
Barrett Ens
1
, Eyal Ofek

2
, Neil Bruce

1
, Pourang Irani

1

1
University of Manitoba

Winnipeg, Canada

{bens, bruce, irani}@cs.manitoba.ca

2
Microsoft Research

Redmond, WA

eyalofek@microsoft.com

We introduce a layout manager that exploits the robust

sensing capabilities of next-generation head-worn displays

by embedding virtual application windows in the user’s

surroundings. With the aim of allowing users to find

applications quickly, our approach leverages spatial

memory of a known body-centric configuration. The layout

manager balances multiple constraints to keep layouts

consistent across environments while observing geometric

and visual features specific to each locale. We compare

various constraint weighting schemas and discuss outcomes

of this approach applied to models of two test

environments.

Head-worn displays; HWD; HMD; window manager; view

management; spatial constancy; visual saliency.

H.5.3 [Information interfaces and presentation]: User

interfaces

A new generation of head-worn displays (HWDs) is rapidly

advancing, and lightweight form factors such as Microsoft

Hololens are capable of reliably detecting the wearer’s

surroundings in real time. This spatial information can be

leveraged to integrate personal information displays into the

environment to support analytic tasks that rely on multiple

sources of information [3, 6, 7]. However, the ideal

placement remains an open research question; although

much work has explored configurations in display space,

little attention has been given to content layout on the

surface structure of a sensed 3D model of the environment.

This paper explores the transition of window layouts from

body-centric to world-based reference frames [6]. For

example, imagine a mobile HWD content manager that

arranges your favourite apps in a body-centric ‘bubble’.

When you arrive at your home or office, you can ‘pin’ this

window layout onto the surrounding surfaces (Figure 1).

Some key requirements we apply to such transitions are 1)

to integrate content with existing surface structure, 2) to

maintain the spatial relationship of windows so the user can

locate apps quickly, and 3) to prevent app windows from

occluding important objects in the environment.

We propose using the device wearer’s egocentric

coordinate system as a reference frame for world-fixed

spatial layouts. This approach serves the dual purpose of

leveraging reliance on body-centric spatial memory and

maintaining consistency between different environments.

However, layouts must also respect geometric differences

between different spaces, for instance to avoid overlapping

surface boundaries or occluding scene objects. We

developed a layout manager that balances multiple

constraints, including spatial constancy, visual salience,

surface fit, window overlap and relative order.

A line of work following Bell et al. [2] on view

management for augmented reality uses constraint-based

Figure 1. Transitions of application window layouts to world-fixed coordinates are derived from a common body-centric layout (a).

This approach maintains relative spatial consistency while integrating application layouts into diverse surroundings (b, c). © B. Ens

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
SUI '15, August 08 - 09, 2015, Los Angeles, CA, USA

© 2015 ACM. ISBN 978-1-4503-3703-8/15/08…$15.00

DOI: http://dx.doi.org/10.1145/2788940.2788954

algorithms for managing virtual content, typically to keep

object labels from overlapping and close to their point of

origin. Constraints are often combined using force-based

algorithms [10], however a greedy approach has been noted

to increase dynamic layout stability [9]. We instead apply a

random walk approach [8, 14] that observes global layout

constraints. Although some recent work has used vanishing

line detection to align virtual content with real-world

surfaces [13], view management generally occurs in 2D

display space or on a set of view-aligned planes [21]. In

contrast, we are interested in 3D spatial layouts and draw

from early work by Feiner et al. [7] and Billinghurst et al.

[3] that imagined multiple windows arranged in body-

centric configurations or anchored to world objects.

We follow a use case similar to the Office of the Future

[16], in which applications are embedded on walls and

other surfaces in the environment. Thus our work overlaps

with research on projection-based systems that can detect

and adapt to the surrounding 3D structure [5, 15, 17]. One

closely-related work [22] describes a multi-projector

window-manager that maximizes available projection

space, but does not address background saliency. Following

the vision of such works on a HWD platform presents

specific challenges, in particular the limited field of view

(FoV) of current displays [6]. To help mitigate this issue,

we aim to leverage spatial memory [1, 17] by applying a

constraint of spatial constancy [18, 20], which has received

little attention in the context of spatial user interfaces.

