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ABSTRACT

We present EdgeSelect, a linear target selection interaction tech-
nique that utilizes a small portion of the smartwatch display, ex-
plicitly designed to mitigate the ‘fat finger’ and screen occlusion
problems, two of the most common and well-known challenges
when interacting with small displays. To design our technique,
we first conducted a user study to answer which segments of the
smartwatch display have the least screen occlusion while users are
interacting with it. We use results from the first experiment to in-
troduce EdgeSelect, a three-layer non-linear interaction technique,
which can be used to interact with multiple co-adjacent graphs on
the smartwatch by using a region that is the least prone to finger
occlusion. In a second experiment, we explore the density limits
of the targets possible with EdgeSelect. Finally, we demonstrate
the generalizability of EdgeSelect to interact with various types of
content.
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« Human-centered computing — Empirical studies in inter-
action design.
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1 INTRODUCTION

Smartwatches collect data through both sensors and network sources
and then provide data-dependent information representations to
users through their small displays [1]. Because many of the col-
lected data are inter-related (e.g., heart rate, body temperature, and
sleep pattern), representing multiple graphs that visualize these
multiple data sources is common to help smartwatches users engage
in sense-making [9]. By displaying graphs together, smartwatch
application designers can provide an overview of multiple sets of
related data and therefore allow users to access information with
convenience directly on such wearable displays, without having
to resort to their smartphone. As a result, smartwatch users can
enhance their self-awareness and adjust their behaviour to achieve
their captured health-related goals [14]. For example, visualizing
heart rate data, sleep patterns, and body temperature can help smart-
watch users can get a glimpse of their sleep quality [2], without
having to resort to elaborate analytic tools. Figure 1 shows exam-
ples of existing applications using multi-visualizations to represent
multiple inter-related data on smartwatch applications. As an exam-
ple, figure 1-d shows how representing multiple vital information
about a baby during pregnancy (heart rate and oxygen saturation
which are interrelated data) can increase mothers’ awareness of
their baby in real-time. Figure 1-b also shows information about
the user’s running/walking speed and heart rate. These two pieces
of information can be helpful for athletes in how to adjust their
speeds and heart rate to achieve a specific level of performance.
Due to the limited space on smartwatch displays, visualization
techniques are usually simplified. This means that most of such
visual tools are designed to show an overview of the data without
providing details [5]. Removing either the x- and/or y-axis, grid-
lines, the graph’s legend, or removing data point values are the
most common ways to simplify a graph. Although excluding such
details helps smartwatch users more clearly see an overview of the
collected data, it forces users to access the data to other devices



ICMI 22, November 7-11, 2022, Bengaluru, India

Figure 1: Smartwatch applications using multiple visualiza-
tions to represent inter-related data. a,b) wHealth dashboard,
representing consumed water, burned calories, steps taken,
walking/running speed, and heart rate. c) built-in health app
in GOQII smartwatch representing steps, burned calories and
heart rate. d) Sense4Baby, a smartwatch application repre-
senting multiple vital information about the baby during
pregnancy.

(e.g., cell phone or computer) to explore the details [17], which is
bothersome and unnecessary for many instances (such as a quick
glance to understand how events are related) [18]. Therefore, inter-
acting with multiple data visualizations on a smartwatch can help
the users explore the details of graphs right on their wrists without
using other devices [9]. For instance, smartwatch users can interact
with multiple graphs to explore their heart rate, speed, and cadence
during a workout for potential adjustment.

Designing an interaction technique for smartwatch displays is
challenging due to the limited available space. Direct interaction
with graphs on the smartwatch can block the content under the
user’s finger, known as the ‘fat finger’ problem [23]. Screen occlu-
sion is another similar issue that may happen while interacting
with small touch displays [8]. Screen occlusion may happen even
with indirect interaction with the content. For instance, wearing
the smartwatch on the left wrist and interacting with the specific
segments of the smartwatch bezel with the right hand can block a
significant portion of the display [16]. Therefore, ‘fat finger’ and
screen occlusion issues are two primary considerations for any
interaction technique developed for a smartwatch display.

Researchers have proposed many interaction techniques to mit-
igate screen occlusion and the ‘fat finger’ problem [6, 7, 10, 11,
21, 26, 30]. However, most of these techniques are not specifically
designed to interact with multiple visualization techniques. Partial
BezelGlid (PBG) [16] is a technique designed for users to interact
with graphs on smartwatches using the smartwatch bezel, while
avoiding the ‘fat finger’ and screen occlusion issues. However, PBG
has two significant disadvantages: users can only interact with one
visualization at a time, and the technique does not work well for in-
teracting with dense graphs. Our technique, EdgeSelect, addresses
these issues by using a small portion of the smartwatch display as
an interactive area to explore multiple graphs with different density
levels.

In this paper, we examine the possibility of minimizing the inter-
active region of a smartwatch display, to mitigate screen occlusion
while exploring multiple graphs. This small interactive region, is
designed to occupy less than 10 percent of the smartwatch display
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without hindering the density of graphs displayed on the watch.
Our two main objectives summarized as our contributions include:
1) quantifying the screen occlusion resulting from interacting with
the entire smartwatch display; and 2) taking advantage of segments
with minimum screen occlusion to design an interaction technique
to interact with multiple graphs.

