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ABSTRACT

Despite the importance of pointing-device movement to efficiency
in interfaces, little is known on how target shape impacts speed, ac-
celeration, and other kinematic properties of motion. In this paper,
we examine which kinematic characteristics of motion are impacted
by amplitude and directional target constraints in Fitts-style point-
ing tasks. Our results show that instantaneous speed, acceleration,
and jerk are most affected by target constraint. Results also show
that the effects of target constraint are concentrated in the first 70%
of movement distance. We demonstrate that we can discriminate
between the two classes of target constraint using Machine Learn-
ing with accuracy greater than chance. Finally, we highlight future
work in designing techniques that make use of target constraint to
improve pointing efficiency in computer interfaces.

Keywords: bivariate pointing, kinematics, Hidden Markov Mod-
els, maching learning, Fitts’ law

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction styles

1 INTRODUCTION

In modern graphical user interfaces (GUIs), pointing devices, such
as pens, mice, trackpoints and touchpads, are ubiquitous. These
devices allow users to invoke commands in the interface by map-
ping pointing-device manipulation to the movement of an on-screen
pointer. Given the ubiquity of pointing devices in GUIs, a signif-
icant body of Human-Computer Interaction (HCI) research deals
with models of movement [3, 2, 5, 13].

Models of movement have frequently described the movement
time, or temporal cost. Temporal-cost models exist for targeted
motion [7], constrained motion [3], and drawing motion for sin-
gle strokes [5]. Temporal models are valuable tools for interface
designers, as the designers can rearrange interface elements and re-
design interface tasks to maximize the temporal efficiency of the in-
terface. While temporal models allow us to calculate time taken by
tasks and modify an interface layout accordingly, they tell us little
about the instantaneous kinematic characteristics (position, speed,
acceleration, jerk as a function of time or position) of the move-
ment.

Recent work has shown that benefits exist in understanding the
kinematic characteristics of motion. For example, techniques such
as target expansion [16] and predictive pointing [4] make use of
kinematic understanding to speed pointing in interfaces. As well,
techniques have been designed that use kinematics to determine
sloppiness [14], or to recognize shapes [8]. In some cases [4, 14],
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Figure 1: Pointing task constraints. At the top, an amplitude or stop-
ping constraint. At the bottom, a directional or steering constraint.

the interaction techniques are fully dependent on kinematic under-
standing. In others [16], kinematics are most useful for some con-
figurations of the interaction technique.

In this work we examine the kinematics of bivariate pointing
tasks, i.e., pointing tasks with either an amplitude or a directional
constraint. Figure 1 illustrates these two constraints. An amplitude
(or stopping) constraint, pictured at the top, exists when the height
of the target is greater than the width of the target. With an ampli-
tude constraint, the distance traveled must be controlled. A direc-
tional (or steering) constraint, pictured at the bottom, exists when
the width of the target is greater than the height. The user needs to
steer into the region of the target, i.e. to control the direction.

Any button widget in a typical graphical user interface places
either an amplitude or directional constraint on a pointing task, de-
pending on its position relative to the cursor. As well, amplitude
constraints in interfaces include tasks such as targeting a scrollbar
or targeting the edge of a window for resizing, and directional con-
straints include tasks such as targeting menus in computers running
the MacOS operating system. Previous work has shown that the two
constraints have an unequal impact on movement times for pointing
tasks [1, 2]. However, there is not yet an understanding of the im-
pact of amplitude versus directional constraints on the underlying
motion characteristics.

The purpose of this research is to examine what effects an am-
plitude or directional constraint has on the kinematic characteristics
of motion in pointing tasks. In particular, we are interested in de-
termining which characteristics of motion are affected and to what
degree the effects can be observed. We are also interested in under-
standing at what point in the gesture such effects become apparent.

We found that bivariate pointing data is complex, and that the
two types of constraint result in significant overlap within the pa-
rameter space. To address the overlapping nature of the data, we
applied machine learning techniques, specifically Hidden Markov
Models (HMMs), to determine those parameters most affected by



bivariate constraint. We show that instantaneous speed, accelera-
tion, and jerk are affected by the type of constraint. We also ob-
served that orthogonal components (i.e, perpendicular to primary
direction of movement) tend to be stronger indicators of target con-
straint condition than directional components. Finally, we show that
the differing effects on the kinematics of amplitude and directional
constraints are observed during the first 70% of the gesture’s path.