We created a layout manager for see-through, stereoscopic

HWDs that embeds virtual 2D application windows in a 3D

environment. Using a sensor-generated model, layouts are

created at run time based on the current pose (i.e. position

and orientation) of the user. Each generated layout balances

several constraints (described below) to arrive at a given

layout. The main goals of the layout manager are threefold:

1) Conform to surface structure – Virtual app windows are

superimposed on real-world surfaces, observing attributes

such as surface boundaries and occluding objects.

2) Maintain layout consistency – We apply a spatial

constancy constraint to maintain window positions relative

to the user. Additional constraints try to maintain relative

order and prevent overlap [2, 9, 21].

3) Preserve background information – Window positions

are adjusted to prevent interference with important scene

content. While there are many possible attributes to observe

(e.g. colour, texture, contrast, object edges [9]), we focus on

visual salience [9], which models human visual importance.

We implemented our layout manager using Unity3D on a

desktop computer with an NVIDIA Quadro 600 GPU. We

created two mock environments for development and

testing, resembling a typical office and living room (Figure

2a, b). Layouts are viewed through an Epson BT-100

stereoscopic HWD with 23° diagonal FoV, tethered by

composite video input. By tracking the HWD with a Vicon

system, virtual content appears through the HWD to be

accurately superimposed on the physical environments.

Our layout manager follows a Monte Carlo approach [11]

shown to be effective for creating constraint-bases layouts

in 3D space [8,14]. Input consists of data extracted form a

mesh model and a single photo of each environment. The

mesh models (Figure 2g, h) are created with Kinect Fusion

[12] and the photos (Figure 2a, b) are taken with a typical

SLR camera with a wide-angle lens (110°). We begin by

searching the vertices of the mesh models for regions of

uniform surface normal, from which we extract a set of

surface polygons (Figure 2c,d) using a greedy search with

Hough transforms [19]. Meanwhile, we compute a saliency

map of both scenes using the AIM saliency algorithm of

Bruce and Tsotsos [4] (Figure 2e, f). We chose this saliency

method from many available options because of the high

contrast and preserved boundary regions in the saliency

map. Finally, we calibrate the model with image space

(Figure 2g, h) to allow saliency queries of 3D model points.

Figure 2. Office (a) and living room test environments (b).

Surface polygons (c, d) generated from the mesh models (g, h).

Saliency maps using AIM [4] (light regions are high salience,

contrast increased for demonstration; e, f). Saliency maps

projected on mesh models (red nodes are high salience; g, h).

The layout solution space is a set of all possible

assignments of a set of application windows W to unique

points in a discretized set PE. We define a ‘goodness’

function 𝑮𝒐𝒐𝒅𝒏𝒆𝒔𝒔(𝑳) ≔ ∑ 𝜶𝒊 ∙ 𝒓𝒊(𝑳𝒊)𝒊 where αi is an

optional weight, 𝑟𝑖 : (𝑂𝑖 ⊆ 𝑂) → ℝ is a constraint operating

on the parameters O, L is a proposed layout solution, and Li

is a layout subset containing windows with constraints Oi.

The algorithm iteratively evaluates the goodness function

on layouts of randomly positioned windows. Layouts are

confined to a region 90° wide × 45° high, centered on the

forward view, discretized into points at increments of 5°.

Windows are resized to maintain apparent angular width.

We update the solution if improvement is found or with

probability p < 0.005. This factor allows the algorithm to

escape local maxima to find better solutions. We run 2000

iterations of this algorithm to generate an initial solution,

then an additional 500 iterations for a ‘fine-tuning’ phase,

where the pool of positions for each window is restricted to

within 0.2m of the previous iteration. The primary phase

finds a ‘good’ layout from the whole available space and

the fine-tuning phase optimizes that layout within the local

maxima. Mean run-time of the procedure is 3.26 s.