2 RELATED WORK

We describe previous research related to data visualization and
interaction with smartwatches, as well as techniques that attempt
to address the ‘fat finger’ and screen occlusion problems.

2.1 Multi-graph Visualization on Smartwatches

Due to the limited available space on the small displays of smart-
watches, novel visualization techniques are needed to present com-
plex, dense data [15]. Many of these visualization techniques are
explicitly designed to take advantage of every small piece of avail-
able space on the smartwatch display, know as space-efficient or
space-filling visualization techniques [4, 25]. For example, the Space-
Filling Line Graph (SFLG) [15] was introduced to simplify complex,
dense line graphs and add more available space around the main
graph. The additional space can be used to visualize other interre-
lated data. As the outcome of SFLG, there will be multiple graphs
representing information about multiple related data sources.

G-Spark [18] and Sparklines [24] are two other space-efficient
visualization techniques that can help smartwatch app designers to
add more graphs and charts to the primary visualization technique
on the smartwatch display. These two techniques compress the
main graph on the y- and x-axis without affecting the glanceability
of the graph, so there will be more available space to add auxil-
iary charts. The additional information can help the users glean
deeper insights from the data and increase their self-awareness. As
smartwatches are capable of collecting many health-related data
points, this could be important for smartwatch users. In addition to
these space-efficient visualization techniques, a survey paper inves-
tigated how smartwatch users utilize information visualization on
their smartwatch watch face [9]. The result of this paper showed
that more than 80% of smartwatch users use at least two different
pieces of information on the watch face simultaneously. They also
showed that graphs are among the most common information types
displayed on smartwatches, along with icons and text.

2.2  Screen Occlusion Limitations

Due to the limited available space on smartwatch displays, present-
ing information [1], and interacting with content are both challeng-
ing [19]. The ‘fat finger’ issue is one of the main problems when
a smartwatch user interacts with the small display directly [23],
blocking the content underneath the user’s finger and preventing
the user from interacting with the content properly. Screen occlu-
sion is a similar issue, but can occur even without direct interaction
with the display [8, 16].

Screen occlusion is a general issue that may happen in other
devices, even with large displays. For instance, Vogel et al. [27, 28]
investigated the effect of screen occlusion while users interact
with tabletop displays. They showed that the position of the user’s
hand could significantly block the content preventing the user from
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interacting with the content. However, the fat finger problem is
widespread on small displays, as the size of the target is usually
smaller than the fingertip [19], and direct interaction with this
content can block most or all of the content the user is trying to
interact with. One of the ways to fix the fat finger problem is by
designing interaction techniques that provide indirect interaction
with the targets. However, indirect interaction techniques may not
address the screen occlusion problem. For instance, Full BezelGlide
(FBG) [16] is a bezel interaction technique to interact with graphs on
smartwatches. However, interacting with specific segments of the
smartwatch bezel may cause screen occlusion, blocking the content
underneath the body of the user’s finger. This is the main reason
the smartwatch user needs to tilt their head or the smartwatch in
order to see the content.

Many novel interaction techniques have been proposed by re-
searchers to solve the fat finger problem and the screen occlusion
issue [6, 7, 10, 11, 21, 26, 30]. However, many of these interaction
techniques require advanced hardware, which may cause additional
limitations. Additional hardware usually means bigger and heavier
form factors that can affect the usability of wearable devices such
as a smartwatch. Using the existing smartwatch hardware such as
the smartwatch bezel [3], and the accelerometer [13] to interact
with the smartwatch display will avoid the potential side effects of
adding new hardware to the smartwatch.

2.3 Techniques Mitigating Screen Occlusion

The smartwatch bezel provides an excellent potential solution to fix
the screen occlusion and fat finger problem when interacting with
smartwatch content [3, 22, 31-33]. Smartwatch bezel overcomes
these two issues by moving the interaction space to the rim of the
display. However, most existing bezel interaction techniques are not
designed to interact with graphs and charts. For example, [32] and
[20] are bezel interaction techniques that utilize the smartwatch
bezel for text entry. In COMPASS [32], the user can use the entire
smartwatch bezel to interact with the display to select letters to
perform the text entry task. This means that the interaction area is
not restricted to a specific space on the smartwatch bezel, meaning
that the screen occlusion may still happen while using the smart-
watch bezel to interact with the display. Screen occlusion is also
an issue in SwipeRing [20]. Using this bezel input technique, the
user must move their finger from one segment on the smartwatch
bezel to the other across the display, entirely blocking the content
beneath the moving finger.

Bezel-Initiated (BI) [29] and Bezel-to-Bezel (B2B) [12] are tech-
niques explicitly designed as eyes-free interaction techniques with
the smartwatch display.

Neshati et al. introduced Partial BezelGlide (PBG) and Full Bezel-
Glide (FBG) as two bezel interaction techniques to interact with
graphs on smartwatches. However, these two proposed bezel in-
teraction techniques have major constraints. The thin width of the
smartwatch bezel does not allow the user to use the width of the
smartwatch bezel as an input slider [16]. This is the main reason
BezelGlidee is a linear interaction technique that allows the user
to interact with only one graph at a time, which means it does not
allow the user to interact with multiple graphs. In addition, it is
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unclear how the number of data points and density of the graph
can affect the performance of BezelGlide.

