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We introduce a layout manager that exploits the robust 

sensing capabilities of next-generation head-worn displays 

by embedding virtual application windows in the user’s 

surroundings. With the aim of allowing users to find 

applications quickly, our approach leverages spatial 

memory of a known body-centric configuration. The layout 

manager balances multiple constraints to keep layouts 

consistent across environments while observing geometric 

and visual features specific to each locale. We compare 

various constraint weighting schemas and discuss outcomes 

of this approach applied to models of two test 

environments. 

Head-worn displays; HWD; HMD; window manager; view 

management; spatial constancy; visual saliency. 

H.5.3 [Information interfaces and presentation]: User 

interfaces 

A new generation of head-worn displays (HWDs) is rapidly 

advancing, and lightweight form factors such as Microsoft 

Hololens are capable of reliably detecting the wearer’s 

surroundings in real time. This spatial information can be 

leveraged to integrate personal information displays into the 

environment to support analytic tasks that rely on multiple 

sources of information [3, 6, 7]. However, the ideal 

placement remains an open research question; although 

much work has explored configurations in display space, 

little attention has been given to content layout on the 

surface structure of a sensed 3D model of the environment. 

This paper explores the transition of window layouts from 

body-centric to world-based reference frames [6]. For 

example, imagine a mobile HWD content manager that 

arranges your favourite apps in a body-centric ‘bubble’. 

When you arrive at your home or office, you can ‘pin’ this 

window layout onto the surrounding surfaces (Figure 1). 

Some key requirements we apply to such transitions are 1) 

to integrate content with existing surface structure, 2) to 

maintain the spatial relationship of windows so the user can 

locate apps quickly, and 3) to prevent app windows from 

occluding important objects in the environment. 

We propose using the device wearer’s egocentric 

coordinate system as a reference frame for world-fixed 

spatial layouts. This approach serves the dual purpose of 

leveraging reliance on body-centric spatial memory and 

maintaining consistency between different environments. 

However, layouts must also respect geometric differences 

between different spaces, for instance to avoid overlapping 

surface boundaries or occluding scene objects. We 

developed a layout manager that balances multiple 

constraints, including spatial constancy, visual salience, 

surface fit, window overlap and relative order. 

A line of work following Bell et al. [2] on view 

management for augmented reality uses constraint-based 

 
Figure 1. Transitions of application window layouts to world-fixed coordinates are derived from a common body-centric layout (a). 

This approach maintains relative spatial consistency while integrating application layouts into diverse surroundings (b, c). © B. Ens 
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algorithms for managing virtual content, typically to keep 

object labels from overlapping and close to their point of 

origin. Constraints are often combined using force-based 

algorithms [10], however a greedy approach has been noted 

to increase dynamic layout stability [9]. We instead apply a 

random walk approach [8, 14] that observes global layout 

constraints. Although some recent work has used vanishing 

line detection to align virtual content with real-world 

surfaces [13], view management generally occurs in 2D 

display space or on a set of view-aligned planes [21]. In 

contrast, we are interested in 3D spatial layouts and draw 

from early work by Feiner et al. [7] and Billinghurst et al. 

[3] that imagined multiple windows arranged in body-

centric configurations or anchored to world objects. 

We follow a use case similar to the Office of the Future 

[16], in which applications are embedded on walls and 

other surfaces in the environment.  Thus our work  overlaps 

with research on projection-based systems that can detect 

and adapt to the surrounding 3D structure [5, 15, 17]. One 

closely-related work [22] describes a multi-projector 

window-manager that maximizes available projection 

space, but does not address background saliency. Following 

the vision of such works on a HWD platform presents 

specific challenges, in particular the limited field of view 

(FoV) of current displays [6]. To help mitigate this issue, 

we aim to leverage spatial memory [1, 17] by applying a 

constraint of spatial constancy [18, 20], which has received 

little attention in the context of spatial user interfaces. 

