Diagrammatic Question Framework: Studying Effectiveness
in First-Year Computing Courses

Lauren Himbeault
lauren.himbeault@umanitoba.ca
University of Manitoba
Winnipeg, Manitoba, Canada

ABSTRACT

Programming courses and instructors provide a wide variety of
materials to help students learn how a computer will execute code.
However, students may not engage with these resources effectively,
or at all. This paper presents an initial framework for designing
formative assessments, coined Code Diagram Queries (CDQs). The
goal of CDQs is to act as a forcing function to engage students with
formative diagrammatic material that will challenge and correct
their current mental models for the notional machine of the lan-
guage they are learning. Optional resources are often disregarded
unless there are formative activities that drive students to interact
with the materials. CDQs are questions that include or reference di-
agrams and are designed to drive student interaction with diagram-
matic notional machine representations in a low-risk formative
environment. This developmental environment allows students to
explore new computer science concepts and expand on their un-
derstanding of them. I hypothesize that CDQs will help increase
student engagement by leveraging diagrammatic materials and
through this, help students accurately visualize and comprehend
code execution. I will measure engagement with class materials and
student confidence levels following their interactions with CDQs.
This framework is meant to aid in the effective design of CDQs so
that a student’s comprehension of code execution may be under-
stood more deeply and then corrected as needed. The focus of this
research is to provide new insights into the importance of guiding
students through the construction of their mental models.

1 PROBLEM AND MOTIVATION
1.1 Learning a Notional Machine (NM)

Novice programming students face high failure and drop-out rates
for many reasons [8, 13, 18, 20, 21]. A subset of reasons for these
rates include difficulty with materials [16, 24, 29], self-efficacy
[7, 22, 31], and prior experience [9]. Aiding students when they
are faced with these challenges is important and previous research
suggests direct instruction is beneficial for students [2, 26]. Edu-
cators employ different types of scaffolding to guide students as
they expand their knowledge and push the bounds of their zone of
proximal development [23, 25]. Using the correct type of scaffolding
is imperative to support student learning and in this way, we can
help ensure a deeper understanding of the NM [8].

1.2 Visual Resources

Visual tools such as static images, drawings, or even animated media
are frequently employed to support learning. Evidence suggests
static diagrams helps students understand coding concepts [27] and
work on the value of diagrams illustrates how a well-constructed

image benefits a student’s comprehension and problem-solving
skills [19]. A drawback of these static visualizations is their lack
of interactivity. When a student is solidifying their understanding
of a concept, the ability to interact with and/or modify a visual is
crucial. An example of an animated visualization is PythonTutor,
which is a web-based program that aids students understanding
the NM [12].

1.3 Code Diagram Queries

Code Diagram Queries (CDQs) are a formative tool designed to aid
students in developing accurate mental models of programming
language NMs. I hypothesize that CDQs will act as a forcing func-
tion to get students to interact with NM visualizations and think
about the way the computer interprets and executes code. These
questions are intended to help reveal NM misconceptions with re-
spect to a student’s understanding. Using this framework, CDQs
have the potential to enhance student comprehension of the Python
NM. This framework is not limited to the Python language and
can be extended for other coding languages (Figure 1). Engaging
students with activities designed to probe their understanding of a
NM allows us to assess their mental model accuracy. The impor-
tance of using formative assessments for students when learning
new concepts is well documented. Giving students the opportunity
to explore concepts and attempt to understand them in a low-risk
formative environment can help build confidence in coding [5, 15].
I have designed CDQs to be a low stakes assessment for students
so they can explore and experiment with coding concepts.

2 BACKGROUND AND RELATED WORK

As NMs are abstract representations of code, educators often em-
ploy tangible renderings to help make concepts more concrete
[11, 27, 28]. The concept of concreteness fading is often used when
teaching an NM because of code execution being inherently ab-
stract. Specifically, code execution refers to how the user-written
code runs on a physical computer. Since different coding languages
interact with computer architecture differently, the way in which
these NMs are modelled must also vary. A plethora of tools exist to
handle these deviations.

