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Abstract. Smart home technology is receiving significant attention. This is largely 
in response to an increase in the size of demographic those who require assistance 

due to reduced mobility, in particular, older adults. Smart home technology enables 

the assistance individuals with limited mobility need for their daily routines: these 
limitations can be addressed using modern ambient assisted living technologies. In 

particular we discuss the benefits of using electromyography (EMG) sensors to 

capture gestural input that would normally be difficult to sense in the absence of 
such sensors. With EMG, we can provide user control of a smart environment 

through the use of gestures based on muscle activity of the hands. This paper will 

focus on presenting the benefits of EMG technologies that can potentially assist 
individuals with hand mobility issues. We will describe the current state of EMG 

sensory technologies and their role in shaping gesture-based interaction techniques. 

We present our approach using such EMG signals and demonstrate their value in a 
smart home scenario. Finally we introduce the concept of subtle EMG gestures and 

build a better understanding of how we might improve accessibility for those with 

limited upper limb motion. 
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1. Introduction 

Accessibility generally refers to the design of products, devices, services, or 

environments for people who experience some physical or mental limitations [1]. The 

issue of accessibility is the most prevalent among older adults [2–4], with major 

contributors to limited accessibility being ageing and long-term or chronic conditions 

caused by injury and illnesses [5–7]. These limitations and conditions affect cognitive, 

perceptual, and motor abilities. Motor issues connected with shoulders, hands, forearms, 

and wrists joints coupled with low flexibility of both joints and muscles as well as their 

weakness, may all result in poor manual dexterity, slower motions, reduced strength, 

reduced fine motor control, decreased range of motion, and most importantly, reduced 

grip force of hands and fingers[8, 9]. We will hereinafter refer to these hand limitations 

as hand mobility issues despite the extent of their severity. 

Many countries are experiencing a huge demographic shift, where the 

proportion of the older adults is rapidly increasing. According to many credible global 

organizations (e.g., United Nations and WHO), the global population aged 60 and over 
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has tripled since 1946 and 1965. It is expected that this population group will continue 

to grow significantly in the future. Nearly 21% of world population will be over 60 years 

old and is projected to more than double its size in 2015, reaching nearly 2.1 billion by 

2050 [43]. It is widely accepted that significantly more work is needed in order for our 

society to make a smooth transition to accommodate this demographic shift.  

A wide range of sophisticated technologies are being produced within the realm 

of smart homes (e.g., remotely programmable automated functions and systems). The 

key aim of a smart home is to improve comfort, energy savings, and security for the 

residents in the house. Due to these significant benefits, smart homes are endorsed by a 

variety of credible organizations (e.g. World Health Organization, United Nations, etc.) 

[10]. This is presumably because a growing rate of ageing population cannot be 

supported by simply increasing the number of caregivers [10]. Human Computer 

Interaction (HCI) as a field of research focuses on designing the interaction interfaces 

between people and computers and plays an important role in the studying of smart 

homes. Ambient Assisted Living (AAL) as a branch of the Human Computer Interaction 

(HCI) field specifically focuses on the upcoming challenges and objectives of providing 

those living independently with various supporting technologies. We would like to 

consider potential methods to accommodate individuals with limitations in using smart 

home technologies. 

 
 
2. Background 
 

2.1. Hand Gestures 
 
Generally, users utilize movements of hands, head, face, and other parts of the body to 

interact with virtual objects. Furthermore, studies have investigated how older adults use 

gestural inputs during their interactions with technologies [11–16]. Research supports 

the use of hand gestures over other interaction methods with respect to learning time. 

Not surprisingly, hand gestures have become one of the most preferred input methods 

[17]. Hand gestures can offer a fast and effective medium for controlling and 

communicating with intelligent devices. Additionally, robust and effective gesture 

recognition technologies allow us to control a variety of applications with articulated 

prosthetic hands [18], a mobile device, and intuitive game interfaces [19].  

Among many other hand gesture techniques, soft computing (software 

development) techniques offer new perspectives on the application of electromyography 

(EMG) signals in the control of devices in a smart home environment. EMG signals refer 

to biological signals produced by the neuromuscular system when users perform any 

muscle movements (e.g., contractions). It allows effective extraction of informative 

signal features in case of high interference between useful EMG signals and strong noise 

signals [20]. There are two types of EMG recording electrodes: surface [21] and 

intramuscular [22]. While intramuscular sensors require a needle electrode to be inserted 

directly into a muscle, surface EMG sensors record muscle activity from the surface of 

the skin and require only direct skin contact in the region of the specific muscle(s) [23]. 

