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Figure 1: (a) The original Consumed Endurance (CE) interface that uses the Microsoft Kinect tracking system to estimate the
CE level for a performed arm gesture. (b) The marker-based Vicon motion tracking system in our study setup. We use 14 14mm
X-base reflective markers to track arm movement and four Delsys Trigno Avanti Sensors to collect analog EMG signals. (c)
Ilustration of the VR environment of Study 1 and the weight-lifting task performed by participants. The colour gradation bar
provides direct visual feedback on the shoulder elevation angle. (d) Illustration of the VR setup of Study 2 while a participant
performs a target-pointing task. In the actual study trial, only one target is visible to participants at once

ABSTRACT

Virtual Reality (VR) is increasingly being adopted in fitness, gaming,
and workplace productivity applications for its natural interaction
with body movement. A widely accepted method for quantifying
the physical fatigue caused by VR interactions is through metrics
such as Consumed Endurance (CE). Proposed in 2014, CE calculates
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the shoulder torque to infer endurance time (ET)—i.e. the maximum
amount of time a pose can be maintained—during mid-air inter-
actions. This model remains widely cited but has not been closely
examined beyond its initial evaluation, leaving untested assump-
tions about exertion from low-intensity interactions and its basis on
torque. In this paper, we present two VR studies where we (1) collect
a baseline dataset that replicates the foundation of CE and (2) extend
the initial evaluation in a pointing task from a two-dimensional
(2D) screen to a three-dimensional (3D) immersive environment.
Our baseline dataset collected from a high-precision tracking sys-
tem found that the CE model overestimates ET for low-exertion
interactions. Further, our studies reveal that a biomechanical model
based on only torque cannot account for additional exertion mea-
sured when the shoulder angle exceeds 90° elevation. Based on
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these findings, we propose a revised formulation of CE to highlight
the need for a hybrid approach in future fatigue modelling.
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1 INTRODUCTION

Immersive technologies such as Virtual Reality (VR) offer exciting
new ways of interacting with computing systems using natural,
embodied input, such as the motion of one’s head, hands, legs, or
even the whole body [7]. As such, VR is increasingly popular for
applications in fitness [1], gaming[36, 38], and workplace produc-
tivity [30]. As these applications increasingly lead to prolonged
usage, supporting the design of VR experiences that manage physi-
cal fatigue, a cumulative effect of exertion over time is becoming
essential. For instance, a productivity application requiring exces-
sive motion will quickly cause fatigue, presenting a barrier to its
adoption. Conversely, a fitness application that requires high exer-
tion may aim to induce fatigue after a predictable amount of time.
Further, a game design may need direct control in adjusting the
physical intensity to maintain user engagement while adapting to
individual users’ fatigue threshold. Consequently, VR designers
will benefit from practical guidance on controlling fatigue across
various applications.

There are two established models that might be suitable for mod-
elling fatigue in VR interactions. The first model is the Consumed
Endurance (CE) metric [20], which estimates the expended exertion
of shoulder muscles during mid-air arm gestures in real time. As
endurance time (ET) is the maximum duration a muscle contraction
can be maintained before fatigue sets in, CE is the ratio of a given
interaction time to the total predicted ET. Inputs to the CE model
are the positions of the shoulder, elbow, wrist, and hand, which can
be inferred via the head and hand positions tracked by head-worn
displays (HWD) [9]. As such, CE is being adopted in designing 3D
user interfaces. For instance, Xia et al. [40] recommend using CE
to evaluate shoulder fatigue in HCI gesture designs, and Belo et al.
developed a tool called XRgonomics [11] that applies CE to Aug-
mented Reality (AR) interactions. The second established model is
Cumulative Fatigue (CF) [22, 37], which addresses a fundamental
limitation of CE by modelling muscle transition between active,
fatigue, and rest periods. Unlike CE, CF does not predict endurance
time but rather aims to predict the rating of perceived exertion
(RPE).

The current work aims to achieve a model that addresses the
limitations of both CE and CF for use in VR applications. We begin
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with a close inspection of the CE model, as it is currently applied
in tools such as XRgonomics [11] due to its publicly available code
base. We later plan to expand our investigation to CF, with a longer-
term goal of generalising these models beyond the shoulder, to
complex uses with other body segments.

Despite its continued adoption, CE has not been fully validated.
Following its initial evaluation with a large 2D screen and a Kinect
tracking camera [19], the outputs were shown to correlate with
subjective measures of RPE. However, this correlation does not
confirm the validity of the CE in an extensive 3D space in VR.
CE makes an assumption that low-exertion interactions can last
indefinitely, which is contested by prior studies [14, 25]. Further, CE
relies on shoulder torque estimations, which assume that exertion
is symmetric around 90°. However, recent subjective data [11] and
muscle contraction data [2] have indicated otherwise.

In this paper, we conduct a thorough investigation of the CE
metric for use in VR. In an initial study, we collect a baseline dataset
of shoulder exertion from a diverse group of participants. From the
dataset, we reconstructed the ET function that forms the foundation
for CE. Whereas the CE formulation is based on data collected from
high-intensity tasks over a wide range of body joints, our study
includes low-intensity tasks with shoulder muscles akin to typical
interaction with 3D Uls. Consequently, our findings challenge the
assumption that shoulder exertion can be sustained indefinitely
when the exerted force is below the minimum threshold of 15% of
its maximum.

