
Switter: Supporting Exploration of Software Learning
Materials on Social Media

Volodymyr Dziubak1 Patrick Dubois1 Andrea Bunt1 Michael Terry2
1University of Manitoba,
Winnipeg MB, Canada

{vdziubak, umdubo26, bunt}@cs.umanitoba.ca

2University of Waterloo
Waterloo ON, Canada

mterry@cs.uwaterloo.ca

ABSTRACT
There is always something new to learn about feature-rich
software, even for experienced users. This paper focuses on
a specific type of learning activity that we refer to as ad
libitum exploration. Based on an interview study with 11
experienced software users, we define ad libitum exploration
as the process of routinely seeking new software knowledge,
without necessarily having a specific problem to solve. To
support this activity, we designed Switter, an alternative
Twitter client embedded in a replica of Photoshop’s user
interface. Given a tweet referencing a tutorial, Switter
highlights the interface elements mentioned in the tutorial in
the interface replica. Switter also allows users to filter tweets
by clicking tools in the interface replica. Through a weeklong
field study with nine Photoshop experts, we found that
Switter supports a range of software learning objectives,
from focused exploration targeting known weaknesses, to the
discovery of novel command combinations.

Author Keywords
Feature-rich software; software learnability; social media

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI)

INTRODUCTION
Feature-rich applications like Photoshop and AutoCAD
contain thousands of operations, and can be applied to
countless problems. This versatility means that one can never
truly master feature-rich software—there is always the
opportunity to learn something new, whether it is a new
workflow for a familiar task, or a completely new use case
for the software.

A rich history of prior work has examined how to improve
the process of learning software (e.g., [2,8,16,23]), but has

mainly focused on learning activities motivated by a specific
task (e.g., [7,19]). For example, users often seek materials on
how to change colors in a picture because they want to
enhance their favorite photo, not because they want to learn
Photoshop. The actual learning of Photoshop’s features
occurs as a side effect of completing the task [32]. We
investigate a different activity for learning software, where
users actively seek out new software knowledge due to
general curiosity or desire to improve their skills. For
example, a user might regularly look through a Photoshop
forum hoping to pick up new tips and techniques that might
be helpful in the future. We refer to such a learning activity
as ad libitum exploration (Latin for “at one’s pleasure”).

In this work, we first characterize ad libitum exploration
through an exploratory study with 11 experienced designers
and artists. Based on our study results, we created Switter, an
ad libitum-centric Twitter client that organizes tweets that
refer to Photoshop tutorials within a web-based replica of
Photoshop’s interface (Figure 1). Below each tweet, Switter
lists the Photoshop commands mentioned in the linked
tutorial to help people assess whether the tutorial is worth
their time. Switter also uses the command annotations to link
tweets directly to the interface replica, enabling users to
locate potentially interesting content by clicking on any user
interface element.

To validate Switter’s design, we conducted a weeklong field
study with nine experienced Photoshop users. Our results
showed that Switter helped participants to 1) filter, locate,
and assess content which is likely of interest to them, 2)
validate their existing knowledge, and 3) learn new skills and
techniques. Collectively, these results suggest the value of
tools that explicitly support ad libitum exploration backed by
social media.

In summary, this paper makes the following contributions:

• We characterize ad libitum exploration of software
learning materials through an initial study with expert
designers and artists.

• We present Switter, an ad libitum-centric Twitter client
that organizes tutorial-related tweets within a replica of
the target software’s UI (in our case - Photoshop).

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:
• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.
• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.
• Open Access: The author(s) wish to pay for the work to be open

access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement
assuming it is single-spaced in Times New Roman 8-point font. Please do
not change or modify the size of this text box.
Each submission will be assigned a DOI string to be included here.

• We present results from a field study that validates
Switter’s design and demonstrates its utility for ad
libitum exploration.

RELATED WORK
Research in software learning spans decades. In this section,
we look at ad libitum exploration in the context of work that
characterizes software learning. We then look at four
common approaches to support software learning: command
recommender systems; novel tutorial formats; systems that
facilitate finding and selecting tutorials; and systems that
embed learning aids within the application itself.

