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Abstract— We describe a method of teaching a robot its
empathic behavioural response from its interaction with people.
We used the input modalities such as relative spatial informa-
tion, facial expressions, body gestures and speech information
as perception input that triggers the robot’s empathic response.
First, we bootstrap the training through a pre-learning mech-
anism in which training is conducted by users who know the
robotic system. This phase provides simulation-based training
using a simple graphical user interface to simulate the input,
rewards and correction feedback. In the second phase, we de-
veloped an online learning scheme for naive users to personalize
their robot further, building on top of the bootstrapped model.
Here, we developed a natural user interface that enables natural
human-robot interaction via the suite of sensors that allows the
users to provide evaluative feedback during the interaction with
the robot. We evaluated the system and our results show that
bootstrapping is an efficient tool to hasten the robot’s learning
while online learning provided some form of personalization in
the real environment with naive users.

I. INTRODUCTION

The tabletop robot Haru is a research platform to study
affective engagement with a robot as a means of long-term
human-robot interaction [1]. In this research, we aim to
develop a new kind of robotic companion — a new form of
companion species [2] that one day enables humans to build
bond through empathetic interaction. In the first phase of the
study, we focus on teaching the robot simplistic interactions
similar to those shared with pets. We would like to achieve
this by tapping the robot’s empathetic character. Haru’s
design evolves primarily on maximizing empathy with rich
multimodal channels for utmost expressiveness [3]. Since the
communication of affects is integral to Haru, we provided
a tool for animators to easily design animation routines in
their native software platform. This expression composer
studio allows designers to compose context-rich multimodal
expressions of the robot and subsequently transform them
into hardware-ready robotic routines [4]. The idea is for
animators to curate Haru’s expressive routines resulting into
a well-designed repertoire of robotic routines, while robot
application designers focus on developing interaction meth-
ods and make use of the pool of these empathetic routines
as robot’s actions.

Currently, the programming of Haru’s actions is based
on a tightly controlled environment relying on a rule-based
approach in selecting the appropriate actions [5], [6], [7].
However, this approach is not sustainable when developing
a new kind of companion species such as Haru. If Haru has
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Fig. 1: Haru’s learning framework

to become a social creature like pets, humans should be able
to train Haru’s responses based on what it perceives. Hence,
in this paper we propose to develop a mechanism to enable
Haru to learn from the interaction of humans and automati-
cally select the appropriate action from the pool of expressive
routines in its repertoire. Machine learning approaches offer
a convenient way to train robots. In particular, Reinforcement
Learning (RL) has been a popular tool for agents to learn
through interaction (i.e., taking actions) with the physical
world [8]

In this paper, we employ a human-in-the-loop RL ap-
proach [9], [10], [11], [12] to enable the agent’s real-time
learning. Using Markov Decision Process (MDPs) [13] to
describe the interaction between an agent and its environment
(see Figure 1), the goal of our proposed system is to
learn an action-selection strategy in order to optimize some
performance metrics such as user reward (feedback). For
that, in our experiment, we engage human participants as
trainers to shape the robot’s actions. The first set of trainers
are knowledgeable of the robotic system (i.e. perception and
pool of actions). They are used to bootstrap learning through
simulated training using an interface tool with wide-range of
options to train the robot. The second set of shapers are the
end users (naive users), which are the actual people who
will be interacting with the robot in their day-to-day lives.
Unlike the boostrapping shapers, the naive users are provided
with a simple and natural interface to give positive/negative
feedback to facilitate an online learning mechanism. The
idea is to construct the base model through bootstrapping
to hasten learning, while further personalization is provided
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Fig. 2: Examples of a few Haru’s actions (emo-
tions/expressions) expressed through the animated emotive
routines: Anger (top left), Shyness (top right), Curiosity
(bottom left), Adoration (bottom right)

through the online learning as the end user continuously
interacts with the robot. As a result, the robot learns to
properly understand social cues and reacts to them with cor-
responding actions that are deemed appropriate, relevant and
correct by the human shaper. Inspired by real-world methods
of training social creatures such as pets, our participants
create an arbitrary situation and expect to elicit a certain
action (e.g. emotional reactions such as happiness, anger
or sadness) from the robot. Then, they provide evaluative
feedback, respectively reward, and a correction (optional,
bootstrapping phase) on the robot’s performance for the robot
to optimize its response.

