

a

| | ⋅sw mt | | ⋅ (1 − )sw ma

| | ⋅lw Mt |1w| ⋅ ( )Ma

s

t t
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Fig. 7.

(a) Gesture mappings of time factor (M ), (b) accuracy factor (M ), (c)
mixed mapping according to designers’ factors (M ) and (d) alphabetical
gesture mapping (M ).

Given the designers’ constraints (no Orthogonal gestures), the solution space was limited

to  mappings and a full search would have been feasible. However, this

was not feasible for the pure computational solutions we compared against (larger
solution space), and we used the same schedule to aid fairness in comparison.

(iv) Computing Alternative Approaches.

Some of the factors and observations made by designers were hard to justify purely
looking at the data. The categories identified (Repeat, Opposite and Orthogonal) show
weak differences and, given any performance metric, all of them have gestures both well
above and below the sample mean. Even in the case of time per gesture (clearer
distinctive behaviour for Opposite), the use of clustering techniques would not result in
the categories identified.

Picking specific data could seem to back up the designers’ insight. For instance, WI+WI
was the most comfortable gesture (M = 1.15 Borg CR10 Scale –BCR10) and WO+S as the
least comfortable (M = 3.15 BCR10), followed by S+WO (M = 2.6 BCR10). While WO+WI
resulted the fastest 2-step chain gesture (M = 1.947 s, SD = 0.228), WI+WI was second
fastest (M = 1.949 s, SD = 0.242), the most accurate (M = 95.13%, SD = 13.73) and the
most comfortable gesture performed (M = 1.15 BCR10), whilst WO+S the least
comfortable (M = 3.15 BCR10).

These point observations could support designers’ factors F3 and F4, but observational
bias and the limited size of the sample would make for weak evidence. This was found
worrying, as it could point towards a weak ability of the designers to analyse the
complexity of the problem. On the other hand, factors could also reflect designers’ tacit
knowledge, that is, understanding of complex mechanics of the task which were difficult
to articulate, but still relevant. Thus, we decided to compare the designer’s guided
solution against six naïve computational solutions, not considering designers’ high-level
factors and constraints (e.g., 8 categories used to allow comparison, but not constrained
to Repeat and Opposite gestures alone). These naïve solutions will both help us assess
the added value introduced by feeding the designers’ insight into the optimization
method; and also challenge their decisions/constraints.

Ti Acc

Des

Abc

( )= 35960
32

4
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These six solutions were generated as a combination of two elements: (a) the training
dataset: the Enron (E) dataset [19]; the most common Digraphs (D) in English language
[21], and a combination of both (E+D); and (b) the cost functions: two were defined, one
assessing time per gesture (factor F1) and another one assessing accuracy (F2). e.g.,
M_C1 represents the mapping obtained with the best Accuracy assessed by Digraphs
dataset. For each of the six combinations, we generated all the possible subsets of 8
gestures (from the 16 different 2-step gestures possible) and used Simulated Annealing to

compute the best letter combinations. We explored 

possible mappings, with Fig. 1 showing the best mapping for each of the 6 naïve cost
functions.

5 Analytical and Summative Evaluation

Figure 1 shows histograms for all possible mappings according to our seven metrics (the
naïve computational metrics (a–f) and designer-led (g)). The best mappings per metric
are also highlighted (as colour bars) in the remaining histograms, for comparison.
Table 2, shows this information in a numerical format. The best results for Accuracy
mappings (i.e. M , M  and M ) was M  (best average percentile across the 6 naïve
functions, within its category), while the selected mapping for Speed (i.e. M , M  and
M ) was M . For clarity, during the comparative evaluation, we will refer to these as
time (M ), and accuracy mappings (M ), instead of (M  and M ).

Table 2.

The percentile per mapping (0 to 100) across the seven cost functions (CF) used in the
optimization process. On the right columns, AVG and SD for the data per CF condition
are shown. The best mappings for speed (M_C4) and accuracy (M_C5) are highlighted in
green while our proposed mapping (M_Des) is highlighted in blue.

It was also interesting to see how the designers-led layout (M ), rated against the other
mappings. While computational mappings consistently scored well using the designers’
cost function (see the last row), the designers mapping scored much more mediocre
results (see column M ), being usually in fourth or fifth position (or even last) among
the mappings considered. We then carried out a user study to evaluate the performance
of the generated mappings: M , M  and M . We added one additional mapping for
text-entry i.e. a simple alphabetical distribution (M ) shown in Fig. 7(d), as a baseline
comparison (minimum cognitive load, not optimized).