Characterizing Software Learning
Within the scope of general learning theory, we consider ad
libitum exploration to be a form of self-regulated learning.
Following Zimmerman’s definition, self-regulated learners
are “metacognitively, motivationally, and behaviorally
active participants in their own learning” [33]. Prior work on
software learning strategies points to evidence of such
learners among users of software programs (e.g. [6,32]). For
example, Rieman in his field study of software learning
strategies [32] reported that some users were browsing the
interface and documentation because of curiosity about
features of the software. Dorn and Guzdal in their study of
learning practices among web designers and web developers
[6] also observed some users learning software due to
curiosity and a desire to stay up-to-date. However, prior
work on software learning has not investigated such task-free
exploration in detail.

We also consider ad libitum exploration to be a type of
extended learning as discussed by Grossman et al.’s survey
on software learnability [13]. Their survey differentiates
between initial learning, where novice users gain initial
proficiency, and extended learning, where users’
performance changes over time. Our work seeks to add to
this discussion by focusing on a particular method of
engaging in extended learning. Specifically, as we show later
in the paper, it is not uncommon for seasoned users of an
application to routinely search for new articles, videos, or
tutorials that can help them improve their abilities.
Importantly, this form of learning is rather open-ended: users
are not seeking to learn a specific thing, but rather to
generally improve their abilities, potentially in ways they
have never considered.

In our work, we focus specifically on task-free self-regulated
extended software learning. We look at its prevalence among
a specific group of expert software users, investigate learning
activities and objectives that characterize it, and suggest
design requirements to support such type of software
learning. We introduce a new term for this type of extended
software learning activity (“ad libitum exploration”), as
Rieman’s term of “task-free exploration” [32] does not
capture all of its characteristics.

Command Recommender Systems
Command recommender systems aim to help a user expand
their command vocabulary [12] by highlighting new

Figure 1. Switter supports ongoing learning of software by embedding an augmented Twitter timeline (A) within a web-based
replica of that application’s interface (here, Photoshop). Given a tweet referencing a tutorial for the target application, Switter

highlights the user interface elements mentioned in that tutorial (B, C, D), and lists these tools below the tweet itself (A), providing
an at-a-glance, compact summary of the tutorial content. Switter also displays recent Twitter activity related to the software in a

historical summary (E).

commands that the system believes are relevant to the user’s
work. Examples include OWL [26] and
CommunityCommands [30], which apply collaborative
filtering techniques on community usage logs to find
potentially relevant commands for the user. QFRecs [17]
identifies relevant commands by mining web documentation
for logical command clusters [11]. Another example, Patina
[29], overlays the interface with command usage heatmaps,
revealing commands that are heavily used within the
community. Command recommender systems provide
excellent support for maintaining command awareness and
expanding one’s command vocabulary, but they do not
demonstrate how commands can be used for specific tasks or
how others use commands in their projects. Thus,
recommender systems provide only limited support for ad
libitum exploration.

Promoting Learning via Novel Tutorial Formats
Web-based tutorials are one of the most common learning
sources. Given their ubiquity and utility, a significant
number of research projects have focused on how to improve
the process of learning software via tutorials, particularly for
novice users. For example, Sketch-Sketch Revolution [8]
provides scaffolding and stroke guidance in tutorials that
focus on drawing techniques, enabling users to experience
greater degrees of success than they might otherwise be
capable of. TApps [23] uses selective automation to reduce
the effort involved in completing a tutorial, while still
allowing users to experiment on their own. Chronicle [15]
provides interactive, annotated document histories enabling
users to see the evolution of specific workflows. Researchers
have also added gamification elements as a way to motivate
tutorial completion [5,24].

Other work has sought to improve the utility of tutorials by
leveraging community feedback. For example,
TaggedComments [1] promotes and integrates the comments
that users post to tutorials to highlight relevant community
insight. FollowUs [21] augments tutorials with multiple
demonstrations collected from other users who have
completed the tutorial.

In general, the above approaches facilitate and simplify the
use of an individual software learning resource, but do not
provide a sense of the most recent trends and techniques.