We created a layout manager for see-through, stereoscopic 

HWDs that embeds virtual 2D application windows in a 3D 

environment. Using a sensor-generated model, layouts are 

created at run time based on the current pose (i.e. position 

and orientation) of the user. Each generated layout balances 

several constraints (described below) to arrive at a given 

layout. The main goals of the layout manager are threefold: 

1) Conform to surface structure – Virtual app windows are 

superimposed on real-world surfaces, observing attributes 

such as surface boundaries and occluding objects. 

2) Maintain layout consistency – We apply a spatial 

constancy constraint to maintain window positions relative 

to the user. Additional constraints try to maintain relative 

order and prevent overlap [2, 9, 21]. 

3) Preserve background information – Window positions 

are adjusted to prevent interference with important scene 

content. While there are many possible attributes to observe 

(e.g. colour, texture, contrast, object edges [9]), we focus on 

visual salience [9], which models human visual importance. 

We implemented our layout manager using Unity3D on a 

desktop computer with an NVIDIA Quadro 600 GPU. We 

created two mock environments for development and 

testing, resembling a typical office and living room (Figure 

2a, b). Layouts are viewed through an Epson BT-100 

stereoscopic HWD with 23° diagonal FoV, tethered by 

composite video input. By tracking the HWD with a Vicon 

system, virtual content appears through the HWD to be 

accurately superimposed on the physical environments. 

Our layout manager follows a Monte Carlo approach [11] 

shown to be effective for creating constraint-bases layouts 

in 3D space [8,14]. Input consists of data extracted form a 

mesh model and a single photo of each environment. The 

mesh models (Figure 2g, h) are created with Kinect Fusion 

[12] and the photos (Figure 2a, b) are taken with a typical 

SLR camera with a wide-angle lens (110°). We begin by 

searching the vertices of the mesh models for regions of 

uniform surface normal, from which we extract a set of 

surface polygons (Figure 2c,d)  using a greedy search with 

Hough transforms [19]. Meanwhile, we compute a saliency 

map of both scenes using the AIM saliency algorithm of 

Bruce and Tsotsos [4] (Figure 2e, f). We chose this saliency 

method from many available options because of the high 

contrast and preserved boundary regions in the saliency 

map. Finally, we calibrate the model with image space 

(Figure 2g, h) to allow saliency queries of 3D model points. 

 

Figure 2.  Office (a) and living room test environments (b). 

Surface polygons (c, d) generated from the mesh models (g, h). 

Saliency maps using AIM [4] (light regions are high salience, 

contrast increased for demonstration; e, f). Saliency maps 

projected on mesh models (red nodes are high salience; g, h). 



The layout solution space is a set of all possible 

assignments of a set of application windows W to unique 

points in a discretized set PE. We define a ‘goodness’ 

function 𝑮𝒐𝒐𝒅𝒏𝒆𝒔𝒔(𝑳) ≔  ∑ 𝜶𝒊 ∙ 𝒓𝒊(𝑳𝒊)𝒊  where αi is an 

optional weight, 𝑟𝑖 : (𝑂𝑖 ⊆ 𝑂) → ℝ is a constraint operating 

on the parameters O, L is a proposed layout solution, and Li 

is a layout subset containing windows with constraints Oi. 

The algorithm iteratively evaluates the goodness function 

on layouts of randomly positioned windows. Layouts are 

confined to a region 90° wide × 45° high, centered on the 

forward view, discretized into points at increments of 5°. 

Windows are resized to maintain apparent angular width. 

We update the solution if improvement is found or with 

probability p < 0.005. This factor allows the algorithm to 

escape local maxima to find better solutions. We run 2000 

iterations of this algorithm to generate an initial solution, 

then an additional 500 iterations for a ‘fine-tuning’ phase, 

where the pool of positions for each window is restricted to 

within 0.2m of the previous iteration. The primary phase 

finds a ‘good’ layout from the whole available space and 

the fine-tuning phase optimizes that layout within the local 

maxima. Mean run-time of the procedure is 3.26 s. 

Our current implementation uses the following constraints: 

Adherence enforces spatial constancy by minimizing the 

angular distance of a window’s location from its default 

body-centric position (Figure 3a). The score is calculated as 

1 − 𝑑2, where d is the absolute angular displacement 

normalized by a maximum angle of 30°. 