( ) ⋅( ) ⋅ 6 =∼ 2.8 billion
16

8

32

4

C1 C3 C5 C5

C2 C4

C6 C4

Ti Acc C4 C5

Des

Des

Ti Acc Des

Abc
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5.1 Experiment Setup

At the beginning of the session, we calibrated the Myo for each individual participant.
Subsequently, each mapping was shown on the screen with its different layout and letter
distribution (see Fig. 7). Participants were then instructed to “type” a sentence shown
above the circle by performing the specific chain of gestures (i.e. identifying the two
gestures they need to perform to select a given letter). The system included feedback cues
i.e. visual highlights in the category selected at each step (see Fig. 6(b)), and auditory
effects.

Participants were allowed to practice the chain gestures in a training stage to complete 4
sentences before each block, in order to get familiar with the layouts. Participants
performed 4 blocks of 3 sentences each, completing 28 sentences in total (700
letters/gesture chains). The sentences in the blocks had from 4 to 6 words, and 4 to 6
letters per word, being selected by using the Levenshtein algorithm [13] to compute
representative sets of sentences from our dictionary. The full experiment duration was
45 min. Similarly, as described in the first study, each block was designed to be
completed in about 8 min giving participants a 3 min break between blocks to avoid
fatigue. Moreover, since orthogonal gestures (the most uncomfortable gestures found in
the first study and rated on average ~3.2 in a scale from 0 to 10) were not employed in
this study, we considered unlikely that fatigue negatively affects participants’
performance during the experiment. We counterbalanced the order of the sets (i.e.
sentences) and mappings using a 4×4 Latin Square design. Figure 8 shows our
experimental setup.

Fig. 8.

Experimental setup for the typing task.

https://media.springernature.com/original/springer-static/image/chp%3A10.1007%2F978-3-030-29381-9_38/MediaObjects/486811_1_En_38_Fig8_HTML.png
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Fig. 9.

Scatter plot of average gesture time (left) and errors (right) per mapping.
Bars represent standard error of mean.

Fig. 10.

Participants’ preference per mapping (M , M , M  and M )
regarding their task experience (ease typing, comfort, speed and ease to
remember).

The system collected the time per letter and error rate automatically. User–satisfaction
questionnaires after each block (mapping), collected information about typing comfort
and how easy each it was to remember each mapping. Finally, at the end of the
experiment, participants also chose their favourite mapping according to 4 aspects (easy
to type, comfort, speed and easy to remember). Sixteen right-handed participants took
part in the experiment (4 Females, average age of 29.33, SD = 3.86), which was approved
by the local ethics board. The recruitment criteria were the same as in the first
experiment.

An a priori statistical power analysis was performed for sample size estimation in
G*Power. Running a power analysis on a repeated measures ANOVA between mapping
conditions (i.e., M , M , M  and M ), repeated 28 times corresponding to the 28
sentences on the experiment, a power of 0.95, an alpha level of 0.05, and a medium effect
size (f = 0.196, ηp  = 0.037, critical F = 1.1), required a sample size of approximately 8
participants. Thus, our proposed sample of 12 participants was adequate for the purposes
of this study.

5.2 Analysis of Results

Ti Acc Des Abc

Ti Acc Des Abc

2
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A Repeated Measure ANOVA was conducted to compare the effect of the four types of
mappings (M  vs M  vs M  vs M ) on the time of chain of gestures. Results
revealed a significant effect on the average time, F  = 25.82, p < .001 depending on
the type of mapping, with the designers’ mapping providing best results. Post-hoc
comparisons using Bonferroni correction showed statistically significant differences in
time, specifically between M  (M = 1.577 s, SD = 0.622 s) compared to M
(M = 1.785 s, SD = 0.674 s; p < 0.001), but also M  and M  (M = 1.782 s,
SD = 0.653 s; p < 0.001). No such difference was found compared to M  (M = 1.64 s,
SD = 0.71 s), p = 0.279. Surprisingly, M  did not provide the best results for time, which
seems to indicate it failed to capture the complexity of the typing task.

The average error per mapping was small for all conditions. As expected, M  got the
lowest error score as it was computed to minimize errors. Repeated Measure ANOVA
showed a significant effect of the type of mapping (M  vs M  vs M  vs M ) on the
number of errors F  = 7.71, p < .001(η   = 0.009 small effect). Post-hoc comparisons
showed statistically significant differences for errors, specifically between
M (M = 0.072errors, SD = 0.293errors) compared to M  (M = 0.139errors,
SD = 0.444errors), p = 0.001 and M  (M = 0.149errors, SD = 0.520errors), p = 0.001;
but no such difference was found compared to M  (M = 0.087errors, SD = 0.369errors),
p = 1. Additionally, we found a significant difference in M  compared to M , and
M , p <= 0.035. These results suggest that M  and M  produced the lowest number
of errors when participants performed the gesture chains to “type” the sentences.