This paper is organized as follows. We present the back-
ground of the robotic platform in Section II. We discuss the
bootstrapping and online learning frameworks in Section III
and Section IV, respectively. The experimental setup is
presented in Section V, followed by results and discussion
in Section VI. Finally, we conclude the paper in Section VII.

II. ROBOTIC PLATFORM

A. Perception Mechanism (Human Input States)

To understand its environment, the robot needs to make
sense of the input modalities through the use of percep-
tion sensors (e.g. RGB camera, depth-sensing camera and
microphone array) and recognition modules. To reduce the
dimensionality of the state space, we limit the input to the
following perception and recognition modules.

1) Face Direction: This module uses depth information
collected from the depth sensor and provides Haru with
spatial awareness about the person interacting with it. In
addition, the face direction modality represents a unit vector
describing the orientation of the human face derived from
the skeleton joints of the person. This modality is set to
”AtRobot” and ”Away” when the person is facing towards
and away from the robot, respectively.

2) Facial Expression: The facial expression recognition
module fetches single images of the internal camera data
for frame-wise inference of human emotional states with

a pre-trained Convolutional Neural Network (CNN). The
model is derived from the MobileNets architecture [14] and
is made available for public use 1. We utilize the network
as is and do not perform any further retraining or model
adaptation. However, to add robustness to our prediction
process, we smooth the confidence outputs with an additional
moving average filter of window size ωe = 5 along the
temporal domain. This modality was limited to classify five
classes (labels): “Neutral”, “Smile”, “Surprise”, “Sadness”,
and “Anger” (see Table I), where each represents an actual
facial expression on the human’s face in discrete point of
time.

3) Gestural Expression: The gestural expression recogni-
tion module classifies segments of joint movement features
with a CNN architecture specifically designed for the given
interaction scenario. We continuously fetch the user’s joint
positions tracked with a depth sensor and split the data
stream into segments based on the movement properties
of designated landmark joints. Once a new series of joint
position trajectories is created, we transform it into a set of
angular and distal features [15] and re-scale the resulting
feature segment to a standardized length using cubic inter-
polation. Next, we evaluate the resulting ’movement image’
with the CNN to obtain the desired class label and confidence
prediction information. The CNN constitutes of a very basic
architecture that was similarly used in related application
scenarios [16], [17]. Similarly to the facial expression recog-
nition module, this modality was also limited to a small num-
ber of classes (labels): “Neutral”, “Waving”(hand), “Clap-
ping”(hands), “FaceCover”(hand(s) covering face), “Shrug-
ging”(shoulders), ”Thumb Up”, and ”Thumb Down”. The
first five are the part of the human input states (see Table I),
while the last two are reserved control gestures (see Sec-
tion IV-A).

4) Speech Expression (Wake Up Phrase and Intent):
The hands-free acoustic speech is processed via a micro-
phone array processing module resulting in a separated
speech signal, which is then used as input through a speech
recognition module [18]. Its output is further analyzed for
the presence of the words or semantic information related
to directly addressing the robot’s name (e.g. “Hey, Haru”,
“Haru”, “Ok, Haru”, etc.) which is referred to as the wake
phrase [19], [20].This explicitly informs the robot of the
human interaction with it (the robot). In the event that the
text is not classified as a wake up phrase, it is processed for
control speech phrases (i.e. ”Yes, Haru”, see Section IV-A)
and for check of speech sentiment (e.g. greeting, goodbye
or endearment, see Table I) through a language sentiment
analyzer module [21].

B. Robot Actions

The robot’s action refers to the repertoire of expressive
routines that are designed and curated by the animators.

1https://github.com/EliotAndres/tensorflow-2-run-
on-mobile-devices-ios-android-browser
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Modalities Classes

Face Direction “AtRobot”, “AwayFromRobot”

Face Expression “Neutral”, “Smile”, “Surprise”, “Sadness”, “Anger”

Gestural Expression “Neutral”, “Waving”, “Clapping”, “FaceCover”, “Shrugging”

Speech Expression: Wake-Up-Phrase “Present”, “NotPresent”

Speech Expression: Intent “None”, “Greeting”, “Goodbye”, “Endearment”, “Embitterment”, “Directive”

TABLE I: Summary of the human input states.