Second, we validate CE with a dynamic pointing task in VR.
This task includes the 120° range of horizontal shoulder motion to
add external validity for VR applications. In addition, we compare
three vertical motion ranges versus only two levels in the original
study. By doing so, we provide direct evidence that exertion is not
symmetric at equal angles above and below 90° as assumed in the
original CE formulation, which is based solely on calculated torque.

Ultimately, we propose an alternative formulation of CE New &
Improved Consumed Endurance (NICE) that uses our reconstructed
ET function and introduces a correction term to account for addi-
tional exertion required by the shoulder movement when the arm
elevates above the shoulder.

In summary, the contributions of this paper include:

o A new ET-exertion curve constructed using a wide range of low
to high exertion of the shoulder joint.

o The first comparison of the widely accepted fatigue metric, CE,
with objective measures of muscle contraction in VR interactions.
e A proposed formulation, NICE correcting substantial overesti-
mation of predicted ET in the traditional CE and accounting for
additional exertion of shoulder elevation above 90°.

2 RELATED WORK

Fatigue is a cumulative effect that occurs after a persistent period of
physical tasks. Conversely, ET is a temporal concept that measures
the sustained period of an exercise until failure [16]. This section
introduces literature on direct fatigue measurements and studies
that indirectly model fatigue via ET. In this paper, we solely refer
to physical fatigue, i.e., muscle fatigue, not mental fatigue.
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2.1 Subjective Fatigue Measurement

Levels of fatigue can be described by subjective approaches. Two
commonly used methods are the National Aeronautics and Space
Administration Task Load Index (NASA-TLX) [17] and Borg CR10
RPE [6]. The NASA-TLX evaluates perceived workload from di-
mensions like mental demand, physical demand, and frustration
on a 21-gradation scale. Similarly, Borg CR10 uses discrete levels
between 0 and 10 to classify physical exertion. Though a rough
estimation of fatigue can be obtained from subjective fatigue mea-
surement, two significant drawbacks exist. Firstly, it is not easy
for subjective measurements to reveal small but vital differences
due to limited scales [20]. The second drawback is that individuals
may perceive the scales differently due to the uniqueness of their
backgrounds and bring bias to study findings [6, 23].

2.2 Objective Fatigue Measurement

Objective approaches to quantifying fatigue focus on changes in
physiological characteristics, including heart rate [5], and muscle
oxygenation [12]. Though objective measurements eliminate cog-
nitive bias between individuals, these methods are insufficient to
properly understand muscle fatigue in real time and potentially
add confounding factors to the fatigue assessment. For example,
heart rate can be collected with lightweight wearable devices like
smartwatches or fitness trackers. However, changes in heart rate
are subtle during low-intensity physical tasks [5].

A non-invasive method estimates fatigue based on the partici-
pant’s muscular activity [18]. It starts with collecting participants’
Maximum Voluntary Contraction (MVC) through readings of the
force transducer, which defines each participant’s maximum muscle
contraction capacity. The ratio between the current exerted force or
torque and the known maximum quantifies the momentary %MVC.
Decreasing MVC over time can be considered evidence of muscle
fatigue. However, these measurements are post-trial assessments
and cannot provide real-time feedback on muscle fatigue during
the study.

Wireless surface electromyography (EMG) sensors allow for ob-
jective and non-invasive monitoring of real-time muscle activity.
However, the occurrence of muscle fatigue is indicated by the in-
creased magnitudes in muscle contraction [29]. It is unclear how
cumulative fatigue can be estimated from instantaneous muscle
activation.

2.3 Modeling Fatigue in Mid-air Interaction

While no previous research has specifically modelled fatigue for
VR interaction, there has been an extensive effort to improve the
ergonomics of upper-body interaction. Plantard et al. [34] devel-
oped a software tool to compute the most well-known ergonomic
metric: Rapid Upper Limb Assessment (RULA) [27] based on a real-
time markerless motion capture camera. Similarly, Bachynskyi et al.
[3, 4] designed a novel protocol that estimates the physical work-
load of arm postures based on clustering biomechanical simulated
muscle activation to reduce arm fatigue. Recently, Evangelista Belo
et al. [11] integrated the above ergonomic metrics in an AR toolkit
to provide guidance on 3D Uls placement. However, ergonomics-
based metrics are mainly focused on static postures and cannot
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account for the cumulative fatigue effect from prolonged dynamic
interaction.

There are three relevant models for broader usage in dynamic
mid-air interaction. The Rohmert’s ET model[35] was the first study
that quantifies the relationship between the ET and the exertion
level (%2MVC) with a power curve, as can be seen in Equation (1).
However, the ET model assumes that in calculating the exertion
level (%MVC), the maximum exerted force (Max_Force) and the
current force (Force) — are comparable.