The paper is organized as follows. First, we explore related work
on bivariate pointing. We also describe related work on kinematics
of pointing tasks and provide an introduction to HMMs. Next, we
describe an experiment designed to gather data on pointing tasks
representative of those found GUIs. We then present the results
of applying HMMs to understand the impacts of bivariate pointing
on motion and discuss their implications. We conclude the paper by
outlining future work related to the kinematics of bivariate pointing.

2 RELATED WORK

2.1 Bivariate Pointing
Fitts’ Law [7] relates pointing time to target size and distance
through a logarithmic term referred to as the Index of Difficulty or
ID:

T = a+b log2

(
A
W

+1
)

(1)

In the above equation, A represents the distance to the target, and
W represents the size of the target. In Fitts’ original studies, the
target size was always limited in the collinear direction, the direc-
tion parallel to movement toward the target. Therefore, pointing
tasks were performed with amplitude, not directional, constraints.
Most GUIs, however, contain targets that have bivariate constraints,
constraints in the parallel and/or perpendicular directions relative to
the direction of motion. To model pointing time for bivariate tar-
gets, research by Hoffmann and Sheikh [12] and by MacKenzie
and Buxton [15] proposed using the minimum of target width and
height as the actual target size. More recently, Accot and Zhai [2]
proposed a more refined model of bivariate pointing. By varying
width and height parameters, they reformulated Fitts’ Law for bi-
variate pointing tasks as a weighted Euclidean sum of width and
height, specifically:

T = a+b log2

√( D
W

)2
+η

(
D
H

)2
+1

 (2)

Accot and Zhai’s work on bivariate pointing was subsequently
extended by Grossman and Balakrishnan [9]. Grossman and Bal-
akrishnan proposed a probabilistic formulation of ID that could ac-
count not only for differences in target width and height, but also
the user’s angle of approach and target shape. The authors vali-
dated their model for differing angles of approach, leaving target
shape for future work.

Fitts’ Law’s primary use in interfaces is as a predictive model of
pointing task time. If there is a desire to predict aspects of perfor-
mance other than time, models that describe kinematic (as opposed
to temporal) characteristics of the pointing task are needed. We
now examine models that describe the kinematic profile of move-
ment tasks. While these models can be used to describe the basic
motion that occurs in targeting tasks, they do not describe the dif-
ferences that exist between bivariate pointing tasks.

2.2 Kinematic Models of Pointing
Psychology, neurophysiology, and psychophysics have analyzed
human motion with the goal of describing the laws that guide the
speed and distance profiles of this motion. For Fitts-style pointing
tasks, various models exist that seek to explain observed kinematic
profiles.

Psychological research on models of aimed movement can be
traced to Woodworth [23]. In examining speed profiles of aimed
movements, Woodworth hypothesized that movement toward a tar-
get consisted of an initial ballistic movement followed by a sen-
sory control phase to steer onto the target. While this basic view of
movement is accepted, research in psychology still seeks details on
the exact nature of the ballistic and sensory control phases.

The current accepted model of human movement in aimed point-
ing tasks is the stochastic optimized-submovement model [17].
Similar to Woodworth’s model, this model predicts that targeted
motion occurs in two stages: (1) an initial, primarily ballistic, mo-
tion that brings a subject close to the final target; and, if neces-
sary (2) a secondary corrective movement to acquire the target. In
the stochastic-optimized submovement model, goal-directed move-
ment is a stochastic optimization problem, where the increased er-
ror rate of higher initial motion amplitudes (with higher probability
of secondary impulses) trades off against the shorter time to traverse
the distance to the final target.

While the stochastic-optimized submovement model corres-
ponds well with Fitts’ Law and experimental data, it does not de-
scribe bivariate pointing tasks. There are several open research
questions on the kinematics of bivariate pointing tasks, including:

• Which parameters of movement are affected by bivariate con-
straints?

• When is movement first affected by amplitude and directional
constraints?

• Given a bivariate pointing task, can we determine which con-
straint generated a motion profile using parameters of the mo-
tion?

• How similar is the effect of bivariate constraints across users?

To answer these questions, we use a machine learning data analysis
tool called Hidden Markov Models to analyze motion paths. We
provide a basic description of Hidden Markov Models here. Since
a full treatment of this topic is beyond the scope of this paper, the
interested reader is referred to [20] for further detail.