Some educators have used a more physical representation when
displaying an NM [17, 19]. The benefits of physical presentations are
numerous, however, these representations are not easily portable
and can be cumbersome and tedious to manipulate. Unlike static
representations of code, software for code visualizations exist for
a more portable way to view and visualize code [4, 12, 14]. These
web-based resources can help a student ensure the model they are
looking at accurately represents the code they see as opposed to
attempting to recreate what they saw in class. While different code



SIGCSE 23, March 13-15, 2023, Toronto, Ontario

Notional Machines

Figure 1: The CDQ framework connects visualizations, NMs,
and identifies the different cognitive levels at which forma-
tive assessments can take place. Intersections surrounding
CDQs are shown: A. Visualization Software with no assess-
ment component (Eg. PythonTutor); B. Formative assess-
ments of an NM that do not involve visuals (Eg. multiple
choice questions with no diagrams or code tracing tables);
and C. Formative assessments using visualizations that do
not explicitly address the NM (Eg. writing pseudo-code).

Identify Predict Modify
Understand Apply Analyze
. . A a Explain why updating a
Memory Grouping varlal?les by Dgtermlnlqg which list parameter in a
data type (e.g Circle the variables will update q
State integers) during code execution. functionaffectsithe
: ) value globally.
Structure & Categlorizingl;)_vartiables as Exaéniz\ing _frame diaglramls Distinguishing between
Scope Cl a5§ D‘ 'JEC S or 0 determine scope level local/global variables.
primitives. of data.
L a q Organizing code to
Temporal nghllghFlng the method Sketching a program's ensure correct flow of
Path calls in a program. flow of execution. execution.

Figure 2: Examples of types of questions that can be asked ac-
companied with a diagrammatic representation of the code.

visualizers exist, each with their pros and cons, many have common
assets including the ability to move through animations at one’s
own pace and to experiment with your own code and not just use
class examples or pre-selected algorithms.

3 APPROACH AND UNIQUENESS

This paper presents an initial framework created to guide the de-
sign of CDQs, questions that query student’s understanding of
a diagrammatic representation of an NM (Figure 1). I developed
this framework using diagrams from PythonTutor [12], however,
any visualization/animation that correctly displays code execution
given the coding language and computer architecture could be the
subject matter for CDQs. These assessments are intended to help
students engage with the CDQ diagram and build a more accurate
understanding of how a computer executes code. This framework
identifies the cognitive levels at which the foundation of learning to
code happens. The concepts of visualizations, NMs, and formative
assessments create the basis upon which the CDQ framework is
built. Specifically, this framework defines a design space for for-
mative questions that span three core introductory programming

Lauren Himbeault

concepts, the cognitive skills from Bloom’s taxonomy: Understand-
ing, Applying, and Analyzing [3], and a variety of question formats.
The methodology of using Bloom’s taxonomy classrooms is well
studied, however this framework is designed to focus on 3 layers
of the taxonomy [1, 30]. In coding, Bloom’s taxonomy has been
thought to be difficult to incorporate but by focusing on specific
layers of the taxonomy, this framework utilizes the taxonomy in a
way that allows students to build strong foundations [10].

The CDQ framework is formed through the 3 layers of Bloom’s
taxonomy, the 3 programming concepts outlined above, and differ-
ent styles of questions. Special attention to the style of questions
used delivering CDQs is necessary as learning is a spectrum and
not all students feel confident with the same question types [6, 32].
Examples of varying questions targeting these processes for the
concepts specified are found in Table 2.

The goal of this framework is to aide in the effective design of
CDQs which probe and correct a student’s understanding of code
execution. This framework is meant to be a guide in the design of
formative assessments that use diagrammatic representations of
NMs (CDQs) and to ensure coverage of multiple cognitive processes
and coverage across the most critical early programming concepts.
Thus, aiding students in building a more accurate understanding of
how a computer executes code in a given language. Specifically, my
framework defines a design space for formative questions that span
3 core introductory programming concepts, 3 different cognitive
skill levels from Bloom’s taxonomy, and a variety of question for-
mats. Even educators who are experts in their subject, working with
novice programmers can be complex and understanding problems
through their eyes can be challenging [16, 21]. This framework
serves as a stepping stone for educators who are looking for new
teaching techniques.