Action Class Intensity Level
Sadness 1 2

Happiness 1 2

Shyness 1 2

Anger 1 2

Adoration 1 2

Thinking 1 2

Listening 1 2

Curiosity 1 2

TABLE II: Action Space. The list of the robot’s actions
(emotive routine behaviors).

These are the expressions that are triggered by the perceived
human states. In practice, we aim to have a large pool of
routines that represents the various expressiveness of the
robot. In this paper, we limit it to using eight routines as
exemplary depicted in Figure 2: “Sadness”, “Happiness”,
“Shyness”, “Anger”, “Adoration”, “Thinking”, “Listening”,
“Curiosity”. The idea is that, as the person interacts with
Haru, the manifestation of their states would elicit an
emotional response (action) from the robot. Moreover, to
slightly increase the action space (from 8 to 16 possible
combinations) we also introduced two intensity levels (i.e. 1
and 2). Level 1 implies a low or normal level of expressivity,
level 2 signifies a high or extreme expressivity and used
to exaggerate the degree of a particular affect. The robot’s
possible actions (actions space) are summarized in Table II.

III. SHAPING BY BOOTSTRAPPING

A. Simulation Interface: Interaction and Feedback

In order to hasten the learning process, we first boot-
strapped the model using a simulation interface (see Figure 3)
that simulates all the supported human input states and robot
actions. The figure also highlights the five important steps the
learning procedure is composed of:
1 Select State: to create/compose/design/select the human

input state that Haru will react to. The five drop-down
menus (Facial Expression, Gestural Expression, Speech
Expression: Intent, Face Direction, Speech Expression:
Wake-Up-Phrase) contain the values listed in Table I
respectively.

2 Apply State: to apply the selected human input state

3 Evaluate Haru’s Action: to evaluate Haru’s action gen-
erated by the RL algorithm, that is to make a decision on
whether it matches the user’s expectation or not.

4 Provide Feedback: to provide a reward and an optional
correction. The user gives a positive reward (“Accept”
checkbox selection) if Haru’s reaction is acceptable, or a
negative reward (“Reject” checkbox selection) otherwise.
In case of the negative reward, the user has an option to
provide a correct answer (robot’s action).

5 Track Progress: to track the information about the human
input state and robot’s action being currently learned by
Haru, as well as the number of ones already learned.

Fig. 3: GUI for bootstrapping the model.

B. Bootstrapping Learning Algorithm

We used Q-learning [22] — the most commonly used
method in RL. However, different from the traditional Q-
learning in RL, the rewards for learning are not provided
by a pre-defined reward function, but delivered by a human-
in-the-loop [9], [10], [11], [23], [24], [25]. In our setting,
this means that the robot receives labels (classes) for each
modality from the user (human trainer) selection in the GUI
(see Figure 3), which simulates the human input state. Then,
based on the perception of the human input state, from the
set of actions (see Section II-B), the algorithm greedily picks
a single action with the largest Q-value as it is done in
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the traditional Q-learning. That action is shown to the user
through the GUI. The user can then choose to accept or reject
this action based on their subjective opinion. This user’s
response is sent back to the robot as an evaluative reward
to update the learning model.

In addition, besides the evaluative feedback, we also pro-
vided a channel for a user to provide a correction (a correct
action). The correction is used when the user disagrees with
the selected action. In that case, they may choose to correct
it, which is directly used to update the optimal action for
that particular human state, as shown in Figure 4.

To be specific, at time t, the agent first detects the current
human input state st that a user (human trainer) creates
using the GUI. The algorithm then picks the action that
currently has the largest Q-value, or randomly for the actions
with equal Q-values (e.g. all Q-values are set as zeros at
the beginning, etc.) for the current human input state st.
The selected action is sent to the user via GUI who will
evaluate whether the selection is correct (most optimal) for
the current human input state st. If they accept it, a positive
value of ”+2” is sent back to the algorithm; if they reject
and do not provide any correction, the algorithm receives a
negative value of ”-2”. This user’s response is received by
the algorithm as a human reward Rh that is used to update
the corresponding Q-values.