1236.5

= Force _ 0.618 72:5
( ax_Force *100 15)

ET

1

The CE model [20] improved Rohmert’s ET model by estimating
the exertion using shoulder torque of the right arm, as in Equa-
tion (2). The cumulative average exertion level is obtained by nor-
malizing the average torque (Torque) with the maximum shoulder
torque (Max_Torque) and is represented in the unit of ZMVC. The
CE model is able to quantify fatigue indirectly by representing the
expended physical effort as the ratio between the spent time and
the estimated ET, as can be seen in Equation (3). This one single
value, CE, will guide VR designers to choose interaction gestures
that have the desired fatigue level. A visualization of Rohmert’s ET
model and an example of CE can be seen in Figure 2.

1236.5
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Exertion: 18%
Endurance: 555 s
CE: 10.8% -60 s
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CE [20] was the first
to implement a body-
tracking system for real-
time torque computation,
which freed the partici-
pants’ hands from the ne-
cessity to hold devices. In
the original study, partic-
ipants were asked to hold
their dominant arms at

—- different angles for differ-
< ent periods of time. CE
showed a high correla-
tion (R? = 0.716) with
Borg CR10 in the linear
regression analysis and
agreed with Borg CR10 in
revealing the main effects
in angle, time, and the in-
teraction effects between
them. In demonstrating using CE as a design parameter [20], a
novel text-entry layout-SEATO was created by allocating the most
frequently used characters to the positions that achieve the lowest
CE scores. Compared with the traditional QWERTY layout, SEATO
obtains a lower Borg CR10 on average. Potentially, CE can help
decision-making over selection methods, haptic feedback, and ob-
ject placements in VR interactions. However, CE strongly relies on
the assumption that the exertion level of arm movement will never
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Figure 2: Rohmert’s ET model
and CE [20].
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be lower than 15% MVC (i.e., lift a 1 kg dumbbell to a shoulder
angle of 30°). Thus, the model will predict infinite ET for any such
interactions.

Another relevant work is the Cumulative Fatigue (CF) model de-
veloped by Jang et al. [22]. It applies skeleton-based body-tracking
cameras to calculate shoulder torques, similar to the CE model.
However, the main difference between CF and CE models is that
the CF model uses the transition cycle of motor units, the basic func-
tional units of muscles [8], to predict perceived subjective fatigue:
Borg CR10 RPE. In practice, the proportion of fatiguing, activating,
and resting motor units will be estimated from the arm gestures
performed in real time by the fixed fatiguing and recovery factors.
The constant fatiguing and recovery factors were updated later to
functions of exertion in the improved CF model [37]. Hence, the CF
model can work with tasks of any exertion level. The previous CF
evaluation conducts a 2 X 2 within-participant study investigating
different target placements and orders of resting periods. Partic-
ipants performed a periodic mid-air pointing task on a 2D plane
while reporting their perceived fatigue through Borg CR10 every 20
s. Model parameters, including fatiguing and recovery factors, need
to be pre-trained with collected Borg CR10 scores. Cross-validation
was applied by testing the model on the data collected under differ-
ent conditions. An overall RMSE of 1.33 was achieved between CF
and Borg CR10. Furthermore, a complex mid-air docking task was
implemented to evaluate the improved CF model. Similar RMSE
results confirmed the flexibility of model performance.

While CE and CF positively correlate with Borg CR10, CF is
found to underestimate the fatigue during multi-touch interaction
[24], and CE may overestimate the ET by applying Rohmert’s ET
curve [15]. Importantly, neither metric has been investigated using
objective measures, for example, by comparing CE with the em-
pirical data of ET and comparing CF with direct measurement of
muscle activities via EMG, nor have they been validated in VR.

3 REVISITING CONSUMED ENDURANCE

Our work aims to examine the validity and reliability of CE for
mid-air interactions in VR. We supplement the prior subjective
evaluations with objective data, including empirical observation of
ET under low to moderate exertions and measured activity of four
different muscle groups involved in the shoulder-arm motion.

In the first of two user studies (Section 4), we closely inspect the
CE model from its theoretical foundation, Rohmert’s ET curve, by
reproducing this curve with a diverse participant pool conducting
shoulder-motion tasks over a wide range of task intensities. Our re-
sults counter Rohmert’s assumption on infinite ET below 15 %2MVC
(Section 4.1) and reveal a substantial overestimation of exertion in
the CE model.

In the second study (Section 5), we implement a design similar to
the initial CE evaluation [20] but include an additional height level
to investigate arm angles both above and below horizontal. Our
objective measures demonstrate that intensity increases above the
90° angle for straight arm tasks. This observation confirms that CE
underestimates the exertion of arm movements above 90° and high-
lights the limitation of using shoulder torque only in quantifying
shoulder exertion.
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3.1 Shoulder Motion Data Collection

Figure 1-a shows an early interface of CE measurement integrated
with a Microsoft Kinect V1 camera to capture the body move-
ment [20]. The Kinect camera is a markerless motion-tracking
system using a default 32-joint skeleton. Among all 32 joints, only
the shoulder, elbow, wrist, and hand joint centres are used as the
input of CE to calculate the applied shoulder torque. In the current
study, we use 10 Vicon Vantage cameras that capture 14 reflective
markers placed on the upper body and right arm (see Figure 1-b) at
100 Hz using VICON Nexus software (v2.12, VICON, Oxford UK).
All captured trials are reconstructed, labelled, and gaps filled in
VICON Nexus. They are later exported to Visual 3D (v6.0, c-motion,
MD, USA) for body modelling (shoulder, upper arm, lower arm,
hand, and joint centres). Finally, we calculate the CE measurements
in Matlab [26].