3 STUDY 1: MEASURING SCREEN OCCLUSION
OF SMARTWATCH DISPLAYS

The main goal of this study is to measure the screen visibility of
the smartwatch display while participants are interacting with the
entire smartwatch display. In other words, we will quantify the min-
imum area the user needs to interact, to gain the maximum screen
visibility on such small displays. The difference between this study
and the screen visibility study of Ali et al. [16] is the interaction
area. In BezelGlide,the authors only focus on interacting with the
smartwatch bezel. However, our screen occlusion experiment is
further generalized to assess the degree of screen occlusion when
interacting with the entire smartwatch display, including the screen
bezel.

3.1 Experimental Design

In this experiment, we divide the screen display into 88 targets. The
location and the number of segments on the right/left and up/down
half of the display was the same (symmetric). We picked 88 targets,
as this was the largest number of targets we could include, without
making touch cumbersome. Using a larger number of subdivisions
would reduce the number of targets and make it tedious to select
each cell. The system highlighted a cell or target (red colour) on
each trial, randomly selected from 88 targets. Only the highlighted
target was visible to the participants, and they had to hit the target
to be able to move on to the next target. To make sure they hit
the target, we provided them with auditory and visual feedback,
changing the background colour from white to light green after
landing on the target. We also asked them to hold their finger on
the target for three seconds to ensure that our camera recorded
the display and their finger position on the smartwatch display.
Participants selected each of the 88 targets three (x3) times per
block. Increasing the number of samples would result in a more
accurate result but needed to be balanced with the total overall
time to collect the data. To measure the screen occlusion, we placed
a camera on a head strap designed to hold an active camera at
the center of the participant’s forehead. Unlike the work done
by Neshati et al. [16], we decided to record videos as this makes
the recording process easier. To minimize the offsets between the
camera lens angle and participant’s point-of-view, we followed the
same guidelines explained by previous papers [16, 28, 28] by placing
the camera in the middle of the forehead and as close as possible
to the eyes without interfering with the participant’s eyesight and
affecting their performance on the task.

3.2 Apparatus

We used a GoPro Hero 9 camera to record the experiment. This
action camera can capture high-quality videos with a built-in stabi-
lizer, which ensures clear videos for image/video processing.

3.3 Participants

We recruited 13 participants, all students from a local university
(5 female, 8 male, Mage = 21.29,SD = 1.5). Participants were all
right-handed, and none were colour blind (based on Ishihara color
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Figure 2: Study setup. a) this image shows the placement of
head strap and the camera in Study 1. Participants had to
put their wrist on the table to prevent fatigue. b) shows the
location and orientation of QR indicators that were used in
our image/video processing. Participants had to hold their
finger on the target for 3 seconds after hitting the target.

blindness test). Participants were compensated with a $15 gift card
for their time.

3.4 Procedures

This study was conducted during the COVID-19 pandemic, so we
followed the guidelines of the university ethics board to conduct
the study safely for both the participants and the researchers. At
the beginning of each experiment session, the researcher ensured
that the smartwatch and all devices, including the camera and
head strap, were appropriately sanitized. We also asked all of our
participants to answer a set of health-related questions to make sure
they did not have COVID-related symptoms. We also made sure that
they did not travel outside of the province for the past two weeks.
Most importantly, we tried to minimize direct interaction with
participants during the experiment to maintain social distancing.

Upon arrival, and after following COVID-related health guide-
lines, we explained the primary goal of the experiment to our par-
ticipants, and asked them to read and sign the consent form to start
the experiment. To maintain consistency, we asked our participants
to wear the smartwatch on their left hand and interact with the
smartwatch display with their right index finger. This kept the
image processing simple and consistent across all participants.

In the next step, we asked our participants to wear the head strap
with the mounted camera. We ensured the strap was comfortable
but also tightly secured. The camera was placed at the center of
the participant’s forehead and toward the smartwatch display to
capture the interaction with the screen following the guidelines
from previous papers [16, 28, 28].

3.5 Video Processing

We used a similar approach to Neshati et al. [16] to detect the
occluded area of the smartwatch. In this section, we describe the
steps taken that are different from Neshati et al. [16] approach
that addresses some of the limitations of that approach. In lieu
of capturing static images of the participant interacting with the
screen, a video of the complete session was recorded. Note that
the screen turns green when the participant touches the targets
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and remains so for 3 seconds. This screen colour change is used
to synchronize the events generated on the smartwatch with the
recorded video.

Extracting multiple frames for each touch event from the video
allows removing frames that have artifacts such as motion blur by
comparing the calculations from a series of frames and removing
the frames that are outliers. Choosing green (Figure 4a & Figure
3b) as the colour for the background also helps with differentiating
the edge pixels of the smartwatch screen from the edge pixels of
the finger. To further differentiate the two types of edge pixels, the
calculated visible screen area was made black (Figure 3d) prior to
calculating which type each edge pixel is. This ensures the edge
pixels of the smartwatch (red edge in Figure 4b) have much lower
values on the red channel since these pixels will be surrounded
mainly by black pixels. While the edge pixels of the finger (blue
edge in Figure 3b) would have more pixels with higher values on the
red channel. These adjustments allowed the parameters of image
processing to be less sensitive and therefore more robust across
participants and trials.