2.3 Hidden Markov Models
Hidden Markov Models (HMMs) are a type of graphical model, es-
sentially a probabilistic finite state automaton. HMMs are particu-
larly well suited to learning and classifying sequential data. HMMs
were first introduced to the machine learning community in the
1990’s by Rabiner [20]. HMMs are commonly used in pen and non-
pen based gesture recognition [6, 19, 22]. In HCI research, HMMs
have been used for purposes such as recognizing user intent in eye-
based interfaces (i.e., interfaces controlled by eye movements) [21]
and predicting a user’s focus of attention in remote collaborative
tasks [18].

At a high level, an HMM can be viewed as a functional map-
ping of a sequence of observations to a probability. The probability
represents the likelihood that the automaton generated the observa-
tions. A different HMM is created (trained using labeled data) for
each of the possible classifications of the observations. To perform
recognition, an unlabeled observation is assigned to the class whose
HMM has the highest likelihood of having generated that observa-
tion. In the remainder of this section we describe the distinction
between a Markov model and a Hidden Markov Model, describe
how a HMM classifies information, and describe specifically how
HMMs are used in this work.

A Markov model is a graph with nodes and arcs. Each node rep-
resents an internal state while each arc represents a transition be-
tween nodes. A Hidden Markov Model is an extension of a Markov
model where the current internal state cannot be directly inferred
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Figure 2: A depiction of a HMM. At the top, the probability distribu-
tions for the states within the HMM given two observations, a distance
and the x-component of velocity. At the bottom, the topology of the
HMM.

from the observation, as multiple states could produce the same ob-
servation.

To model a pointing motion, one state will model a specific re-
gion of the motion. Together, all the states of a HMM will con-
tribute to the complete pointing motion. This is illustrated in Fig-
ure 2. The upper plot shows the pointing motion superimposing
the region that each state represents. The lower figure illustrates
the path through the HMM that corresponds to the pointing motion.
In this situation a particular observation oi is most probably gener-
ated by state 3 as it has a value of Vx = 5. Using this rational we
can determine the probability that the entire observed sequence was
generated by the HMM.

In the context of this paper, continuous Gaussian HMMs are
used as follows. First, we learn the parameters of a HMM so that
a single HMM, λamplitude, models amplitude-constrained motion
and a second HMM, λdirectional models directionally-constrained
motion. Second, given an unlabeled motion, O, we can compute
the probability that the motion was generated by either λamplitude
or λdirectional . We classify the motion as amplitude constrained if
P(O|λamplitude) is greater than P(O|λdirectional) .

3 EXPERIMENT

To determine the kinematic effects of bivariate pointing, we de-
signed a data-collection task that captured bivariate pointing data.
In this section, we describe the participants, display task, experi-
ment design, apparatus, and the procedure by which data was col-
lected.

3.1 Participants
Eight people, two female and six male, all right-handed, partici-
pated in the experiment. All participants were university students.

3.2 Task
The task (displayed in Fig. 3) was a discrete, one-dimensional
pointing task. Initially a green starting rectangle was displayed on
the screen (shown on the left in Fig. 3). The task began when
the participant used the cursor to click within the starting location.
At that time, a red target would appear on the opposite side of the
display (shown on the right in Fig. 3). Participants were required
to move the cursor to the red target and use the mouse button to
click on the target. A successful target acquisition (i.e., clicking

Figure 3: The experimental task.

within the target region) was indicated with the target changing
color. Users were told to acquire the target as quickly and accu-
rately as possible, similar to other Fitts’ Law tasks.

3.3 Design
The experiment consisted of a within-subjects design with repeated
measures. The independent variables were target ID and the bi-
variate constraint of the target (amplitude or directional). The IDs
ranged between 3.17 and 7.01, and were the result of the 15 dis-
tance/width and 15 distance/height combinations (in pixels): 512/4,
512/8, 512/16, 512/32, 512/64, 1024/8, 1024/16, 1024/32, 1024/64,
1024/128, 1536/12, 1536/24, 1536/48, 1536/96, and 1536/192.