3.2 EMG Signal Collection

In our second study, Delsys Trigno wireless EMG sensors!

are used

to collect the surface EMG signal of four muscles at the shoulder:
Upper Trapezius (TR), Middle Deltoid (MD), Anterior Deltoid (AD),
and Infraspinatus (IF). The skin preparation for sensor placement
followes the SEMIAM recommendations? and is shown in Figure 3.
The EMG signals are synchronised with the VICON Nexus software
at 2000 Hz and captured during motion trials.

Figure 3: EMG sensors placement of four investigated mus-
cles that contribute to shoulder range of motion.

In the signal processing, we remove the DC offset from the EMG
signal with a high pass filter of 50 Hz and compute the EMG linear
envelope using full-wave rectify and a low pass filter of 250 Hz.
Finally, a moving RMS with a window size of 500 will be applied
before the MVC normalization, following the recommendation of
Visual3D?.

The MVC normalization is needed to make EMG signals compa-
rable between participants. All captured EMG signals will then be
able to be represented in the unit of the percentage of the maximum
muscle contraction (%MVC). Therefore, we collect the MVCs of the
desired muscles of each participant before the study trials. Details
about the MVC collection will be explained in the Supplementary
Materials.

4 STUDY 1- ENDURANCE TIME FOR
SHOULDER EXERTION
The CE model relies on the ET curve developed by Rohmert [35]

(see Figure 2) to estimate ET from the current shoulder torque. This
dependency is followed by a strong assumption that the ET will be

!https://delsys.com/trigno-avanti/
Zhttp://seniam.org/sensor_location.htm
3https://c-motion.com/v3dwiki/index.php?title=Tutorial EMG
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approximated to infinity when the task intensity is below 15% of
an individual’s maximum strength.

Furthermore, Rohmert’s curve was created from high-intensity
exertions of various arm and leg muscle groups. This approach over-
looks the low-intensity exertion and is also invalid for modelling
shoulder movement since ET is recognised as joint-specific [14].
Thus, we test the validity of this assumption by reproducing a sim-
ilar curve on our baseline dataset collected from static shoulder
elevation of varying exertion levels.

To collect a sufficiently large set of data points, we include a
broader set of task intensities than would be possible from free-
hand arm motion alone by providing participants with a set of small
dumbbells (with weights ranging from 1-3 kg).

Apparatus. The study environment was built for virtual reality
with the Unity engine. There is a precedent to studying exercise in
VR, showing it to improve user concentration and endurance [28].
Thus, we design a virtual gym in VR, wherein virtual dumbbells
depict those held in the real world. Participants wear an HP Reverb
G2 headset. Their precise right-arm movement is streamed in VR,
having Unity and Vicon Nexus synchronized in real time. As such,
we can monitor the shoulder elevation and elbow extension during
study trials. Participants receive visual feedback on their arm po-
sition to keep them within the target range (colours between the
two red scales) as shown in Figure 1-c.

Participants. We recruited 12 right-handed volunteers (five fe-
male and seven male), aged 18-39 years, height 1.50-1.83 m, and
weight 50-90 kg. Only two participants had no prior experience
with VR. Since the study task involves purely physical activities, we
designed a pre-study questionnaire about the participants’ workout
routine and caffeine consumption to avoid confounding factors.

Task. After the MVC collection, participants were introduced
to the study environment in VR. The study task is side-lifting a
dumbbell with the required weight at the desired arm angle for as
long as possible up to a maximum of 5 minutes. Trials will also
be ended if the participants fail to maintain their arms within +
5° of the target angle. At the end of each trial, participants were
provided with fully explained Borg CR10 ratings to self-report their
perceived fatigue.

Design. Two independent factors are implemented in the study:
Arm_Angle and Arm_Weight to produce various torque levels, in-
cluding low to high exertion. We consider four levels of Arm_Weight
to stimulate the perceived shoulder fatigue from a heavier arm.

e Arm_Weight: the weight of the dumbbell held by the partici-
pant. Our design included four levels: 0, 1, 2, and 3 kg.

e Arm_Angle: the angle between the participant’s arm and
their torsos. There are five levels: 30°, 60°, 90°, 120°, and 150°.

Due to alarge number of combinations (4X5 = 20), we avoid a full
within-participants design to mitigate participant fatigue. Following
initial MVC collection, each participant is asked to continue with
conditions from a random list of four repetitions of all 20 conditions
(4 X 20 = 80 in total). The number of study conditions varied
between participants. Participants can choose to complete four to
seven conditions based on their physical capacity and relax their
muscles with a 5 minutes break between conditions. The maximum
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study duration is one hour. The total study duration, including MVC
collection, is approximately 90 minutes. Across all participants, we
collect data from four repetitions for each Arm_Angle —Arm_Weight
pair, resulting in 80 data points.