4 RESULTS AND CONTRIBUTIONS

The primary goal of CDQs is to support students in their understand-
ing of how code interacts with computer architecture, therefore

building stable and accurate mental models. Students struggle with
concepts such as how computers store and process data as part of a

program. Rather than relying on a student constructing an accurate
mental model through independent exploration, CDQs are a tool
with which students can engage and these questions act as a forcing
function to challenge the accuracy of a student’s mental model and
alter it accordingly. CDQs will compel them to think differently and
reshape their mental models appropriately. This research presents
an initial framework that allows diagrammatic questions that make
use of preferred code, known as Code Diagram Queries (CDQs) to
be implemented using visualization tools.

Present research being conducted is analyzing the differential
effectiveness of these CDQs and their ability to help students con-
struct accurate mental models of computer processes in a first year
computing class. While all visualization tools have limitations, this
framework is designed so that it is not coupled with a particular
schematic. This allows for flexibility in using different resources
for the visuals depending on the language being employed and the
visual tools already in use. CDQs are designed to be more effective
at aiding in understanding an NM over existing non-diagrammatic
activities. I hypothesize the inclusion of these questions will posi-
tively impact the engagement level of students.



CDhQ

REFERENCES

(1]

[2

—

[10]

(1]

[12

[13]

=
it

(15

[16

[17

(18]

Lorin W. Anderson, David R. Krathwohl, Benjamin Samuel Bloom, and Ben-
jamin Samuel Bloom. 2001. . Longman, New York, NY, USA. 333 pages.

Nicole Anderson and Tim Gegg-Harrison. 2013. Learning Computer Science in
the "Comfort Zone of Proximal Development". In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (Denver, Colorado, USA)
(SIGCSE ’13). Association for Computing Machinery, New York, NY, USA, 495-500.
https://doi.org/10.1145/2445196.2445344

Benjamin S" "Bloom. 1965. "The taxonomy of educational objectives: Handbook 1.
"Longman Higher Education”, "Harlow, England".

Michael Bodekaer Jensen & Mads Tvillinggaard Bonde. 2011. Labster. Labster.
Retrieved Oct 2, 2022 from http://labster.com

Carol Boston. 2002. The Concept of Formative Assessment. Practical Assessment,
Research, and Evaluation 8, 9 (2002), 5. https://doi.org/10.7275/kmeq-dj31
Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial. 2017.
Using Tracing and Sketching to Solve Programming Problems: Replicating and
Extending an Analysis of What Students Draw. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (Tacoma, Washington,
USA) (ICER ’17). Association for Computing Machinery, New York, NY, USA,
164-172. https://doi.org/10.1145/3105726.3106190

E. Doyle, I. Stamouli, and M. Huggard. 2005. Computer anxiety, self-efficacy,
computer experience: an investigation throughout a computer science degree.
In Proceedings Frontiers in Education 35th Annual Conference. IEEE Proceedings
Frontiers in Education 35th Annual Conference, Indianopolis, IN, USA, S2H-3.
https://doi.org/10.1109/FIE.2005.1612246

Benedict du Boulay. 1986. Some difficulties of learning to program. journal of
Educational Computing Research 2, 1 (1986), 57-73. https://doi.org/10.2190/31fx-
9rrf-67t8-uvk9

Nikita Diimmel, Bernhard Westfechtel, and Matthias Ehmann. 2018. Effects of a
preliminary programming course on students’ performance. In Proceedings of the
3rd European Conference of Software Engineering Education. ACM, New York, NY,
USA, 77-86. https://doi.org/10.1145/3209087.3209088

Ursula Fuller, Colin G. Johnson, Tuukka Ahoniemi, Diana Cukierman, Isidoro
Hernéan-Losada, Jana Jackova, Essi Lahtinen, Tracy L. Lewis, Donna McGee
Thompson, Charles Riedesel, and Errol Thompson. 2007. Developing a Computer
Science-Specific Learning Taxonomy. SIGCSE Bull. 39, 4 (dec 2007), 152-170.
https://doi.org/10.1145/1345375.1345438