Another issue with the previous approach was the different light-
ing conditions and location of the smartwatch on a given frame.
The former was rectified by more closely managing the lighting of
the environment and allowing time for the camera’s auto colour
balance to stabilize. The latter was caused by how different par-
ticipants hold their hands when interacting with the smartwatch.
Compared to asking the participant to hold their hand in a partic-
ular position or using a stand to ensure the same posture is used
by different participants, capturing the occlusion under natural
interactions is beneficial to the following analysis as it would be
more representative of how participants would interact with the
smartwatch in the real world. An assumption we make in designing
this study is that for a given hand posture, the occlusion by moving
only the head with the gaze fixed on the smartwatch would not
vary much. To reduce the manual intervention needed to calculate
the position of the smartwatch on each frame, fiducial markers
were used. A frame for the smartwatch containing the markers was
designed and attached to the smartwatch (see Figure 3a). The frame
was placed such that the markers would always be on the opposite
side from which the participants would interact with the screen.
The frame essentially extends outward in one direction, and the
markers were attached on the frame such that they were aligned to
the direction in which the frame is being extended. Since the actual
size of the markers was known, an offset from a given corner of
any marker to the center of the screen can also be calculated. Since
the markers are placed so that they are aligned to the direction in
which the frame is extending, and the watch is circular, this offset
would remain the same for any orientation in which the frame is
attached. These measurements could then be translated to pixels,
which would inform the center of the screen on the frame as well as
provide a scale used to calculate the size of the image to crop from
the frame prior to performing the occlusion calculations (the blue
square on Figure 4a represents the cropping region on the original
frame, Figure 3b-d are frames cropped from Figure 3a). Multiple
different markers are placed on the frame to improve robustness.
As the tracking of the fiducial markers ignores frames that are not
clear, it also functions as another measure to discard frames on top
of the outliers being calculated as described above.
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Figure 3: a) Frame as captured by the camera. The blue rec-
tangle represents the region that will be cropped for further
processing based on the fiducial markers, b) Extracted edges
of the screen colour-coded based on the type: Red for edge
pixels of the smartwatch, Blue for edge pixels of the finger,
c) Fitted ellipse and occluded region, and d) Image used to
calculate the edge pixel type. The detected screen region is
replaced by black.

Figure 4: The result of our video/image processing algorithm
for one of the participants. Samples 1,2,5,8,9,10 show that the
interaction with segments on the right, bottom and bottom-
right side of the smartwatch display have minimum screen
occlusion. On the other hand, samples 0,6,13,14,19,and 24
show that interaction with segments on the top-left corner
of the smartwatch leads to the highest screen occlusion levels

3.6 Results

Figure 5 illustrates the results of the screen occlusion study in
the form of a heatmap. Our analysis shows that interaction with
the segments on the top-left quarter of the smartwatch display
has the worst screen visibility with an average of 44.35% screen
visibility compared to 74.22%, 73.31%, and 86.04% for bottom-left,
top-right and bottom-right quarters respectively. In addition, 96%
and 35% are the best and worst screen visibility, which belong to
the top-left and bottom-right quarters of the smartwatch display,
respectively. Figure 5 shows that interacting with the outermost
segments (smartwatch bezel) on the right, bottom, and bottom-right
side of the smartwatch display provide the best screen visibility,
with a minimum of 89% and a maximum of 96% screen visibility.
Segments on the smartwatch bezel on the top-left corner of the
display provide the least screen visibility with a minimum of 38%
and a maximum of 53% screen visibility.

Although segments of the smartwatch bezel on the right, bottom-
right and bottom size of the display have the best screen visibility,
adjacent segments to the smartwatch bezel (inner segments on the
smartwatch display) have high screen visibility as well, making
them potentially good options for an interactive region to facilitate
explore graphs on the smartwatch display.

3.7 Discussion

While earlier related work examined screen occlusion when in-
teracting with the smartwatch bezel [16], we offer a broader set
of results to include the entire smartwatch display. Our analysis
confirmed the result of screen occlusion reported by Neshati et
al. [16], showing that interaction with the outermost segments
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Figure 5: Screen visibility of smartwatch display while partic-
ipants were interacting with different segments. The number
on each segment represents the average percentage of screen
visibility when participants hit the target on that specific
segment of the display.

(smartwatch bezel) on the right, bottom-right and bottom side of
the smartwatch display ensures the highest level of screen visibility.
Interacting with the top left corner of the smartwatch bezel pro-
vides least screen visibility. Our results suggest that we can use a
sufficiently large region, taking less than 10% of the entire screen
space to interact with all contents on the display. This provides us
an opportunity to facilitate interacting with multiple graphs using
minimal finger movement around the display. We next demonstrate
how we can use our selected regions with more than 90% screen
visibility to interact with graphs on the small smartwatch display.

4 INTERACTION TECHNIQUE

This section will introduce EdgeSelect, a linear target selection
interaction technique that can interact with multiple graphs, as
an application, on small screens of smartwatches with minimal
screen occlusion. The result of the first experiment revealed how
interaction with different segments of the smartwatch could affect
the screen visibility from the user’s perspective. The first row of
Figure 6 shows all the segments of the smartwatch with at least 90%,
85% and 80% screen visibility. To design our interaction technique,
we will only focus on the segments with at least 85% and 90% screen
visibility. We will call these two areas, Large and Small interaction
areas, respectively, throughout this paper. We excluded segments
with at least 80% screen visibility because they occupy more than
10% of the smartwatch display, which means the interaction area is
significantly larger than two other interaction areas.