Measures. Duration (s): Duration of the trial in seconds. Trials
will be terminated by the end of 5 minutes or by any failures to
maintain arms at the target Arm_Angle. True_Torque (%2MVC):
The average physical intensity represented in shoulder torque, and
it is normalized to the corresponding participant’s Max_Torque as
measured at the MVC collection.

In total, we have 5 X 4 X 4 = 80 measurements for Duration,
True_Torque (%MVC).

4.1 Revised Endurance Function

We begin by investigating the asymptotic term in the original ET
model, as introduced in Section 2.3. The ET model used in the orig-
inal CE study (Equation (2) was improved from Rohmert’s (Equa-
tion (1)). As shown in Equation (2), this curve has two additional
terms (introduced in a formula from Freivalds [13]) not found in
an ordinary power curve y = a * x?: one of these is the asymptotic
term (15) and the other is a constant term (-72.5). While the con-
stant term has no biomechanical implication, the asymptotic term
reveals the maximum workload individuals can take without get-
ting fatigued (see the black dotted line in Figure 2). In other words,
individuals can sustain any physical activity below the threshold
for an indefinite period of time.

To produce a similar curve and further validate the previous
ET model, we first need to determine the asymptotic term to use
in our function. Literature has an extensive discussion regarding
including the asymptotic term and its potential impact. In Monod
and Scherrer’s study [31], the asymptotic term is recognized as
the critical force for physical tasks without exhaustion. Their ideas
were supported by Morton [21] and others [32] who consider the
asymptotic term as the buffer muscle capacity and argue that spend-
ing all non-buffer physical effort does not lead to exhaustion and
argue that spending all physical exertion does not lead to exhaus-
tion. Meanwhile, Garg et al. argue that the asymptotic term will
overestimate the ET of low to medium exertion [15]. Frey et al.
[14] conclude that a regular 2-parameter power curve can best de-
scribe their observations. Given that the minimum observation of
torque in our data collection is 5.8 %MVC, we decided to compare
the goodness of fit with power curves with different values for
the asymptotic parameter, between 0-5, from our measurements of
Duration and True_Torque.

As shown in Table 1, when the asymptotic term is taken as 0,
i.e. a regular power curve, the curve best aligns with our collected
data. The plot in Figure 4 shows the varying endurance capability
among participants in our study. Nonetheless, the power curve
has a reasonable fit with R = 0.57, meaning that the physical
exertion explains 57% of the variation in ET. Our conclusion of
the asymptotic term is consistent with the prior study done with
natural arm weight at 90°, where empirical evidence indicates that
the ET is not infinite for exertion lower than 15 %2MVC [25].

Therefore, we propose ET* as a revised Endurance Time curve
for shoulder movements:
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Figure 4: Black line: The new ET model fits with 2-parameter
power curve; Blue line: The Rohmert’s ET model used in CE.
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To our knowledge, this is the first complete ET-exertion func-
tion constructed from such coverage of low to high exertion (6 -
72 %MVC) at the shoulder joint. This established formulation will
be valuable for future fatigue studies in biomechanics and HCIL.

5 STUDY 2 - EVALUATION OF CE IN VR

To evaluate the validity of CE for use over a wide range of motion in
VR interactions, we designed a study that closely follows a design
from the initial evaluation of CE by Hincapié-Ramos et al. [20].
This evaluation study (hereafter referred to as the ‘original’ study)
evaluated CE with a task requiring participants to touch a 2D array
of targets on a large screen. The study used a 2 X 2 factorial design
with two height levels and two distance levels designed to coerce
participants into using either an extended or bent elbow.

Our study design includes several changes from this design.
First, we replace the original task using direct touch on a large
screen with a task with greater external validity in VR. Arguably the
most common VR interaction, and the most feasible over extended
durations, is pointing using a raycast metaphor. Second, we mimic
the extended and bent arm conditions of the original study but allow

Table 1: ET curve coefficients for asymptotic terms, where
shoulder torque (%xMVC) is between 0-100; ET is Endurance
Time in seconds.

c: Asymptote a b R?
Power: ET(s) = a * (%MVC + c)b
-5 355.1425 -0.3704 0.4823
-4 482.2708  -0.4709 0.5206
-3 627.1240  -0.5518 0.5415
-2 801.3887  -0.6240 0.5552
-1 1014.6980 -0.6910 0.5651
0 1277.9066 -0.7546  0.5725
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a free and relaxed posture to be used in the bent arm condition,
without any artificial constraint. Third, whereas the original study
included two ‘height’ conditions for target locations, we include a
third condition. This addition allows us to investigate differences
in exertion in angles as equal distances above and below 90°, which
was overlooked in prior studies [20, 22, 37].