Emily R. Fyfe and Mitchell J. Nathan. 2019. Making “concreteness fading” more
concrete as a theory of instruction for promoting transfer. Educational Review
71, 4 (7 2019), 403-422. https://doi.org/10.1080/00131911.2018.1424116

Philip Guo. 2013. PythonTutor. PythonTutor. Retrieved Oct 2, 2022 from
http://pythontutor.com

Mark Guzdial. 2015. What'’s the best way to teach computer science to beginners?
Commun. ACM 58, 2 (2015), 12-13. https://doi.org/10.1145/2714488

Steven Halim. 2011. VisualGo. National University of Singapore (NUS) - Com-
puting. Retrieved Oct 2, 2022 from http://visualgo.net/en

John Hudesman, Sara Crosby, Bert Flugman, Sharlene Issac, Howard Everson, and
Dorie B. Clay. 2012. Using formative assessment and metacognition to improve
student achievement. https://eric.ed.gov/?id=EJ1067283

Tony Jenkins. 2002. On the difficulty of learning to program. In Proceedings
of the 3rd Annual Conference of the LTSN Centre for Information and Computer
Sciences, Vol. 4. Citeseer, LTSN Centre for Information and Computer Sciences,
Loughborough, UK, 53-58.

Colleen M. Lewis. 2021. Physical Java Memory Models: A Notional Machine. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event, USA) (SIGCSE °21). Association for Computing Machinery, New
York, NY, USA, 383-389. https://doi.org/10.1145/3408877.3432477

Richard Mayer. 1981. The psychology of how Novices Learn Computer Program-
ming. Comput. Surveys 13, 1 (1981), 121-141. https://doi.org/10.1145/356835.
356841

SIGCSE °23, March 13-15, 2023, Toronto, Ontario

Syeda Fatema Mazumder, Celine Latulipe, and Manuel A. Pérez-Quifiones. 2020.
Are Variable, Array and Object Diagrams in Java Textbooks Explanative?. In Pro-
ceedings of the 2020 ACM Conference on Innovation and Technology in Computer Sci-
ence Education (Trondheim, Norway) (ITiCSE °20). Association for Computing Ma-
chinery, New York, NY, USA, 425-431. https://doi.org/10.1145/3341525.3387368
Tain Milne and Glenn Rowe. 2002. Difficulties in Learning and Teaching Program-
ming—Views of Students and Tutors. Education and Information Technologies 7, 1
(2002), 55-66. https://doi.org/10.1023/a:1015362608943

Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other diffi-
culties in introductory programming. ACM Transactions on Computing Education
18,1(2017), 1-24. https://doi.org/10.1145/3077618

Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. 2004. Self-efficacy
and mental models in learning to program. In Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer science education - ITICSE
’04. ACM Press, New York, New York, USA, 171. https://doi.org/10.1145/1007996.
1008042

Zak Risha, Jordan Barria-Pineda, Kamil Akhuseyinoglu, and Peter Brusilovsky.
2021. Stepwise Help and Scaffolding for Java Code Tracing Problems With an
Interactive Trace Table. In 21st Koli Calling International Conference on Computing
Education Research. ACM, New York, NY, USA, 1-10. https://doi.org/10.1145/
3488042.3490508

Adrian Salguero, William G. Griswold, Christine Alvarado, and Leo Porter. 2021.
Understanding Sources of Student Struggle in Early Computer Science Courses.
In Proceedings of the 17th ACM Conference on International Computing Education
Research (Virtual Event, USA) (ICER 2021). Association for Computing Machinery,
New York, NY, USA, 319-333. https://doi.org/10.1145/3446871.3469755

Karim Shabani, Mohamad Khatib, and Saman Ebadi. 2010. Vygotsky’s zone of
Proximal Development: Instructional Implications and teachers’ professional
development. English Language Teaching 3, 4 (2010), 237-248. https://doi.org/10.
5539/elt.v3n4p237

Jean Stockard, Timothy W. Wood, Cristy Coughlin, and Caitlin Rasplica Khoury.