3.4 Apparatus
The experiment was conducted on a generic desktop computer (P4,
2.0GHz) with a 23-inch 1920x1200 LCD display running custom
software written in C#. Input was collected using a Wacom Intuos3
five button mouse on a 12x19 inch tablet set to a 1:1 control display
ratio. The 1:1 control display ratio ensured that motor space and
visual space coincided throughout the pointing task. The tablet was
used because of its high sampling rate.

3.5 Procedure
The experiment consisted of eight blocks: one practice block and
seven experimental blocks. Each block consisted of 15 D/W combi-
nations presented twice for each constraint, resulting in 60 tasks per
block. The order of presentation of the D/W combinations and con-
straints was randomized. To minimize fatigue, participants were
required to take a five minute break between blocks. The experi-
ment took approximately 60 minutes to complete.

3.6 Measures
The custom software captured mouse movements at 200Hz. Move-
ment time, X position, and Y position were captured for each regis-
tered mouse movement. Movement time was calculated from when
the user clicked the start target to when the user acquired the in-
tended target. To examine the kinematics of motion, we used the
position and time information to calculate velocity, acceleration,
jerk and curvature for each data point in both the X and Y direc-
tions.

4 PRELIMINARY DATA ANALYSIS

In this section, we present some initial analysis of the data. The
purpose of this initial analysis is to verify that our data agrees with
observations of bivariate pointing times by Accot and Zhai [2], and
to demonstrate the overlap of the two constraint conditions within
individual parameters of motion.

Figure 4 plots movement time against Index of Difficulty for both
amplitude and directional constraint. Similar to results reported by
Accot and Zhai [2], we see that amplitude constraint (stopping)



Figure 4: Movement times by target constraint.

typically takes longer than directional constraint. Analysis using
repeated-measures ANOVA shows a significant effect for constraint
(F1,7 = 23.30, p = .002) and for ID (F4,28 = 44.230, p < .001). To
examine the interaction between constraint and ID, we used univari-
ate ANOVA.1 The results indicate that there is a significant effect
for target constraint*ID (F4,2891 = 3.13, p < .01).

Our initial hope was that apparent differences would exist in
motion profiles for the different constraint conditions. However,
our examination of the kinematic characteristics of motion did not
clearly display differences by the two types of constraints. Con-
sider, for example, Figures 5(a) and 5(b), which plot velocity in
both the Y and X directions for the two constraints as a function
of the percentage of stroke completion. These figures illustrate the
degree to which the characteristics of motion overlap regardless of
the type of constraint. Plots of other motions characteristics were
similar in their lack of observable differences. Likewise, plots with
motion characteristics separated by ID showed obvious differences
according to ID, however, differences owing to constaint were again
difficult to assess based on visual inspection alone.

Despite the lack of readily observable divergences between pro-
files, the significant effect that constraint has on movement time
requires that some variations in motion must be present. To ex-
tract from the data those parameters of motion that result in the
differences in time for amplitude and directional constraint, we
trained HMMs on various combinations of features and use changes
in recognition accuracy to determine those parameters affected by
changes in target constraint.

5 RESULTS

In this section we present the results of using HMMs to recognize
and characterize the differences between pointing motions in bivari-
ate pointing tasks.

5.1 HMM Training
We trained the HMMs using two strategies. The first strategy re-
sulted in what we refer to as user-specific HMMs. This strategy,
which provided the classifier with access to data from all users
during training, employed an 10-fold cross-validation technique.
For each fold, the HMM was trained using 90% of the data from
all users and then tested on the remaining 10%. This process
was then repeated nine additional times, each time using different
training/test sets. The second training strategy resulted in generic

1With RM-ANOVA, only one within-subjects factor can be included in
the analysis at a time.

HMMs. With this strategy, data was withheld from one user dur-
ing training to test the classifier’s ability to generalize to new users.
In particular, we used 8-fold cross validation, where, for each fold,
the HMM was trained on data from seven users and tested on the
remaining user.

For user-specific HMMs to be useful for on-line prediction, the
system would have to observe the user perform a number of point-
ing gestures (and have knowledge on target dimensions) prior to
reaching the levels of accuracy described in here. The generic
HMMs are useful in understanding potential predictive accuracy
when the classifier has no knowledge of a given user.

All HMMs had five states, with one mixture per state. The
HMMs were also fully connected, meaning that transitions were
possible between all states. Before settling on five states, we exper-
imented with other configurations. We found that for zero to five
states, accuracy increased as the number of states increased. After
five states, there was there was a very slight increase in accuracy.
For the purpose of our experiments, however, this increase was not
enough to warrant the additional training time.