Rh =

{
+2 accept suggested action
−2 reject suggested action (no correction)

(1)

The value of ”2” in Equation 1 was experimentally found
to be sufficient in order to change particular Q-values in a
single iteration, significant enough, to affect the algorithm’s
future action selections.

GUI

Feedback

Action
ɑ

human reward
Rh

Action Selector

Q value function

Action
ɑ

Haru

Correction
Rc

Human Trainer

Sample
(s, ɑ, Rh)

State
s

Fig. 4: The scheme of the learning algorithm for bootstrap-
ping.

The received human reward Rh together with the human
input state s and selected action a will be used as a sample
to update the Q-value function as:

Q(st, at) = Q(st, at)+α(Rh + γmax
a

Q(s′, a)−Q(st, at))

(2)
where α is the learning rate [26], γ is the discount factor [22].
If the human trainer rejects the selected action but chooses
to correct it, the algorithm will receive a negative value of
”-1” for that selected action and a positive value of ”+1” for
the action of correction. Both are directly used to update the
Q-values for the two actions in the current human input state
st:

Rc =

{
+1 action of correction
−1 selected action

(3)

The value of ”1” in Equation 3 was experimentally found to
be sufficient in order to change particular Q-values in a single
iteration, significant enough, to affect the algorithm’s future
action selections. Q-value function calculated with regard to
the given correction is denoted as:

Q(st, at) = Q(st, at) + αRc (4)

where Rc is the reward for the action of correction. Next, at
time t + 1, the perception system will detect a new human
input state st+1 and another action with the largest Q-value
will be selected for execution:

a← argmax
a

Q(st+1, ai), (5)

New iterations of action selection, feedback propagation and
model update repeat selected by the algorithm action is
accepted. The same procedure is applied for all created user’s
human input states.

IV. ONLINE SHAPING MECHANISM

A. Natural User Interface: Interaction and Feedback

In order to deploy our learning system in a real environ-
ment with Haru and naive users, it is important to provide
a natural user interface [27]. Naive users are generally not
technology savvy and are not familiar with the specifics
of the system. To allow the user to provide feedback for
the robot in an intuitive way, we engaged our perception
system (see Section II-A) to establish a natural human-robot
interaction. Here, the idea is that the system recognizes and
interprets the human physical interaction (facial expression,
body gesture, speech, etc.) into understandable human input
states in real-time. On top of the perception system, we
developed a natural interface for the user feedback (see Fig-
ure 5). In particular, we built a control gesture (i.e. ”Thumbs
Up”, ”Thumbs Down”) and control speech phrases (e.g.
”no Haru”, ”yes Haru”). These control gestures and control
speech phrases are defined as reserved control commands.
They are recognized by the perception system and when en-
countered are automatically translated only exclusively into
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corresponding positive or negative rewards (see Section IV-
B). Correction in this setting was not provided as it would
complicate the interaction.

Fig. 5: Online Learning: Natural user interface

B. Online Learning

The algorithm in our online learning is similar to the
one used for the bootstrapping, except for the correction
that was deliberately left out. In this setting, the GUI is
replaced with the natural user interface as it is shown in
Figure 6. In addition, the Q-value function is initialized with
the bootstrapped model from Section III.

Perception Module
(Supports natural interface)

Action
ɑ

Human 
reward

Rh

Action Selector

Q value function

Haru

Human Trainer

Sample
(s, ɑ, Rh)

Human stateFeedback

State
s

Initial Q value 
function

(Bootstrapped in 
Sec. III)

Fig. 6: Online learning algorithm from human evaluative
feedback provided by real users (human-trainers).

V. EXPERIMENTS

In order to test the practicality and effectiveness of our
proposed system, we designed two experiments.

In the first experiment we focused on hastening the learn-
ing process by bootstrapping of the initial learning model.
For this part we selected experienced users knowledgeable
of Haru who we denoted as experts. The purpose of this
experiment was to quickly obtain an base model which
contain preferences of generic population. Normally, such
a procedure requires a high volume of iterations and data.
Therefore, to enable that, this stage was done in a simulated

environment with the provided GUI and keyboard-mouse
control (see Figure 3). The participants here were asked to
imagine and design 10 unique human input states and teach
Haru to react to those with particular actions individually
preferred by them. The selection of the desired human input
states and delivery of the feedback (reward and correction)
were all explained in Section III-A.