The border of selected segments for both Large and Small interac-
tion areas is jagged (Figure 6 first row). This makes it hard and less
intuitive for the smartwatch users to move and keep their fingers
within the interaction area. Because of this, we smoothed the bor-
der of the interaction area for both the Large and Small interaction
areas (Figure 6 second row). The curved shape of the interaction
area helps the smartwatch users to move their fingers along the
curved display bezel, making the interaction more intuitive for
smartwatches with circular displays.

Unlike BezelGlid, the main goal of EdgeSelect is to take advan-
tage of the width of the interaction area as a selection tool to select
one of the multiple graphs on the smartwatch display. Therefore, by
dividing the width of the interaction area into a number of bands
(Figure 6 second row), each band can be used to interact with one
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graph. Our pilot study showed that three is the optimum number of
bands for the interaction area in both Large and Small interaction
areas. The Inner-band is the layer that is closest to the center of
the display. The Middle-band is the layer in the middle and the
Outer-band is the layer closest to the smartwatch bezel.

Each of the three bands of the interaction area can be used to
interact with one graph. A smartwatch user can start interacting
with a specific graph by hitting the correct band of the interaction
area. As soon as the user interacts with a band, the outer border of
the corresponding graph will be highlighted to show the selected
graph. If the user hits a wrong band, the user can slide his/her
finger to reach the correct band. Sliding the finger within a specific
band will allow the user to interact with the data points of the
corresponding graph, see Figure 7.

at least 90% screen visibility [| at least 85% screen visibility :

A )t
Figure 6: First row: represents all the segments of the smart-
watch display with at least 90%, 85% and 80% screen visibility.
Second row: three different interaction areas corresponding
to each screen visibility level. The width of the interaction

area is divided into three bands. Each band will be dedicated
to interact with one graph

g
o
-

Figure 7: a) Interacting with line graph using the Outer-band
of interaction area b) Sliding the index finger into the Middle-
band to interact with bar chart. Moving from one band to
another band changes the highlighted graph to make it easier
for the user to identify the graph they are interacting with
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5 STUDY 2: SIZE OF THE INTERACTION AREA
AND THE NUMBER OF DATA POINTS

The size of the interaction area in EdgeSelect is inversely propor-
tional to the size of the visible area for displaying content on the
screen. Thus Study 2 involved a series of target acquisition tasks
designed to evaluate participants’ performance while interacting
with two different sizes of interaction areas: Small (area with screen
visibility of 90% or higher) and Large (area with screen visibility of
85% or higher). We measured how each of the three interaction area
bands could be used to interact with graphs of differing densities,
in terms of target selection time, for each size of the interaction
region. We also measured the maximum number of data points per
graph that users can effectively interact with using EdgeSelect.

In order to measure the maximum number of data points, we used
three linear arrays of targets (Figure 8) instead of actual graphs. This
enabled us to have precise control over the number and position of
targets for target acquisition measurement. Each array represents
a graph, and the targets represent graph data points.

5.1 Experimental Task

In order to determine the maximum number of points a user can
interact with on a single graph, we varied the number of points on
the graphs dynamically, depending on the success or failure of the
participant. Selection was triggered upon finger lift-off. If a par-
ticipant was able to select the specific highlighted target on a graph
within a specified time limit (5 seconds), we considered that trial a
success, and increased the number of points in that graph. A failed
trial occurred when the participant failed to select the highlighter
point in the time allotted or if the wrong iem was selected. In the
event of a failed trial we decreased the number of points in that
graph. We adapted the graphs to generate a point randomly in four
segments of the graph before increasing or decreasing the number
of points (Figure 8). Generating targets in 4 segments forced the
participant to select a point in 4 different regions of the interaction
area, one far to the left, two in the middle, and one to the far right.
This ensured that every part of the interaction area was tested.
In general, as the number of points increased, the difficulty in se-
lecting the point increased. Over a series of trials, the participant
would converge on an optimal maximum number of points in each
graph, failing when the graph is too dense, and succeeding when
the graph was below or at the optimal maximum density. If the
participant selected targets successfully in 3 or more segments, the
number of points in the graph would be increased. Otherwise, the
number of points would be decreased (Figure 8). The experiment
ended if the number of points decreased 3 times to the same level.
For example, if the participant was seeing 10 points, failed target
acquisition twice, and the number of points decreased to 9, then
succeeded at target acquisition 3 times, and increased the number
of points back to 10, but then failed again, causing the number of
points to decrease to 9 twice more (total of 3 times decreasing to 9),
the experiment would end.

5.2 Participants

We recruited 12 (new) participants (8 males and 4 females, Mage =
22.08,SD = 3.50) in Study 2. Our participants were all right-handed
and used their watches on their left wrist. Four of these participants
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Figure 8: a) This image represents three arrays of targets.
Our participants had to hit the highlighted target. In this
experiment, the Inner-band interacts with the top array, the
Middle-band interacts with the middle array, and the Outer-
band interacts with the bottom array. To ensure participants
interact with all the segments of each band, we divided the
arrays into 4 major segments and picked one random target
from each segment (indicated by yellow brackets in the mid-
dle array). b) If participants successfully perform the target
selection task, we increased the number of targets in that
specific array.

used smartwatches regularly, two occasionally, and four rarely used
smartwatches. We compensated our participants with a $15 gift
card for their time.