5.2 HMM Inputs
The inputs to the HMMs are all derived from the position and tim-
ing information of the pointing motion. We identify three categories
of parameters: instantaneous parameters, path-based parameters,
and cumulative parameters. The inputs for each these three param-
eter categories are summarized in table 1.

Input Description
Instantaneous Components (Vectors)

Vx Velocity w.r.t. X-axis
Vy Velocity w.r.t. Y-axis
Ax Acceleration w.r.t. X-axis
Ay Acceleration w.r.t. Y-axis
Jx Jerk w.r.t. X-axis
Jy Jerk w.r.t. Y-axis

Path-Based Components
κ Local curvature of trajectory

Cumulative Components (Scalars)
Vcx Cumulative speed w.r.t X-axis
Vcy Cumulative speed w.r.t Y-axis
Acx Cumulative acceleration w.r.t X-axis
Acy Cumulative acceleration w.r.t. Y-axis
Jcx Cumulative jerk w.r.t. X-axis
Jcy Cumulative jerk w.r.t. Y-axis

Table 1: Inputs

Our rationale for these three categories of parameters is an obser-
vation that target constraint can affect motion in three ways. First,
the act of either steering or stopping can cause changes in instanta-
neous components of movement during motion, a result of trying to
control one or more instantaneous parameters of movement. As an
example, the y-component of jerk might vary more abruptly during
motion to keep the trajectory aligned with the target.

Second, a steering constraint could cause the path to bend more
than a stopping constraint, a result of trying to steer back to a target.
We used local curvature to measure variations in the “straightness”
of the motion path. Curvature was calculated using the standard
curvature formula:

κ =
|vxay− vyax|
(v2

x + v2
y)3/2

(3)

Finally, different constraints could result in variations in the
overall components of motion. For example, a steering constraint
might result in a higher peak speed than a stopping constraint for
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Figure 5: Velocity in the X and Y directions for the target constraints by percentage of stroke completion. Magenta represents amplitude
constraints and blue represents directional constraints. (Requires colour viewing)

a given distance. Cumulative parameters encapsulate information
on the entire trajectory. We computed cumulative parameters as the
sum of the absolute values of velocity, acceleration and jerk com-
ponents, allowing us to analyze whether changes in overall motion
occurred as a result of amplitude and directional constraints.

5.3 Analysis
HMMs were trained using different combinations of the inputs in
Table 1 to determine which inputs contained the most differentiat-
ing information. We considered eighteen different combinations of
features covering both parameters within the three categories and
mixtures of parameters from across the different categories. We se-
lected the eighteen feature sets based on what we felt would be the
most informative and also provide a good breadth of coverage of
the parameter space. While it would be possible to experiment with
additional feature combinations, we did not feel that they would
provide the same insight, and both the time necessary to train the
HMMs (using the 10-fold cross validation) and the tractability of
the analysis were limiting factors.

Our first goal was to determine where, along motion path, ob-
servable differences caused by target constraint become apparent.
Figure 6 depicts a typical graph of recognition accuracy given par-
tial results. This figure is representative of the results for both the
user-specific and the generic HMMs. After having observed only
10 % of the task, as expected, the recognition accuracy is about
52%, or near chance. However, once 70% of the task is observed,
accuracy rises to about 73% and remains stable for the remainder of
the sequence. This implies that once 70% of the task is observed we
can make as accurate a guess as if the task was completed. Conse-
quently, in the remainder of our analysis we consider only the first
70% of the observations. During the final 30% of the motion, no
new constraint-specific information can be gleaned from the mo-
tion.

Of the three categories of features, we found that instantaneous
components of motion were most affected by variations in target
constraint. In contrast, target constraint had much less of an impact
on the overall components of movement and the path-based param-
eters. As instantaneous parameters were most affected by bivariate
constraint, we present six different combinations of these features.
Table 2 indicates the specific cases that will be presented for anal-
ysis in the following section. For comparison purposes, we also
present representative results from the other two categories (Case
7 and Case 8) and an additional parameter combination that incor-
porates combinations of instantaneous, path-based, and cumulative
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Figure 6: Accuracy given partial observations for a user-specific
HMM using instantaneous x- and y-components of motion.

features (Case 9). In the eighteen cases that we examined, a number
of cases combined features from the different categories, however,
such combinations resulted in no improvement in recognition. In
Case 9, we use all available parameters from all categories.