Participants. We recruited 12 volunteers (six female, six male),
ages 18-39 years, height 1.51-1.95m, and weight 48-82kg. The num-
ber of participants in study 2 was based on a power analysis based
on pilot data suggesting a minimum sample size of 9 will have 95%

Task. Following the MVC collection, participants start the study
trials in an immersive virtual galaxy in VR seen on Figure 1-d
where they are told to fight against the “stormtroopers” with the
“lightsaber” in their hands (from the fictional Star Wars universe).
In detail, participants must destroy a set of 20 targets one by one,
presented in random order, by selecting them with a laser extended
from their right hand. The direction of the laser will align with
the lower arm direction. 20 target positions are evenly distributed
within a 120° arc horizontally, which is a proper functional Range-
Of-Motion for shoulder-scapula movement [33], and within a verti-
cal range of + 5° of the given height condition. In the end, targets
will only show on an invisible spherical surface. During the study,
an inelastic buckle belt is used to constrain participants’ backs in a
chair to limit trunk movement. To mitigate variance in task com-
pletion time between participants, we specify a 1.5 s dwell time,
during which the laser must continuously touch the target before it
is destroyed. We encourage participants to finish tasks as quickly as
possible. Same as in the implementation in User Study 1, a detailed
explanation of the Borg CR10 is provided at the end of each trial to
collect the self-reported fatigue.

Design. There are two independent variables applied in the study:
Arm_Extension and Target_Group. We used a 2 X 3 within-subject
design to compare CE, EMGs, and Borg CR10 in each condition.
In detail, we have two levels of Arm_Extension in controlling the
interaction:

e Extended: The laser will only be available when the elbow
angle is greater than 145°.

e Bent: The laser will only be available when the elbow angle
is lower than 145°.

Meanwhile, we chose three levels of Target_Group for monitor-
ing the target location:

e 120: Targets will be placed at the upper 25°-35° relative to
the participant’s right shoulder to obtain an average shoul-
der torque at roughly 120° from vertical (see the red line in
Figure 1-d).

e 90: Targets will be placed in between the upper 5° and the
lower 5° relative to the participant’s right shoulder to obtain
an average shoulder torque at 90° (see the orange line in
Figure 1-d).

e 60: Targets will be placed at the lower 25°-35° relative to the
participant’s right shoulder to obtain an average shoulder
torque at roughly 60° from vertical.

Participants must point at 20 targets for one repetition and com-
plete three repetitions for each condition. The presentation order
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of the conditions within and between participants is balanced by a
Latin square design. Each trial takes roughly one minute to com-
plete, and the entire study, including the MVC collection, requires
roughly 90 minutes.

Measures. CE (%): output of the CE model. Borg CR10: Self-report
perceived fatigue between 0-10. The average physical intensity rep-
resented in muscle strength of each muscle group: EMG_TR (%M VC):
upper trapezius; EMG_MD (%MVC): middle deltoid; EMG_AD (%2MVC):
anterior deltoid; EMG_IF (%MVC): infraspinatus.

In total, we have 2 X 3 X 3 = 18 CE ratings, Borg CR10 and
2X3 %3 x4 = 72 measure for EMG (%MVC) across the four different
muscles for each participant.

5.1 Results

In our analysis, we excluded one participant due to a technical issue
with the sensor, as among all 18 trials, 10 of them contained faulty
EMG readings. In addition, we removed four data points (2% of the
remaining data) because they are out of three Standard Deviations
of the completion time.

We used a multi-factor ANOVA with aligned rank transform [39]
to compare means for the measured variables, CE, Borg CR10 scores,
and EMG readings. Results are reported in Table 2 and visualised in
Figure 5 and Figure 6. In cases where an interaction effect between
Arm_Extension and Target_Group was found, a separate one-way
ANOVA was conducted for each Arm_Extension (see Table 3). For
brevity, we show post hoc pairwise comparisons with Bonferroni
correction using brackets in all the following figures (Significance
Level: “** 0.05, *** 0.01, ***’ 0.001).

5.2 Discussion

Disagreement between CE, Borg CR10, and EMG. Inspection of
the Extended arm conditions reveals interesting patterns across
the Target_Group. Because CE quantifies the shoulder exertion
based on the torque at the shoulder joint, we hypothesise that
the CE scores will increase for Target_Group between 60° and 90°
and decrease for Target_Group between 90° and 120°. As seen in
Figure 5, the pattern in CE is as we expected. Though the dynamic
torque is affected by the movement speed in Study 2, CE at 60° and
120° are roughly equal (with small variations from the +5° target
range) and both lower than 90.

Whereas results of the Borg CR10 scores of perceived exertion
appear to disagree with this trend; although a high variance in
scores prevented us from finding significant differences, there ap-
pears to be an increasing pattern of Borg CR10 with increasing
Target_Group in the Extended arm condition.

This mismatching inspires us to compare the objective exertion
measured by EMG. As shown in Figure 6, all four muscle groups
show significant differences between the 60° and 120° conditions
in Extended arms. Furthermore, patterns found in EMG_TR, EMG_MD,
EMG_AD, EMG_IF clearly show that the intensity of muscle contrac-
tions increases with Target_Group for the Extended arm.

Since CE is a function of physical intensity and time, these obser-
vations of muscle exertion in EMG_TR, EMG_MD, EMG_AD, and EMG_IF
imply that CE should similarly increase with shoulder elevation
over a fixed duration. However, as discussed above, the reliance of
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Figure 6: Mean values of each condition in Study 2. From
top to bottom, left to right are EMG_TR, EMG_MD, EMG_AD, EMG_IF,
and CE_MD. Bars represent +1 SE.

CE on estimated torque assumes a symmetrical distribution of CE
peaks at 90°, which does not agree with EMG.