Our current implementation uses the following constraints:

Adherence enforces spatial constancy by minimizing the

angular distance of a window’s location from its default

body-centric position (Figure 3a). The score is calculated as

1 − 𝑑2, where d is the absolute angular displacement

normalized by a maximum angle of 30°.

Nonocclusion uses visual saliency to minimize the

occlusion of important scene objects. The score 1 − 𝑠4,

where s is the salience of the occupied region normalized

by the scene’s maximal salience value. High scores are

given to windows in regions with low salience.

We apply several local window constraints: View Direction

(to align windows closely to the user’s forward view),

Surface Fit (whether a window lies fully in a polygon), and

Line-of-Sight (window corners are unoccluded). Additional

global layout constraints are Relative Order of windows

(whether windows maintain their spatial relations e.g. left-

of), and Overlap (whether windows overlap others).

In preliminary trials we found the nondeterministic

algorithm to be relatively consistent. However the number

of iterations can be increased to improve consistency

between trials or decreased to reduce run time. One

advantage of our approach is that a finer discretization of

space will have negligible effect on run time, whereas

greedy search [9] complexity would increase with PE.

Figure 3 shows outputs of our layout algorithm with the

constraint weighting schemas defined in Table 1, which

vary the balance of Adherence and Nonocclusion. The

Balanced schema (Figure 3b) is ideally tuned to balance

these contrasting factors in our test environments. Through

trial and error, we found that the Nonocclusion constraint

requires a higher weight than Adherence to prevent

windows from often overlapping high salience regions,

such as the area surrounding the desktop monitors in the

office setting (Figure 2g). The Constancy schema (Figure

3c) has a Nonocclusion weight of zero. This theoretically

causes each window to be projected onto the nearest surface

in line with its default position (similar to Figure 1a),

however the other constraints cause some deviation.

Conversely, the Saliency schema (Figure 3d) has an

Adherence weight of zero. This causes windows to

congregate in low salience basins of the environment’s

saliency map, regardless of their distance from the default

location. We provide the View-direction constraint in place

of constancy to help prevent windows from moving to

extreme distances from the user’s forward view.

In this work we use a body-centric reference frame for

allowing windows to be found quickly given a limited FoV.

However, there are other possible interpretations of spatial

constancy, for instance placement of objects relative to

semantically meaningful objects. We also note that

applying a body-centric layout on a world-fixed frame

assumes a ‘primary’ user pose within the room. There are

many cases where this holds true, for instance in a typical

office or in one’s favourite cozy chair. Many interesting

research questions are presented with more complex

situations. For instance, how should a layout behave if a

user frequently rotates between two different orientations?

Figure 3. a) Default window locations set in ‘floating’ array

50 cm from viewing position (green sphere). Results of

weighting schemas b) Balanced, c) Constancy, and d) Saliency.

Layout Adherence Nonocclusion

View-

direction

Balanced 1 2 0

Constancy 1 0 0

Saliency 0 2 1

Table 1. Three possible constraint weighting schemas

promoting different mixtures of spatial constancy and visual

saliency. All other weights are set to their default value of 1.

In future, we plan to explore the benefits and trade-offs of

body-centric vs world-based approaches to spatial

constancy and combine these in a single layout manager.

Dynamic environments pose additional questions, for

instance whether users would prefer windows to

dynamically change position when someone enters the

room, or to be temporarily occluded. Planned

improvements include real-time extraction of the

environment model and layout optimization, for instance by

eliminating the mesh model or cropping to reduce

raycasting operations used to detect occluded surface

regions. This will allow us to explore additional design

challenges, such as predicting and reacting to stimuli from

people or other moving objects in the environment.

We introduce a HWD layout manager that integrates

applications into the built environment. Our implementation

focuses on providing spatial constancy for consistency

between environments while observing local features such

as surface structure and visual saliency. We apply these and

some additional constraints on window layouts in two test

environments with varying visual information density.

We thank NSERC for funding this project.

1. Agarawala, A. and Balakrishnan, R. Keepin’ it real:

Pushing the desktop metaphor with physics, piles and

the pen. Proc. CHI ’06, ACM (2006), 1283-1292.