For the combinations listed in Table 2, we now explore classifier
accuracy. As noted in Section 5.1, we used two different strategies
for training HMMs. The first was to create user-specific HMMs,
which are trained on data from a specific user. The second was
to create generic HMMs, which analyze information given no prior
data on a specific user. Figure 7 presents the results for user-specific
HMMs, and Figure 8 presents recognition accuracy for generic
HMMs. Errors bars in the graphs denote the standard deviations
from the cross-validation. As noted in section 5.1, user-specific
HMMs (Figure 7) were evaluated using 10-fold cross-validation,
and generic HMMs (Figure 8) were evaluated using a leave-one-
out strategy.

In our results, we use HMMs to distinguish those features of mo-
tion that are most affected by target constraint. We do this by pro-
viding selected features from an unlabeled instance of a constrained
pointing task to a trained HMM and asking it to classify whether the



Case Inputs
Instantaneous Parameters

1 Vx,Vy,Ax,Ay,Jx,Jy
2 Vx,Vy
3 Vx,Ax,Jx
4 Vy,Ay,Jy
5 Vx
6 Vy

Path-Based Parameters
7 κ

Cumulative Parameters
8 Vcx ,Vcy

Multi-Category Parameters
9 Vx,Vy,Ax,Ay,Jx,Jy,κ,Vcx ,Vcy ,Acx ,Acy ,Jcx ,Jcy

Table 2: Description of cases
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Figure 7: User-Specific HMM Results

sample was generated by an amplitude or directional constraint. As
we add additional features, we expect to see the HMM’s accuracy
increase if the features it uses are affected by target constraint. Ac-
curacy should remain constant (or decrease slightly2) if the features
are not affected.

Our first result is that the best possible HMM we observed was
a user-specific HMM that had access to all instantaneous kinematic
components of motion. Under this condition, the HMM can classify
target constraint with 73.6% accuracy. This is represented as Case 1
in Figures 7. These results indicate that there are detectable differ-
ences between the pointing motions with amplitude constraints and
with directional constraints. Furthermore, it is possible to detect
this difference on an individual observation (given training data) in
real-time with much better-than-chance accuracy.

Figure 8 illustrates the results of training the HMMs under the
second scenario, where each HMM is trained on seven users data,
then tested on the remaining user. This represents the more diffi-
cult recognition task of creating a user-independent model. As ex-

2Using spurious features frequently causes Machine Learning (ML)
techniques to perform slightly worse unless a sufficiently large training cor-
pus is available. With enough training, ML techniques can be trained to
ignore spurious features. However, for reasonable training sets, the observa-
tion of poorer performance with additional features is sufficient to conclude
that the new features contain no useful information.
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Figure 8: Generic HMM Results

pected the recognition rates decreased, with the best case averaging
67.1%, and the standard deviations tending to be larger. Although
these recognition rates are lower, they are again much better than
chance. The generic results also correlate well with the results from
the user-specific HMMs. Furthermore, this result indicates that the
difference between amplitude-constrained pointing motions and di-
rectionally constrained pointing motions are consistent across mul-
tiple users.

As mentioned above, Case 1 represents the best-case scenario
in our results. To isolate which inputs provide the most useful in-
formation, we experimented with several different combinations of
the features in Case 1, shown in Figures 7 and 8 as Cases 2 - 6. As
indicated in Table 2, Case 2 is x and y components of speed, Case
3 is instantaneous x-components, Case 4 is instantaneous y com-
ponents, Case 5 is the x-component of velocity and Case 6 is the
y-component of velocity. The single most important input was ve-
locity with respect to the y-axis (Case 6). Adding acceleration and
jerk with respect to the y-axis (Case 4) produced nearly as accurate
recognition, 70.5%, as Case 1, indicating that most discriminating
information is contained in motion perpendicular to the direction of
the target.

Other categories of features were less affected by target con-
straint. Little discriminating information exists in curvature (52%
accuracy, only slightly above chance, shown in Case 7). Cumula-
tive components do perform better than chance (Case 8). However,
cumulative components include no new information, as shown in
Case 9, where when all components are added to the HMM we ob-
serve a slight drop in recognition. If any of the additional compo-
nents added useful information, we would expect to see an increase
in performance for the mixed HMM.