Figure 11 shows the score given by participants after each block in relation to
memorability (left) and comfort (right). In both cases, participants gave higher scores to
M  and M , with worse results for M . These results align with the user’s final
appreciations at the end of the experiment, in which participants compared among all
mappings (see Fig. 10). In this case, most of the participants reported M  as the most
comfortable (50%) and easiest to type mapping (44%), followed by M  (31% and 25%,
respectively). Although M  allowed for faster typing (Fig. 9, left), M  was perceived
as faster by participants. As expected, participants also reported M , as the easiest to
remember (44%), followed by M  (31%).

Fig. 11.

Box plots for memorability (left) and comfort (right) per mapping.
Horizontal red bars and boxes represent medians and IQRs. Whiskers
stretch to points within median ± 1.5 IQR. Outliers shown as single red
crosses. (Color figure online)
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6 Discussions

Our results seem to indicate the designer-led semi-automatic mapping M  provided
better results in terms of time, comfort and users’ preference when compared to the
remaining mappings. It consistently appeared as the best or second-best option, only
performing worse in terms of accuracy, where very small differences (effect size) were
present among mappings. This suggests that users preferred the mappings created by the
combinations of experts’ knowledge (proposed weights for M ) and the computational
optimization. This might reflect the difficulty to model all aspects related to interaction
using only low-level factors, and how these might be misleading when the complexity of
the task increases. Even for our naïve cost functions, M  did not actually lead to faster
typing speeds; and they also failed to predict the performance of M  (expected to be
poor, as shown in Table 2), even for the specific factors (i.e. time) they measured. The
results also highlight the value of designers’ higher-level insight, even if it cannot be
directly justified from data. For instance, the categories identified (Orthogonal, Repeat,
Opposite) guided constraint C3, but they could not be identified from clustering
techniques. During the workshop, we pointed out that the high-level factors F4, F5 and
F6 were already covered by low-level ones, but designers still decided to keep them. We
understand these reflect tacit knowledge which, even if hard to verbalize/rationalize, was
still relevant to the task. The results obtained by the designers’ mapping should highlight
the relevance of such designers’ insight (i.e. high-level factors identified), but it also
illustrates the value of our hybrid approach, exploiting computational methods to keep
this human knowledge in the optimization loop.

The resources required for both the designers’ workshops and the brute-force exploration
of alternative mappings must also be considered. The full search to create our alternative
mappings (2.7 billion combinations explored, for the 6 alternatives) required 5 standard
desktop machines running over 5 days (development costs for software not considered).
In comparison, the designers’ feedback was gathered during a single workshop of 4 h and
still managed to identify relevant high-level factors, constraints, and provided good
results for the final mapping. This seems to indicate designers’ involvement can be easily
justified, producing relevant input to underlying computational approaches and
potentially reducing development costs.

Finally, our use-case must be considered as an illustrative example of our approach,
rather than an exemplar text-entry system. Text entry systems can leverage extensive
task-specific knowledge (e.g., digraph transitions, predictive models, etc.), which can
allow defining effective mappings even from low-level factors. Instead, our case study
provides an example that is generalizable to a broader spectrum of applications using
gestural interaction; illustrates the challenges related to creating complex interactive
dialogues from low-level factors; and highlights the benefits related to designers’ insight
into the process.

7 Conclusion
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We presented an approach for semi-automatic generation of gesture mappings for
devices with low gestural resolution. Our approach consists of quantifying observable
low-level factors such as individual gesture error rates, speed and accuracy; identifying
how designers weigh different factors to create a weighted cost function, which is then
fed into a computational approach to find the optimum gesture set and its mapping to
tasks. Comparing the results of our mapping with the mappings obtained from other
naïvely constructed cost functions shows that overall users perform consistently well
with our mapping in terms of speed, comfort and memorability. These results highlight
the value of our approach, as a tool to guide the designer-led computational approach to
generate complex mappings. This approach should not stand as a replacement for
traditional HCI methods, but as a tool to help such iterative processes to converge faster
towards satisfying solutions, particularly within complex application domains featuring
large solution spaces and complex/subjective factors influencing interaction.
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