Moreover, both commercial and research prototypes have demonstrated a great potential 

for machine learning to decode surface EMG signals and enable natural gesture 

recognition [24–27]. Compared to their original bulky form (e.g., Biopac MP150 EMG 

system with many electrodes) [28], modern EMG sensors have progressed significantly. 

One of the most recent EMG sensors, the MYO Armband designed by Thalmic Labs, is 
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a wireless armband that contains 8 medical grade stainless steel EMG sensors and a 

highly sensitive nine-axis IMU [27]. Although the form is quite simple, it is a very 

powerful tool for hand gesture recognition as well as arm movement tracking. Moreover, 

MYO has a set of built-in gestures designed for commercial purposes. The goal of the 

MYO is for easy and comfortable interaction with technologies using hand gestures, 

which fit our research purposes quite nicely. 

 

2.2. Smart Home for Older Adults  
 
While population is ageing at such a growing rate, we must prepare for the potential 

financial impact we face in caregiving costs. Meanwhile, smart homes are gaining 

popularity worldwide. Health-care institutions and medical facilities are particularly 

interested in helping people stay home longer, not only to minimize costs, but also to 

support older adults’ independent living [29]. Living independently without any 

assistance can be physically and psychologically difficult, while living with the support 

of smart home technology (e.g., biological data monitoring with a movement sensor) will 

likely provide comfort to older adults, their family, and caregivers. Constant monitoring 

of the physical and mental state of the older adult should allow family and caregivers to 

be aware of any changes that he/she displays (e.g., the fridge door has not been opened 

for the last 12 hours, indicating an older adult is not eating). Remote health monitoring 

is a central component in the global vision of the smart home [29]. An additional category 

of applications is meant to facilitate independent living and provide remote seamless 

control of the environment for those with mobility issues. [30]. 

 

 

3. Applications 
 
Many studies have been conducted to test the abilities of the Myo Armband for both 

medicine [31, 32] and human-computer interaction (HCI) [33–35].  

Gestural interfaces in HCI based on EMG recognition have produced a range of 

applications for controlling smart home devices [36], mobile devices, wheelchairs, 

prosthetic robotic hands, and mobile robot navigation. To navigate a wheelchair in a real 

indoor environment, Moon et al. [37] for example, controlled an electric-powered 

wheelchair left, right, and forward with a corresponding elevation of shoulders. Further, 

robotic arm manipulations and robot navigation control systems have shown their 

potential in various studies using different EMG configurations [38–41].  

In bio-medical engineering, EMG sensors are frequently used in prosthetic 

amputee rehabilitation applications to enable trans-radial hand amputees to regain a 

significant portion of their lost-hand functionality; using robotic hand prostheses [42]. 

This area of research specifically relies on the precision of the EMG data obtained from 

the sensor attached to the amputated limb. NinaPro, a well-known public database, 

contains datasets of jointly recorded surface EMG signals for predefined sets of gestures. 

Their goal was to establish scientific benchmarks to test for movement recognition and 

algorithms for force control.  

Abduo et al. investigated the MYO Armband accuracy compared to the NinaPro 

database to find out whether the MYO can be used as a cheaper alternative for the 

prosthetic hand EMG sensor and build a generic extendable surface EMG interface, 

namely, an open source solution that can be used to further study the performance of 

various EMG sensors [42]. 
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4. Motivation & Research Problem 
 
The primary motivation behind this research is to understand, and ultimately, support the 

older adults, specifically when they face physical restrictions in their everyday lives. The 

ageing population might put an unfortunate strain on younger generations seeking to care 

for the older population (e.g., nearly a half of the Canadians aged 15 and older give care 

to some of their family members or close people [44]). Therefore, we suggest that 

applying smart home technologies and improving the seamless control of the smart 

environment via hand gesture-based interfaces might ease the difficulties caregivers face. 

Smart home technologies can be employed in both homes and hospitals to facilitate care 

and protect older adults’ independence. Smart homes present a great potential to maintain 

users’ well-being, quality of life, and confidence, when designed and used properly. 

Although, the hand gesture-based interactions are common in HCI and 

represent a reliable interaction modality for the smart home environment, the majority of 

studies often focus on gestural input engaging young adults, leaving a wide gap between 

the young designers’ personal experience and the experiences of the older users [17] and 

their aptitude characteristics which implies having any hand mobility issue. Currently 

existing and studied EMG-based hand gestures are designed without taking 

corresponding measures to address the physical limitations. Clearly, such studies are 

needed to employ various technologies to facilitate older adults’ lives. Myo Armband is 

a good example to illustrate the issue, since using the device, we believe, introduces two 

main problems a senior population might face when using it: a) Existing built-in hand 

gestures may induce arm fatigue quickly, even for younger users, and, b) People with 

motor limitations or dysfunctions might find it hard to perform such gestures. 