2. Bell, B., Feiner, S. and Höllerer, T. View management

for virtual and augmented reality. Proc. UIST ’01, ACM

(2001), 101-110.

3. Billinghurst, M., Bowskill, J., Jessop, M. and Morphett,

J. A wearable spatial conferencing space. Proc. ISWC

‘98, IEEE (1998), 76-83.

4. Bruce, N. and Tsotsos, J. Saliency based on information

maximization. Proc. NIPS ’05 (2005), 155, 162.

5. Cao, X. and Balakrishnan, R. Interacting with

dynamically defined information spaces using a

handheld projector and a pen. Proc. UIST ’06, ACM

(2006), 225-234.

6. Ens, B., Finnegan, R. and Irani, P. The Personal

Cockpit: A spatial interface for effective task switching

on head-worn displays. Proc. CHI ’14, ACM (2014),

3171-3180.

7. Feiner, S. MacIntyre, B., Haupt, M. and Solomon, E.

Windows on the world: 2D windows for 3D augmented

reality. Proc. UIST ’93, ACM (1993), 145-155.

8. Gal, R., Shapira, L. Ofek, E., and Kohli, P., FLARE:

Fast Layout for Augmented Reality Applications, Proc.

ISMAR ’14, ACM (2014), 207-212.

9. Grasset, R., Langlotz, T., Kalkofen, D., Tatzgern, M.

and Schmalstieg, D. 2012. Image-driven view

management for augmented reality browsers. Proc.

ISMAR '12, IEEE (2012), 177-186.

10. Hartmann, K., Ali, K. and Strothotte, T. Floating labels:

Applying dynamic potential fields for label layout. In

Smart Graphics, Butz, A., Krüger, A. and Oliver, P.

(eds.). Springer, 101-113.

11. Hastings, W. K., Monte Carlo sampling methods using

markov chains and their applications. Biometrika 57, 1

(1970), 97-109.

12. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,

Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,

Freeman, D., Davison, A., and Fitzgibbon, A.

KinectFusion: Real-time 3D reconstruction and

interaction using a moving depth camera. Proc. UIST

‘11, ACM (2011), 559-568.

13. Lee, W., Park, Y., Lepetit, V. and Woo, W. Video-based

in situ tagging on mobile phones. TCSVT 21, 10, IEEE

(2011), 1487-1496.

14. Merrell, P., Schkufza, E.,Li, Z., Agrawala, M., and

Koltun, V. Interactive furniture layout using interior

design guidelines. TOG 30, 4, ACM (2011).

15. Raskar, R., van Baar, J., Beardsley, P., Willwacher, T.,

Rao, S. and Forlines, C. iLamps: Geometrically aware

and self-configuring projectors. Proc. SIGGRAPH ’03,

ACM (2003), 809-818.

16. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L.

and Fuchs, H. The office of the future: A unified

approach to image-based modelling and spatially

immersive displays. Proc. SIGGRAPH ’98, ACM

(1998), 179-188.

17. Rekimoto, J. and Saitoh, M. Augmented surfaces: A

spatially continuous work space for hybrid computing

environments. Proc. CHI ’99, ACM (1999), 378-385.

18. Scarr, J., Cockburn, A., Gutwin, C. and Bunt, A.

Improving command selection with CommandMaps.

Proc. CHI ’12, ACM (2012), 257-266.

19. Silberman, N., Shapira, L., Gal, R. and Kohli, P. A

contour completion model for augmenting surface

reconstructions. Proc. ECCV ’14, ACM (2014), 488-

503.

20. Tak, S., Cockburn, A., Humm, K., Ahlström, D.,

Gutwin, G. and Scarr, J. Improving window switching

interfaces. Proc. INTERACT ’09, Springer (2009), 187-

200.

21. Tatzgern, M., Kalkofen, D., Grasset, R. and

Schmalstieg, D. Hedgehog labeling: View management

techniques for external labels in 3D space. Proc. VR ’14,

IEEE, 27-32.

22. Waldner, M., Grasset, R., Steinberger, M. and

Schmalstieg, D. Display adaptive window management

for irregular surfaces. Proc. ITS ’11, ACM (2011), 222-

231.