In summary, we have shown that the difference between
amplitude- and directionally constrained pointing motions is de-
tectable. We have shown the most discriminating information is
encoded in the motion perpendicular to the direction of the target.
We have presented evidence that the differences between pointing
motions are detectable once only 70% of the motion has been ob-
served, and that these observations are user independent.

6 DISCUSSION

Section 2.2 introduced four questions on the kinematic properties
of bivariate pointing:

• When is movement first affected by amplitude and directional



constraints?

• Which parameters of movement are affected by bivariate con-
straints?

• Given a bivariate pointing task, can we determine which con-
straint generated a motion profile using parameters of the mo-
tion?

• How similar is the effect of bivariate constraints across users?

Our results provide answers to each of these questions.
First, we analyzed various parameters of movement at different

positions along the trajectory. We note that after 10% of the tra-
jectory, amplitude and directional constraints have little effect on
motion. However, by 20% of movement, we are able to predict
constraint with an accuracy that exceeds chance, and this accuracy
increases until 70% of trajectory is observed. This indicates that
corrective components of motion can occur early in motion, and
that they become more pronounced through to 70% of movement.
During the last 30% of the trajectory, corrective movement is un-
doubtedly occurring, but there exists little qualitative difference be-
tween instantaneous, path-based, or cumulative characteristics of
movement.

Second, based on Figures 7 and 8 we can conclude that most ef-
fects of target constraint occur in the instantaneous y-component of
movement. Furthermore, we found that path-based and cumulative
components of motion are not affected by target constraint.

Third, we note that we can determine the target constraint from
parameters of motion 73.6% of the time with user-specific Gaussian
HMMs – a result that is much better than chance. Since our focus in
this paper is on understanding the underlying kinematics, we have
not yet explored ways to improve classifier recognition. Therefore,
it is likely that with further attention paid to improving recognition
that this accuracy rate will rise. Whether or not such a classifier
could achieve an accuracy rate that acceptable from the user’s per-
spective, given an interaction technique designed to leverage these
predictions, remains an open question.

Finally, based on the accuracy of the user-specific and generic
HMMs, the y-component effects of target constraint generalize
across our subjects. However, Case 1 in Figure 7 shows that a small
improvement in recognition occurs when x-components of motion
are considered in user-specific HMMs. This improvement is not ap-
parent in Figure 8, indicating that the variability in the x-component
does not generalize across users.

6.1 Study Limitations

There are two aspects of our study design that might limit gen-
eralizability to all interface pointing tasks. First, when exploring
bivariate pointing, we focused on instances of bivariate constraint
where the target constraint exists in only one dimension. This deci-
sion allowed us to isolate the impact of amplitude versus directional
constraint. We do not consider the effect that interactions of these
constraints have on motion, although a future study exploring this
would be valuable. Similarly, in our study, we examined only hor-
izontal motion on the display, mirroring related work in this area
[1, 2, 7].

An additional limitation of our study is the manner in which data
was supplied to the HMMs. In particular, stroke data was always
supplied in chronological order, starting from the beginning of the
stroke. With this training method, we found that no new informa-
tion was gained after 70% of the stroke. However, it might not be
the first 70% of the movement that is the most discriminating, but
rather the first 70% of the data. Further experimentation with the
manner in which the HMMs are trained would be necessary to re-
solve this issue.

7 FUTURE WORK

A number of recent research results have examined different aspects
of modeling in interfaces. Beyond bivariate pointing, examples of
this style of work include character modeling [5], goal crossing [1],
endpoint modeling with complex targets [10], endpoint prediction
[13], and others. This work seeks understanding of the phenom-
ena that underlie such diverse tasks as drawing characters, hitting
targets, or moving through regions.

In our work, we focus specifically on understanding which kine-
matic properties of motion result in the temporal difference ob-
served between amplitude and directional constraints [2]. Given
some understanding of the kinematic properties that are affected
by bivariate target constraints, our next goal is to understand how
we might make use of this understanding in interaction. In this
section, we focus on three areas of future work: improving recog-
nition, designing interaction techniques, and studying the effect of
error-prone intelligent interaction techniques on users.