The second experiment focused on studying the perfor-
mance of our learning system in a real environment with
Haru. Participants in this stage were naive users. This means
the users had no concept of the human states or robot
actions, and were not familiar with the workings of the
system. The task for participants was mainly identical to
the first experiment but was framed differently — create 10
unique scenarios (interactions) and shape Haru’s behaviour
according to individual preferences by giving a positive
reward for those behaviors they approve of, and a negative
reward for those behaviors they do not. More specifically,
for each scenario participants were asked to interact with
Haru using body gestures, facial expressions, face direction
and speech. They were further instructed to observe Haru’s
behaviour as a response to that interaction, and subjectively
decide whether it was appropriate or correct to the current
situation. The feedback in this setting was given via the
natural user interface, namely using one of the two control
gestures or control speech phrases from Section IV-A.

The second experiment was conducted in in-lab settings as
depicted in Figure 5. Since the number of the robot’s actions
and recognized human input states were very limited, before
the experiment, participants were shortly introduced to the
robot’s actions. This briefing was made so that they would
know what to expect from Haru, and to familiarize them
with the range of available human input states to give an
idea of what kind of physical interactions would actually be
registered by the robot.

One of the main goals of our research was to see how
the bootstrapping can improve online learning for social
interactions. In order to measure the effect of the bootstrap-
ping on the learning, two conditions of a between-subject
study design for our second experiment were composed. The
control group was decided to teach Haru ”from scratch”
with no initial model loaded by the algorithm. For the
experimental group, on the other hand, the algorithm loaded
the bootstrapped model from the previous experiment as a
starting point.

A total of 38 participants were recruited for the two
experiments (N=38). To bootstrap the learning model we
recruited twelve participants (n=12). To test the effectiveness
of the bootstrapping for the second experiment we recruited
thirteen participants per condition (n=26).

VI. RESULTS & DISCUSSION

To measure the effect of bootstrapping on online learning
for social interactions, we compared the average learning
time between the control and experimental groups expressed
through the number of times participants rejected the robot’s
actions selected by the algorithm, as well as the algorithm’s
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Fig. 7: Learning curves in the online learning in terms of
average number of states with learned optimal behavior over
all participants in the two conditions.

learning curve. In addition, we also describe the process of
personalization that inevitable occurs as different actors want
to choose different actions for the same human input states.

A. Number of Rejections

Table III and Table IV show the average total number of
rejections for each naive user participant for both the control
and experimental groups respectively. According to the con-
ducted comparison (Mann-Whitney U test), the experimental
group rejected Haru’s actions significantly fewer times. As a
consequence, they required significantly fewer iterations to
finish the training for each of the ten human input states, and
complete the total experiment (U=27.5, p¡.05).

B. Learning Curve

We measured the average algorithm’s learning time for
all the participants from both the control and experimental
groups. The learning time is expressed through the number
of learned human input states with the accepted actions over
the number of iterations that were required to achieve that
(see Figure 7). We can observe that for the experimental
condition (i.e. with bootstrapping), even for training only 10
human input states the algorithm learned faster compared to
the control group (i.e. without bootstrapping).

The learning pace in the experimental group was not con-
sistent across participants and human input states as it was
in the control group, and this can be explained. The expert
participants from the first experiment created 120 human
input states in total. Since we only forbade reusing the human
input states within the single experimental session, there
were 84 unique human input states across all 12 participants,
while the rest were repeated multiple times overlapping
each other with the same or different actions. A similar
situation occurred with the naive users from both control
and experimental groups, where each group out of 130
created 89 and 84 unique human input states. This suggests
that the majority of the human input states were different.
However, because the bootstrapped model created by the
expert users (see Section III) was loaded as initial model for
the experimental group, the human input states created by
participants of the experimental group did not only overlap

with those of the other participants from the experimental
group, but also with those in the bootstrapped model. For that
reason, the general trend was that some human input states
resulted in faster learning of the correct action if the action
matched with that accepted by the general population (expert
users); some resulted in longer learning if the correct actions
differed as it would take more iterations to inflate the Q-value
of the desired action so that it exceeded the rest. According to
our results, the participants of the experimental group created
only 29 human input states that overlapped with those in
the bootstrapped model (24%), for which 19 actions differed
from those accepted as correct by the expert users while 36
accepted actions matched. Therefore, again, there is enough
evidence to suggest that even a minimum bootstrapping
greatly improves the algorithm efficiency, where only 25%
overlap was already sufficient to significantly reduce the
number of rejections by the participants of the experimental
group.