2018. The Effectiveness of Direct Instruction Curricula: A Meta-Analysis of a Half
Century of Research. Review of Educational Research 88, 4 (Jan. 2018), 479-507.
https://doi.org/10.3102/0034654317751919

Sangho Suh. 2019. Using Concreteness Fading to Model & Design Learning Pro-
cess. In Proceedings of the 2019 ACM Conference on International Computing Edu-
cation Research (Toronto ON, Canada) (ICER ’19). Association for Computing Ma-
chinery, New York, NY, USA, 353-354. https://doi.org/10.1145/3291279.3339445
Anthony Trory, Kate Howland, and Judith Good. 2018. Designing for Con-
creteness Fading in Primary Computing. In Proceedings of the 17th ACM Confer-
ence on Interaction Design and Children (Trondheim, Norway) (IDC ’18). As-
sociation for Computing Machinery, New York, NY, USA, 278-288. https:
//doi.org/10.1145/3202185.3202748

Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to Success in an
Introductory Computer Science Course: A Study of Twelve Factors. In Proceedings
of the Thirty-Second SIGCSE Technical Symposium on Computer Science Educa-
tion (Charlotte, North Carolina, USA) (SIGCSE *01). Association for Computing
Machinery, New York, NY, USA, 184-188. https://doi.org/10.1145/364447.364581
Stephanie Woessner and Niall McNulty. 2021. How the best teachers use bloom’s
taxonomy in their digital classrooms. https://www.niallmenulty.com/2017/11/
blooms-digital-taxonomy/

Colleen Carraher Wolverton, Brandi N. Guidry Hollier, and Patricia A. Lanier.
2020. The Impact of Computer Self Efficacy on Student Engagement and Group
Satisfaction in Online Business Courses. Electronic Journal of e-Learning 18, 2
(Feb. 2020), 14. https://doi.org/10.34190/ejel.20.18.2.006

Casey Wong, Paul Denny, Andrew Luxton-Reilly, and Jacqueline Whalley. 2021.
The Impact of Multiple Choice Question Design on Predictions of Performance.
In Australasian Computing Education Conference (Virtual, SA, Australia) (ACE
"21). Association for Computing Machinery, New York, NY, USA, 66-72. https:
//doi.org/10.1145/3441636.3442306


https://doi.org/10.1145/2445196.2445344
http://labster.com
https://doi.org/10.7275/kmcq-dj31
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1109/FIE.2005.1612246
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.1145/3209087.3209088
https://doi.org/10.1145/1345375.1345438
https://doi.org/10.1080/00131911.2018.1424116
http://pythontutor.com
https://doi.org/10.1145/2714488
http://visualgo.net/en
https://eric.ed.gov/?id=EJ1067283
https://doi.org/10.1145/3408877.3432477
https://doi.org/10.1145/356835.356841
https://doi.org/10.1145/356835.356841
https://doi.org/10.1145/3341525.3387368
https://doi.org/10.1023/a:1015362608943
https://doi.org/10.1145/3077618
https://doi.org/10.1145/1007996.1008042
https://doi.org/10.1145/1007996.1008042
https://doi.org/10.1145/3488042.3490508
https://doi.org/10.1145/3488042.3490508
https://doi.org/10.1145/3446871.3469755
https://doi.org/10.5539/elt.v3n4p237
https://doi.org/10.5539/elt.v3n4p237
https://doi.org/10.3102/0034654317751919
https://doi.org/10.1145/3291279.3339445
https://doi.org/10.1145/3202185.3202748
https://doi.org/10.1145/3202185.3202748
https://doi.org/10.1145/364447.364581
https://www.niallmcnulty.com/2017/11/blooms-digital-taxonomy/
https://www.niallmcnulty.com/2017/11/blooms-digital-taxonomy/
https://doi.org/10.34190/ejel.20.18.2.006
https://doi.org/10.1145/3441636.3442306
https://doi.org/10.1145/3441636.3442306

	Abstract
	1 Problem and Motivation
	1.1 Learning a Notional Machine (NM)
	1.2 Visual Resources
	1.3 Code Diagram Queries

	2 Background and Related Work
	3 Approach and Uniqueness
	4 Results and Contributions
	References