5.3 Apparatus

As in Study 1, we used the Samsung Galaxy Watch Active 2 smart-
watch. The smartwatch-based interaction software was implemented
aa a web app, using HTML, JavaScript, and CSS and ran natively
on the watch.

5.4 Procedure

Similar to the previous experiment, we followed all COVID-related
health guidelines to ensure the safety of participants and researchers.
After participants arrived, we explained the objectives of the ex-
periment. After signing the consent form, one of the researchers
explained the experiment task and study progression to the partici-
pants. They were asked to practice with the interaction area and
three bands to hit the random targets for as long as needed to feel
comfortable (Figure 8). They were told that accuracy and response
time were the two critical measurements, so they had to perform as
quickly and as accurately as possible. We had two main conditions
in this study: Large and Small interaction areas and, accordingly,
different sizes of bands (Figure 6). We used a within-subject de-
sign, so all participants interacted with both the Large and Small
interaction areas.

Similar to the first study, we asked our participants to put their
hands on a table to prevent fatigue. They could also have a break be-
tween trials if needed. When they finished the experiment, we asked
them to answer some open-ended questions regarding interacting
with EdgeSelect and using different bands.

5.5 Results

In this section we describe the outcome of this experiment.
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5.5.1 Response Time. The result of a Shapiro-Wilk test revealed
that response time data was not normally distributed (p < 0.05).
Accordingly, to identify the significant differences between condi-
tions, Friedman and Wilcoxon signed-ranked tests were conducted.
Bonferroni correction was applied to minimize Type 1 error.

The result of the Wilcoxon test showed that there was a sig-
nificant difference between the the Large and Small interaction
areas (Figure 9-left, p < 0.001, Large; Mdn = 1788ms, Small; Mdn =
1754ms). This shows that the smaller interaction area results in a
faster response time. Our further data analysis showed that there
was a significant difference between Large and Small interaction ar-
eas for the Inner-band condition (Figure 9-middle, p < 0.002, Large-
Inner-band; Mdn = 1884ms, Small-Inner-band; Mdn = 1795ms),
Middle-band (Figure 9-middle, p = 0.038, Large-Middle-band; Mdn
= 1734ms, Small-Middle-band; Mdn = 1765ms), and the Outer-band
(Figure 9-middle, p < 0.001, Large-Outer-band; Mdn = 1769ms,
Small-Outer-band; Mdn = 1682ms). The result of Friedman test
showed that there was not a significant difference between Inner-,
Middle- and Outer-bands across both Large and Small interaction
areas Figure 9-right.
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Figure 9: Comparing the response time of participants in-
teracting with Large and Small interaction areas (left), and
different bands of interaction area (right). The middle chart
shows the performance of participants interacting with all
combinations of bands and interaction areas. The error bar
shows 95% confidence interval.

5.5.2  Number of Points. In this section, we will analyze the general
pattern, as well as the minimum and the maximum number of points
our participants reached using EdgeSelect. We will analyze how
the size of the interaction area and each of the three bands could
affect the participants’ performance.

Our data analysis showed that there is a significant difference be-
tween the Large and Small interaction area across all trials (Figure
10-left, p < 0.001, Large-overall; Mdn = 10 points, Small-overall;
Mdn = 11 points). Deeper analysis showed that there is a significant
difference between the minimum number of points our participants
reached, between the Large and Small interaction areas (Figure
10-left, p < 0.001, Large-min; Mdn = 7 points, Small-min; Mdn = 9
points). A similar result captured for maximum number of points
our participants achieved, between two Large and Small condi-
tions (Figure 10-left, p < 0.001, Large-max; Mdn = 11 data points,
Small-max; Mdn = 12 data points). The result from a Friedman test
revealed that there was a significant difference between the Inner-
band, Middle-band, and Outer-band in terms of number of points.
By comparing the conditions we observed a significant difference
between Inner-band and Middle-band conditions (Figure 10-right,
p < 0.001, Inner-band; Mdn = 10 points, Middle-band; Mdn = 11
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points) and between Middle-band and Outer-band conditions (Fig-
ure 10-right, p = 0.02, Outer-band; Mdn = 10 points, Middle-band;
Mdn = 11 points).
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Figure 10: Left: Overall average, as well as the minimum
and maximum number of points participants could select in
this experiment using the Small and Large interaction areas.
Right: Average number of points participants were able to
select in each band across both Large and Small interaction
areas. (red brackets indicate pairwise significance). The error
bar represents 95% confidence interval.

Figure 11 shows all the consecutive (successful and unsuccessful)
trials across all study participants, with each graph representing
trials in a different interaction band. Each separately-coloured line
represents the trials of one participant until they reached the end
of the experiment. The y- and x-axis of all three graphs are scaled
to 25 and 50 respectively, making it easier to compare the existing
patterns. Comparing these three graphs shows that in general, trials
in the Outer-band terminated faster than trials in the Inner-band
and Middle-band (Figure 11). Visually comparing three graphs in
figure 11, it shows that it took longer for our participants to finish
the trials in the Middle-band condition compared to other bands.
One potential reason could be that it was challenging for our par-
ticipants to keep their finger precisely in the Middle-band and not
overlapping with other Inner- and Outer-bands. Moving the finger
out of the interaction area, Middle-band, increases the task comple-
tion time and decreases the accuracy of the target selection task.
This could be the reason for some of participants and in general, it
took longer for our participants to perform the tasks

Figure 11: Number of points (y-axis) of all trials (x-axis) for
each participant (each line).