 

4.1. Existing Technical Limitations 
 
Apart of the design we draw three major limitations using the EMG devices. Firstly, a 

sensitivity level is highly hardware-dependent and is defined by the frequency rate: the 

number of sensor measurements made per second. Secondly, machine learning models  

to process raw EMG data and train the system to recognize specific patterns as needed. 

The models and algorithms have different properties so it is very important to employ 

the algorithms which best suit for the problem, however, again, the accuracy thoroughly 

depends on a hardware that is used. Lastly, studies show that nearly perfect performance 

(95% to 98% rate of success) can be achieved when using the suitable machine learning 

methods [45–53], however, weaker or physically limited muscles may not produce EMG 

signals of sufficient intensity and may have more noise contamination, which reduces 

the accuracy of the recognition. The substantial lack of user studies involving older adults 

makes the performance only statistically significant for young users leaving the results 

of the performance for older users undefined. As a result two previous limitations may 

also be highly dependent on this factor. 
 
 
5. Potential solution 
 

When designing the gesture interface, in general, it is important to understand, 

categorize, as well as reflect their physical capabilities and aptitude in the design of both 

the hardware and the software [17]. To better understand and feel the gesture interactions 
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within the environment, using an inductive approach, we developed the gesture-

interaction, human-tracking perception system (Fig.1) to control a set of smart-home 

lights using the MYO Armband in the simulated room environment. The system setup 

comprised of the Microsoft Kinect (a body skeleton tracker), Myo Armband, and custom 

software developed to support interaction by combining these devices. Kinect helped to 

recognize spatial deictic gestures (e.g. pointing at objects). MYO, with its IMU(inertial 

measurement unit) and EMG sensors on board, allowed measurement of hand orientation 

in space and the recognition of  particular gestures. Together, the devices and software 

gave us the ability to control Philips Hue bulbs using various continuous and discrete 

gestures. We successfully developed a system and controlled floor lamps using the MYO 

Armband, with its simple built-in gestures. 

  
Figure 1. Gesture-interaction, human-tracking perception system. For more details, please, see 

https://www.youtube.com/watch?v=sBx2zvBriyo  

Throughout the implementation of the system, we discovered difficulties using 

the built-in MYO gestures that are related to EMG sensing, as they require high-level 

tension movements to work (e.g. clenching a fist), producing fatigue that greatly 

decreases the accuracy of the device in a short period of time. We reasonably inferred 

that this difficulty would be magnified when used by people with hand mobility issues, 

making MYO difficult or even not possible for them to use. The approach of the existing 

problem we propose lies in a consilience of two areas of research and building a bridge 

between them by studying the surface EMG devices from both a biomedical engineering 

and an HCI perspective. Biomedical engineering, as a field, extensively studies the 

relationship between surface EMG sensors and hand kinematics to improve robotics 

hand prosthesis, which implies the notion of subtle/fine gestures or movements detection 

[54]. HCI is more shifted toward studying user groups and the best fit design solutions 

of the interface of interaction.    

There are very few studies in HCI which specifically emphasize the importance 

of the subtle gesture. Wan et al. built custom hardware combining the EMG sensor with 

force sensitive resistors[55]. Thus, their system deals with subtle hand movements or the 

single finger movements as well as the combination of fingers and hand movements with 

very high accuracy. However, authors never mentioned using their technology as a 

possible application for older adults. Of particular interest and relation to our research is 

the work of Abduo et al. [42] as they structured together the medical and HCI purposes 

of the MYO Armband and looked at this commercial product from the medical 

viewpoint. Our approach will extend the results of this work by shifting attention to the 

use of EMG sensors in smart home environments, adapted for a ”weak” hand with 

mobility issues for purposes of a fine gestural control. 
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6. Conclusion 
 

This research will provide a number of benefits to both HCI and Health-care 

communities. As one of the directions of Ambient Assisted Living, this research attempts 

to explore a technical solution for finer EMG-based hand gestures to accommodate 

diverse groups of people in our society, including older adults who may require frequent 

or daily assistance. Our hope to support older adults in living independently with 

technological solutions is shared by many people worldwide. Safe and comfortable 

independent living is what many of us in our society desire (e.g., older adults themselves, 

their family members, and caregivers). We hope our proposed solutions, by using EMG 

sensors to enable the use of gestures in smart homes, offer a potential support for gradual 

but meaningful life style changes. 
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