7.1 Improving Recognition
In this paper, our overall goal was to understand which parameters
of motion were most affected by bivariate target constraint. Given
the observation of temporal differences between amplitude and di-
rectional constraints by Accot and Zhai [2], some parameters of
movement must necessarily have been affected by the constraints.
HMMs allowed us to identify those parameters of motion that are
most altered by varying target constraint.

While our accuracy results with simple HMMs were greater than
chance, several options exist for further improving recognition.
These include improving learning or exploring other recognition
techniques. Strategies such as “competitive learning”, where sev-
eral competing HMMs are trained on each target constraint might
allow an individual HMM to adapt to a particular distance, ID, or
other task-specific factor. Other recognition techniques also exist
for sequential data, including hybrid HMMs, conditional random
fields, or graph transformer networks. Any of these might provide
better recognition results.

7.2 Designing Interaction Techniques
A variety of existing interaction techniques can be modified to take
into account the primary constraint under which the user is gen-
erating motion. Examples of these interaction techniques include
oriented target expansion and oriented cursor acceleration.

In their work on expanding targets, McGuffin and Balakrish-
nan [16] assumed that target expansion occurred uniformly in two
dimensions. However, as they note, when interface widgets are
densely arranged on the screen, this expansion may cause a large
disruption in the display. As well, in the case of tiled display tar-
gets, expanding targets provides no benefit to the interaction. To
accommodate these special cases, the system might use recogni-
tion of user constraint to assign priors to candidate targets based
on target profiles. For certain observed parameters, a subset of tar-
gets could be expanded, while others could be left unexpanded, and
the expanded targets could be expanded only in the dimension of
the constraint. This could serve two benefits. First, it would min-
imize disruption to the display by limiting the number of targets
expanded, and limiting the expansion to a single axis. Second, any
predictive technique might allow better identification of the spe-
cific candidate target, thus improving performance in dense widget
arrangements.

Even without manipulating display widgets, other options exist
for improving pointing performance. Various researchers (see, for
example, [11]) have manipulated the control-display ratio to im-
prove pointing performance while on widgets. As well, the ballis-
tic variation of mouse-pointer movement allows users to traverse
longer distances on the computer screen at high speeds than an
equivalent displacement would at low speeds (cursor acceleration).



Given an understanding of the orientation of the target on the dis-
play, the control display ratios could be selectively altered to en-
large targets in the constrained dimension or to stabilize movement
along the constrained axis.

7.3 User Perception and Action

Even with improvement to the classifiers, no on-line prediction
mechanism will ever reach perfect accuracy. Any time interaction
techniques make use of error-prone recognition technology, there
is the potential to harm user performance. However, the computer
mouse is already error-prone. Both mechanical and optical mice
suffer from occasional tracking problems due to friction or reflec-
tive characteristics of the surface on which they operate. Users
seem to adapt to these idiosyncrasies during pointer motion.

Given the already error-prone nature of the computer mouse, one
open question is whether we can manipulate the interaction through
error-prone recognition, distinguish when the recognition operated
incorrectly based on user compensation, and then adjust our recog-
nition hypothesis and attendant interaction technique to our new
recognition result. This feedback loop might result in similar be-
haviour to the behaviour exhibited by users dealing with tracking
issues in computer mice.

8 SUMMARY

In this paper, we explored the kinematic characteristics of bivariate
pointing. While past research by Accot and Zhai [2] observed tem-
poral differences between amplitude and directional constraints, we
studied why, in terms of the kinematics of motions, such temporal
differences occur.

We performed an experiment to collect bivariate pointing data
and found that visual inspection of the data along various dimen-
sions of movement revealed few discriminating characteristics. As
a result, we employed machine learning techniques and Hidden
Markov Models. Using HMMs, we found that the constraints do
create differences in the underlying motion characteristics and that
the differences lie in the instantaneous components of motion. In
particular, we found the primary effect to be concentrated in mo-
tion along the axis orthogonal to the primary direction of motion.
Other parameters examined, pertaining to path-based parameters
and cumulative components, were found to have little discrimi-
nating power. Additional results of interests include the fact that
constraint effects can be detected by 70% of the gesture and that
the HMMs can predict target constraint at a level significantly bet-
ter than chance even with no prior knowledge of the current user.
Promising avenues for future work include improving classifier
accuracy, implementing new interaction techniques that leverage
target-constraint prediction, and studying the effects of inaccurate
predictions on user behaviour.
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