The disagreement between torque and EMGs leads us to an
exploration where we replace the Torque (%MVC) in Equation (4)
with EMG (%MVC) measured from one of the muscles, for example,
EMG_MD (%MVC), we see the expected increasing pattern in the
resulting CE_MD values in Figure 6 with significant difference
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Table 2: Results of the ART ANOVA on each of our dependent measurements.

Measurements | Main Effect of Arm_Extension | Main Effect of Target_Group Interaction Effect
CE F1,194 = 453.11, p < 0.001 Fy194 = 7.84, p < 0.001 Fy194 = 6.02, p < 0.01
Borg CR10 F1,194 = 151.10, p < 0.001 p=0.13 p =0.32
EMG_TR F1,194 = 477.10, p < 0.001 F3,194 = 20.44, p < 0.001 F2,194 = 13.21, p < 0.001
EMG_MD F1,194 = 1099.15, p < 0.001 F5194 = 48.42, p < 0.001 F5,194 = 48.75, p < 0.001
EMG_AD Fi1.104 = 1028.59, p < 0.001 Fz.104 = 19.70, p < 0.001 Fa101 = 3.17, p < 0.05
EMG_IF F1,194 = 146.30, p < 0.001 F5194 = 20.92, p < 0.001 Fy194 = 6.42, p < 0.01

Li et al.

Table 3: Results of the 1-way ANOVA on our dependent mea-
surements, conducted separately under each Arm_Extension
condition.

Measurements Extended Arm Bent Arm
CE Fy104 = 7.56, p < 0.001 | p =087
Borg CR10 - -
EMG_TR F3194 = 15.49, p < 0.001 p = 0.66
EMG_MD | Fz194 = 30.95, p < 0.001 | p = 0.88
EMG_AD F5194 = 8.51, p < 0.001 p =0.17
EMG_IF F,194 = 3.96, p < 0.05 p=0.17

between conditions in Extended arms. At this point, we conclude
that torque fails to capture the observed physical intensity when
the arm elevation is above the shoulder height, which highlights
the limitation of using torque only to estimate fatigue.

Unlike the clear patterns seen between Target_Group conditions
with an Extended arm, results in conditions with Bent arms show
no significant difference between Target_Group conditions. This is
different from the original CE study, which showed a significant
difference between low and high target groups, resulting from par-
ticipants compensating for high target locations with adjustments
in their arm postures.

Correction term in torque calculation. Based on the preceding
observations, we propose a correction term C for CE to correctly
predict physical intensity when the arm elevation is above 90°. As
described in Equation (5), the updated torque calculation h(torque)
will add the correction term C to g(torque), which is the torque
calculation in the original CE formulation. We expect this additional
term to explain the mechanism of shoulder elevation [2] as f(0),
where 0 is (the angle between the upper arm and the torso) - 90
while correcting the bias in estimating exertion using torque only.

h(torque) = g(torque) +C (5)

Inspired by the study done by Crosbie [10], where the relation-
ship between the shoulder joint and upper arm is well explained
by the logarithmic function, we hypothesize that the correction
term f(0) is a variant of log(0). We start with log(6 + 1) by adding
a constant term +1 to left shift the log curve across the origin to
avoid decreasing the physical intensity at 90°. The correction term
C is defined in Equation (6).

C=w#log(0+1) (6)

Table 4: The Pearson Correlation Coefficients (r) of torque
and four muscle groups show that our proposed torque func-
tion h(torque) is more strongly correlated than f(torque)
from the original CE formulation.

r EMG_TR | EMG_MD | EMG_AD | EMG_IF
g(torque) 0.53 0.62 0.73 0.40
h(torque) | 0.69 0.80 0.84 0.46

In terms of the unknown coefficient: w, our initial attempt is
based on the idea of getting the exertion at 120° greater than the
exertion at 90°. We use Equation (7) below to obtain the w;pyeshold =
1.8 that makes Torquego equal to Torquejyg.

ATorque(%MVC)  Torquegy — Torqueizo
log(ATargetGroup) — log(30+1)

Then we increment the value by 0.1 and observe that 1.9 is
the minimum value to make Torqueizg significantly greater than
Torquegg in our empirical data. We decide to round it to 2 to add
more confidence for future evaluation. As seen in Table 4, the
corrected torque calculation h(Torque) shows a higher correlation
with the four muscle groups compared with the pre-correction
torque g(Torque). The above observation suggests that h(Torque)
successfully follows the same pattern as using EMG to estimate the
exertion of the three levels in Target_Group.

™

Wthreshold =

6 LESSONS LEARNED

Below we summarise several takeaway lessons from our study.

CE overestimates ET for low to moderate physical exertion. Our
first study identified the reason for this: CE follows Rohmert’s as-
sumption that physical exertion can be extended indefinitely when
the ZMVC is below 15%. This implies that participants can engage
in VR interactions with bare hands forever without taking a break.
However, our empirical data confirms that the maximum duration
is finite for VR interactions that require shoulder movement with
an extended arm.