5.5.3 Failed Trials. In this section, we will analyze how many times
participants failed the trials. A failed trial occurred either when
the user lifted their finger from the incorrect target, or when the 5
seconds elapsed without the user selecting a target. Our analysis
showed that participants significantly failed more in the Large
interaction area compared to the Small interaction area (p < 0.001,
Large; Mdn = 9 fails, Small; Mdn = 7 fails). We also found that the
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number of failures was significantly different only between the
Inner-band and Middle-band (p < 0.038, Inner-band; Mdn = 7 fails,
Small; Mdn = 9 fails) across both Large and Small conditions.

\/ﬁ

T N

II\

e .\ [ e .

°

Figure 12: Number of failed trials split by size of the interac-
tion area (left) and three bands EdgeSelect (right). The error
bar shows 95% confidence interval

5.5.4  Qualitative Analysis. At the end of the experiment, we asked
all of our participants to fill out a questionnaire about the interaction
technique and experiment. We asked them to rank the interaction
layers (Inner-, Middle-, and Outer-band) based on their preference
and easiness. In addition, we asked our participants which interac-
tion area size they preferred (Large or Small). Seventy-five percent
of our participants chose the Large area. Many of our participants
explained that it was easier to interact with compared to the Small
interaction area. For instance, P6 commented, “Touch area is large
and easy to touch”, P5 and P3 also mentioned that they did not
have any “accidental touch in the large area” and that it “feels more
precise” in the large interaction area. In addition, nearly 60% of the
participants preferred to use the Outer-band to interact with graphs
(Figure 13). Only 8% of the participants picked the Inner-band as
their favourite layer to interact with.

Inner band
8%

S A = B T

Figure 13: Proportion of each of the three bands’ rank-
ings. Outer-band was the most preferred layer of EdgeSelect.
Nearly 60% of participants preferred to interact with this
Outer-layer (left).

5.6 Discussion

Our results show that the Small interaction area enables better tar-
get selection performance than the Large interaction area in terms
of response times and the maximum graph density that participants
could interact with. Our data analysis showed that interaction with
the Small area yields a significantly faster performance (almost
500ms faster) than the Large area. When the interaction area is
smaller, it is faster to scroll and navigate through the interaction
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area, which means that the user can interact with more data points
in a shorter period of time.

The average maximum number of targets our participants could
reach, while interacting with the Small area was slightly, but sig-
nificantly, higher than with the Large interaction area. The smaller
size made the interaction faster to reach the targets, and that means
even if participants made a mistake in target selection, they had
time to correct their selection. In the Large interaction area, since it
took longer for our participants to navigate through the interaction
area, correcting a target selection error could take longer, which
could be considered as a fail trial.

In addition, the minimum number of targets participants reached
was significantly higher in the Small condition, which means they
made fewer mistakes while interacting with the Small interaction
area. Figure 10-left also shows that the number of failures was lower
in the Small interaction area.

Although there was no difference between the three different
layers of the EdgeSelect interaction area across the Small and Large
trials, in terms of response time (Figure 9-right), the number of tar-
gets they could reach using the Middle-band was higher compared
to other bands. This means that the Middle-band is a good option
to interact with more dense graphs with a higher number of data
points.

While EdgeSelect was designed and evaluated on a smartwatch
with a circular form factor, a slightly modified version of EdgeSelect
can be used on smartwatches with a rectangular display. The same
three bands can be implemented as the interaction area on the
smartwatch display’s bottom right corner, including a portion of the
right and bottom edge and the entire bottom-right corner. However,
to make the interaction continuous and more natural (similar to
a circular smartwatch), the interaction area on the bottom right
corner can have a slight curve (not angular). This prevents the
user from going to the watch’s bottom right corner and suddenly
changing direction, making it a two-step interaction technique.

6 GENERAL DISCUSSION

In this section we discuss the critical findings and potential appli-
cations, and limitations of the EdgeSelect technique.

6.1 Key Findings

Result of the first study reveal that interacting with the segments at
the bottom, bottom-right, and right side of the smartwatch display
yields the best screen visibility, with an average of 86.7%, 90% and
85% screen visibility, compared to other segments of the smartwatch
display. As we move toward the center of the smartwatch display
and the top-left corner, the screen visibility decreases significantly.
Interaction with the top-left corner of the smartwatch display has
the worst screen visibility with an average of only 40.9% of the
screen being visible. The outermost segments at the right-bottom
corner of the display offer a 92% or higher screen visibility, con-
firming the result reported by [16], which measured the screen
occlusion only for the segments of the smartwatch bezel. However,
our experiment showed that interacting with inner segments of
the smartwatch display can also provide a reasonable amount of
visibility to users (more than 80% screen visibility). Including these
specific areas of the smartwatch display, as the interaction area,
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without sacrificing the screen visibility, can help smartwatch app
designers to use the width and length of EdgeSelect to select and
interact with graphs or other types of content that requires target
selection and continuous linear interaction.