C. Personalization

Throughout the experiment all the participants (regardless
of the group) were essentially personalizing the Q-table,
that is personalizing the algorithm’s action selection for
the human input states of their choice. However, for the
experimental group this personalization can be observed the
most vividly. Figure 8 shows a visualized heat map of the
Q-values for all of Haru’s actions in fragments of human
input states. Each of the fragments here denotes a Q-table
made of block squares of different shades indicating Q-
values (i.e. the darker the shade is, the greater the Q-value
is). The first (top left) fragment illustrates the Q-table for
the bootstrapped model generated by the expert users in
the first experiment ( Section V). The rest of the fragments
demonstrate the Q-tables of participants #1, #3, #4, #6 and
#13 from the experimental group. The last rows of each of
the fragments illustrate specific human input states that had
been already learned before (during the bootstrapping) and
now is being re-trained (personalized further) by different
participants (naive users).

All participants trained Haru to learn an action that was
different from the initial model according to their own
preferences, where participants #1, #4 and #6 shared their
preferences and participants #3 and #13 had a different
action in mind. In concrete, the preferred action from the
initial model was mostly ”Sadness” and ”Thinking” (marked
through dark coloring). Participants #1, #4 and #6 kept a
similar pattern, but assigned more weight to ”Thinking”.
Conversely, participants #3 and #13 shifted their preference
towards ”Listening” and ”Curiosity”. Both ”Sadness and
”Thinking” in their case were deemed irrelevant (as marked
by light coloring).

In addition, all participants from the experimental group
also trained Haru for creating newly encountered (those that
were not encountered during the boostrapping) states (labeled
with yellow check signs in Figure 8).
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Mean

Rejections 159 84 108 90 98 133 100 177 96 147 89 102 97 113.8

Mean 15.9 8.4 10.8 9.0 9.8 13.3 10.0 17.7 9.6 14.7 8.9 10.2 9.7

SD 17.84 7.53 9.81 9.30 8.24 2.75 8.65 12.33 9.94 5.58 7.69 8.55 5.40

TABLE III: Total number of rejections for 10 states to learn the optimal behavior for all participants in the online learning
without bootstrapped model.

No P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 Mean

Rejections 41 23 84 59 4 47 20 39 61 111 124 64 122 71.46

Mean 4.1 2.3 8.4 5.9 0.4 4.7 2 3.9 6.1 11.1 12.4 6.4 12.2

SD 3.07 1.57 7.11 4.51 1.26 5.33 1.63 3.35 7.69 8.43 10.07 8.28 12.04

TABLE IV: Total number of rejections for 10 states to learn the optimal behavior for all participants in the online learning
with bootstrapped model.

Fig. 8: Visualized heat map of final Q values for all actions in a snippet of states trained in the simulating environment and
the ten states trained by participant 1, 3, 4, 6 and 13 in the online learning with bootstrapped model.

VII. CONCLUSION

In this paper, we have shown a method to train an agent
to select optimal choices of behaviors from it’s behavioral
repertoire through its interaction with humans. First, the
training was bootstrapped by experts using a specialized GUI
to interact with the agent. The bootstrapping accelerated the
training process and the corresponding bootstrapped model
was then deployed to the robot with naive users, representing
the actual end-users of the robot. Through the perception
module, we provided a natural interface for the naive users to
further personalize the robot with ease. Currently, the system
is simple and prone to errors and sparsity of rewards. These
dimensions are not sufficiently discussed and not evaluated
in this paper. Also our approach currently does not allow a
fine-grained modification of the actions using such discrete
human feedback. In the future we plan to investigate these
questions more closely. In addition, we plan to explore novel
training methods and increase the number of robot actions
and input modalities.
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