A torque-based model fails to capture additional exertion for arm
movement above 90°. Our second study demonstrates the inconsis-
tency between CE, Borg CR10, and EMG for above-shoulder move-
ment. Our measurements of muscle contractions of four different
muscles in the shoulder show that the intensity of contractions
increases with arm angle. The use of only calculated torque is an
attractive feature of CE as it allows fatigue to be predicted using
minimal information about the arm pose. However, this attempt



Revisiting Consumed Endurance: A NICE Way to Quantify Shoulder Fatigue in Virtual Reality

risks underestimating the exertion of interacting with objects above
shoulder height in VR.

A revised CE formulation: New & Improved Consumed Endurance
(NICE).. Based on the revised ET function established in Section 4.1
and the correction term introduced in Section 5.2, we propose a
revised CE formulation: NICE as defined in the Equation 8.

Duration is the spent interaction time from the start, 0 is (the
angle between the upper arm and the torso) - 90, and Torque is
the torque at the shoulder joint. In practice, § and Torque can be
estimated from arm pose inferred from commodity headset and
controller positions. This improved metric may be validated in a
study using a similar design to the current study. We discuss our
plans for such a study along with other future work in Section 7.1
below. An open-source package, including scripts of the revised
formulation and data, will be published with the paper.

) T
NICE - Duration * (#‘{:’fw %100 + 2 * log(0 + 1))0-7546 "
- 1277.9066
8)

A hybrid approach using torque and muscle activation addresses
current limitations. Currently, there are three approaches in the
design of fatigue models for VR interactions. The first is a pure
torque-based approach, which the original CE model follows. This
approach suffers from inaccurate estimations of the over-shoulder
movement, as verified by our data. The second approach is super-
vised learning, which is the direction CF takes. Though CF has been
shown to accurately predict subjective RPE, it requires pre-training
the model on a specific type of activity, this approach is potentially
prone to overfitting and may lose generalisability when applied
in varying interaction tasks. The last approach is based on muscle
activation. An example of this approach is the clustering model
in studies [3, 4], where biomechanical simulation maps the arm
posture to energy cost in recruited muscle groups. However, how to
estimate cumulative fatigue from instantaneous muscle activation
remains unclear.

The improved CE model: NICE, was constructed from the revised
ET curve that was fit to our empirical data (see Figure 4), along
with the proposed correction term, which increases correlation
between torque calculation and muscle contraction (see Table 4).
Therefore, NICE takes a hybrid approach by combining torque
and muscle activation. As such, NICE can estimate the maximum
interaction duration and account for additional exertion in over-
shoulder activities. Furthermore, the implementation of NICE does
not require model training or pre-calibration, which makes it more
user-friendly than CF.

7 CONCLUSION

We conducted two studies to investigate the CE metric, previously
evaluated by subjective approaches only, using objective measures.
The ground truth data identified the causes for overestimates in ET
predicted by the original CE model. In a second study, we examined
the validity of CE in VR through a typical VR pointing task to
further explore the relationship between CE, torque, and muscle
intensity in an extensive 3D space. Our findings presented that the
CE metric requires the further addition of a new term in order to
correctly reflect asymmetric physical exertion for VR interactions
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above the shoulder height. Lastly, We proposed an improved metric,
NICE, aimed at correcting the limitations we identified.

7.1 Limitations and Future Work

Like previous studies in estimating the ET curve, our first study is
influenced by the limited duration of trials (capped at 5 minutes).
This was done to prevent physical exhaustion or potential injury
to participants. However, it artificially constrains the range of data
available for a better fit with the ET-exertion function. Furthermore,
for each study, we recruited 12 participants. While this is similar to
the sample size from similar studies ([20] and validation data sets
from [22, 37]), a future study with a greater diversity of participants
may lead to results that better generalise to the broader population.

As inspired by the last point in Section 6, our next step is to
investigate muscle-based fatigue indicators under different interac-
tion conditions. We propose slicing the interaction area around the
arm into a 2D grid with horizontal and vertical lines. Participants
will continue each trial within a particular block until they can no
longer hold their arms. By observing the corresponding muscle ac-
tivation, we can explore various approaches for deriving the correct
term, potentially through supervised learning. It is expected that
the NICE model with the revised correction term will achieve sig-
nificant improvements by accounting for the exertion that cannot
be explained by the torque. This will allow its use in a wide variety
of applications with varying requirements for inducing fatigue.

Due to the limited time frame in the current study, we did not
include a direct comparison with CF. However, since CF also re-
lies on estimated torque, it is expected that CF will underestimate
RPE when the shoulder angle exceeds 90°. We will investigate this
assumption in a follow-up study. Our current study, nevertheless,
brings new insights into improving CF. In the longer term, we hope
our efforts will contribute toward a universal model that addresses
the current limitations of both CE and CF, enabling designers to
predict both endurance time and RPE in a diverse range of tasks in
VR.

More importantly, current literature only develops the model to
target upper body movement. Yet, VR interaction has become more
complex, from direct manipulation to full-body gaming. demanding
consideration of more body segments and individual variations in
future model improvement. Our longer-term goal is to generalize
these models beyond the shoulder and arm for use with other
body segments. We believe our work will help lead toward future
models based on muscle activation rather than torque solely. This
may prove useful for modelling muscle groups such as those used
for neck motion that may be less influenced by torque than the
shoulder.
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