In the second experiment, we showed that using segments of
the smartwatch display with at least 90% screen visibility (Small
interaction area) outperformed the interaction with the segments
of the smartwatch screen with at least 85% screen visibility (Large
interaction area), in terms of response time and errors. This means
that the Small interaction area occupies less smartwatch screen
real estate and enables faster and more accurate user interaction
with graphs and data points. We also found that the Middle-band
in the interaction area is more suitable to interact with graphs with
a higher number of data points (e.g., line/bar graphs) compared
to Inner- and Outer-band which are suitable to interact with less
dense graphs (e.g., pie/donut chart).

6.2 Potential Applications

EdgeSelect can be used to interact with content other than graphs
such as virtual keyboards (Figure 14-a), sliders (smartwatch setting,
Figure 14-b), navigating a music track (Figure 14-c), and hierarchical
menu selection (Figure 14-d). EdgeSelect can be used to interact
with three-row virtual keyboards. Each row of the virtual keyboard
can be mapped to each band of the interaction area. To make the
interaction intuitive, the top-row of the virtual keyboard can be
mapped to the inner-band, middle-row to middle-band and the
bottom-row of the keyboard to the outer-band of the EdgeSelect.
There are approximately nine letters per row (Figure 14-a). As the
results of our second experiment suggest, using the EdgeSelect can
effectively interact with such a number of points in each row of
the virtual keyboard. By sliding the index finger on the right band,
the smartwatch user can select the right letter they want to type.
Selection can be made by moving the finger a bit higher than the
smartwatch display or by holding the finger in that position for a
short period of time (e.g., 2 seconds).

Interacting with sliders (e.g., increasing and decreasing smart-
watch brightness and sound volume) and similarly navigating through
a music player are two other examples of continuous interaction us-
ing EdgeSelect. EdgeSelect can also be used to interact with nested
or hierarchical menus. The first layer of the interaction area can
interact with the highest level of the menu. Then there will be items
from the sub-menu (second row, Figure 14-d). The second band can
be used to select the item from the sub-menu. The same process
may happen with the third layer of the menu and the last band of
the interaction area. For instance, the user can select a workout
application from the apps menu, then the type of workout (e.g.,
running) and then the duration s/he wants to workout.

6.2.1 Limitations and Future Work. We decided to use arrays of
targets in our target selection experiment as using actual graphs
would add more complexity by adding too many confounding vari-
ables. Although we demonstrated that EdgeSelect was designed
to interact with graphs with different densities (Figure 7), formal
qualitative and quantitative evaluation could confirm the effective-
ness of EdgeSelect on actual graphs. In the future, we will quantify
the efficiency of using EdgeSelect to interact with various types of
graphs with different levels of density.
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Figure 14: a) Each of the three EdgeSelect bands can be used
to interact with a three-row virtual keyboard on the smart-
watch without blocking the letter while typing. b, ¢c) Using
EdgeSelect to interact with sliders such as adjusting settings
and navigating through music tracks. d) EdgeSelect can also
be used in hierarchical menus for item selection.

Another limitation of this work is that the two experiments were
done in the lab. Smartwatch users employ their smartwatches on-
the-go and in different mobility conditions. Running an in-the-wild
study with participants running and being outdoors, would make
data collection (such as measuring the screen visibility) very difficult
and inaccurate. many factors, such as lighting, could affect the result
of our video processing. To reduce these types of confounding
factors, we excluded mobility conditions from our current studies
and controlled the environment by conducting a lab based-study.
However, in reality, environment factors are constantly changing.
We will further explore EdgeSelect under different ecologically valid
settings.

7 CONCLUSION

This paper introduces EdgeSelect, an interaction technique that
facilitates linear target selection on small smartwatch screens. Edge-
Select was inspired by the need to interact with various graphs,
representing multiple interrelated data sources, which can often be
shown at the same time on a smartwatch. Our design was geared
at mitigating ‘fat finger’ and screen occlusion effects, as the inter-
acting finger largely overlaps the small display when examining
content. One of our key design goals was to shift the interactive
region to an area of the smartwatch resulting in minimal screen
occlusion (about 10% in our study) while optimizing input across
the entire smartwatch display. To design EdgeSelect, we first con-
ducted a study to measure the screen occlusion caused by the finger
interacting with the entire smartwatch display. Our results indicate
that interacting with outer segments of the smartwatch display
to the right, bottom-right and bottom sides of the display offers
the best screen visibility. Based on this initial result, we designed
a three-layer EdgeSelect interaction technique. Each of the three
layers can be mapped to interact with different graphs, making
EdgeSelect one of the first interaction techniques enabling the ex-
ploration of multiple data visualizations on a small smartwatch
display.

In the second experiment, we examined EdgeSelect with two
different sizes of the interaction area, Large and Small, which enable
inversely proportional levels of screen visibility. Our results showed
that participants performed faster and more accurately with the
Small interaction area (with higher screen visibility) compared to
the Large interaction area (with lower screen visibility), making
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EdgeSelect a suitable interaction method on the small smartwatch
display. We also found that the Middle-band of EdgeSelect is more
suitable to interact with denser graphs (e.g., line/bar chart). On the
other hand, Outer- and Inner-bands are more suitable to interact
with less dense graphs (pie/donut charts). Finally, we demonstrated
that EdgeSelect enables interaction with multiple graphs of different
types and densities, and also can be applied to interact with a wide
range of other applications, including text-entry, menu selection,
and adjusting sliders. In future work, we aim to deploy EdgeSelect
in ecologically valid settings to examine the breadth of exploratory
in-situ analysis afforded by such a technique.
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