Nonocclusion uses visual saliency to minimize the 

occlusion of important scene objects. The score 1 − 𝑠4, 

where s is the salience of the occupied region normalized 

by the scene’s maximal salience value. High scores are 

given to windows in regions with low salience.  

We apply several local window constraints: View Direction 

(to align windows closely to the user’s forward view), 

Surface Fit (whether a window lies fully in a polygon), and 

Line-of-Sight (window corners are unoccluded). Additional 

global layout constraints are Relative Order of windows 

(whether windows maintain their spatial relations e.g. left-

of), and Overlap (whether windows overlap others). 

In preliminary trials we found the nondeterministic 

algorithm to be relatively consistent. However the number 

of iterations can be increased to improve consistency 

between trials or decreased to reduce run time. One 

advantage of our approach is that a finer discretization of 

space will have negligible effect on run time, whereas 

greedy search [9] complexity would increase with PE.  

Figure 3 shows outputs of our layout algorithm with the 

constraint weighting schemas defined in Table 1, which 

vary the balance of Adherence and Nonocclusion. The 

Balanced schema (Figure 3b) is ideally tuned to balance 

these contrasting factors in our test environments. Through 

trial and error, we found that the Nonocclusion constraint 

requires a higher weight than Adherence to prevent 

windows from often overlapping high salience regions, 

such as the area surrounding the desktop monitors in the 

office setting (Figure 2g). The Constancy schema (Figure 

3c) has a Nonocclusion weight of zero. This theoretically 

causes each window to be projected onto the nearest surface 

in line with its default position (similar to Figure 1a), 

however the other constraints cause some deviation. 

Conversely, the Saliency schema (Figure 3d) has an 

Adherence weight of zero. This causes windows to 

congregate in low salience basins of the environment’s 

saliency map, regardless of their distance from the default 

location. We provide the View-direction constraint in place 

of constancy to help prevent windows from moving to 

extreme distances from the user’s forward view.  

In this work we use a body-centric reference frame for 

allowing windows to be found quickly given a limited FoV. 

However, there are other possible interpretations of spatial 

constancy, for instance placement of objects relative to 

semantically meaningful objects. We also note that 

applying a body-centric layout on a world-fixed frame 

assumes a ‘primary’ user pose within the room. There are 

many cases where this holds true, for instance in a typical 

office or in one’s favourite cozy chair. Many interesting 

research questions are presented with more complex 

situations. For instance, how should a layout behave if a 

user frequently rotates between two different orientations? 

 

Figure 3. a) Default window locations set in ‘floating’ array 

50 cm from viewing position (green sphere).  Results of 

weighting schemas b) Balanced, c) Constancy, and d) Saliency. 

Layout Adherence Nonocclusion 

View-

direction 

Balanced 1 2 0 

Constancy 1 0 0 

Saliency 0 2 1 

Table 1. Three possible constraint weighting schemas 

promoting different mixtures of spatial constancy and visual 

saliency. All other weights are set to their default value of 1. 



In future, we plan to explore the benefits and trade-offs of 

body-centric vs world-based approaches to spatial 

constancy and combine these in a single layout manager.  

Dynamic environments pose additional questions, for 

instance whether users would prefer windows to 

dynamically change position when someone enters the 

room, or to be temporarily occluded. Planned 

improvements include real-time extraction of the 

environment model and layout optimization, for instance by 

eliminating the mesh model or cropping to reduce 

raycasting operations used to detect occluded surface 

regions. This will allow us to explore additional design 

challenges, such as predicting and reacting to stimuli from 

people or other moving objects in the environment. 

We introduce a HWD layout manager that integrates 

applications into the built environment. Our implementation 

focuses on providing spatial constancy for consistency 

between environments while observing local features such 

as surface structure and visual saliency. We apply these and 

some additional constraints on window layouts in two test 

environments with varying visual information density. 

We thank NSERC for funding this project. 
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