Supporting Tutorial Selection
Given the large number of software learning resources
available on the web, prior research has examined the
problem of finding useful tutorial content. As an example,
Ekstrand et al.’s system for selecting tutorials via web search
[7] uses recently used commands and other application
content to supplement the user’s search query. Each result
returned is annotated with the commands mentioned in the
web page. This approach facilitates searching, but is not
suitable for ad libitum exploration, when users often do not
know what exactly they are looking for.

Another command-centric approach can be found with the
Delta system [19], which supports selecting a workflow from
a corpus by allowing users to compare the commands
involved. Their approach, though, did not consider the fast-
paced nature of social media. As we discuss later, one of the
main requirements for an ad libitum-centric tool is the ability
to filter large amounts of continuously updated content to
identify those bits of information that are most relevant or
meet the user’s interests.

Other work has explored automated tutorial retrieval based
on user activity within the software. The Ambient Help
system [27] automatically selects learning resources
according to the user’s current interactions with the
application, displaying the selected resources on a secondary
monitor. Our work is similar in spirit to Ambient Help, but
makes use of a community’s ongoing appraisal of what is
topical and relevant. Accordingly, our approach can help a
user get outside their “comfort zone,” since it is not keying
off their current interactions with the software.

Application-Integrated Learning Resources
A wide range of systems has sought to more tightly integrate
learning resources with the target application. Some have
approached this integration problem from the point of view
of individual tutorials, such as Tutorial Stencils [16], which
highlight the commands required at each step of a tutorial
within the application itself. Pause and Play [31], focuses on
video tutorial pacing by, for example, using command
invocations within the application to control the tutorial’s
progression.

Like Switter, others have explored ways to integrate social
media and software applications. Specifically, TwitApp [25]
embeds a Twitter client into a feature-rich application as a
way to support software micro blogging. TwitApp focuses
on providing rich application-level support for authoring
tweets, with the primary aim of allowing collaborators to
share and critique their ongoing work.

More similar to our approach are systems that link learning
resources to individual user interface elements. ToolClips
[14] extends the notion of traditional text-based tooltips by
attaching short video demonstrations to individual tools.
Subsequent work showed that such tool demonstrations
could potentially be extracted automatically from screen-
captured workflows [22]. Such an approach demonstrates
usage of a specific tool, but it does not show the high-level
tasks where the tool can be used.

Finally, IP-QAT [28] and LemonAid [3] support
crowdsourced in-application Q&A, allowing users to attach
questions, answers and tips directly to individual user
interface elements. Intertwine [10] identifies commands and
tools mentioned in the top-most tab of a web browser, and
places stars next to those commands in the software’s
interface. These approaches extend the functionality and
usability the target application, but do not help users explore
and assess a broader range of posted learning materials.

EXPLORATORY INTERVIEW STUDY
Informally, we observed that some people (including one of
the paper authors) seem to regularly check online resources
(e.g. Reddit, Twitter) to locate new, potentially relevant
software learning materials, such as tutorials. Notably, this
activity does not represent a targeted search to assist with an
existing task.

To determine whether this activity was more widespread, we
conducted semi-structured interviews with 11 artists and
designers (6 female). We recruited participants via snowball
sampling, using the authors’ personal contacts, and through
notices posted on a university campus, Reddit, and Twitter.
Our participants were between 18 and 48 years of age and
had at least one year of experience with image-manipulation
or graphics software (e.g., Adobe Photoshop and Illustrator)
or other design software (e.g., Sketch1). Nine participants
used the software professionally, while two used the
software extensively as part of their current training.
Interviews were conducted either in-person or via Skype, and
lasted between 30 and 45 minutes. Participants were
remunerated with a $15 gift card.

In our interviews, we asked participants what, if anything,
motivates them to learn about the software they regularly
use. We also asked participants to describe the specific
learning strategies they use and how well their current
strategies support their learning objectives.

Interviews were transcribed in full. Data from the transcripts
were analyzed by creating affinity diagrams using a bottom-
up inductive approach [4]. From these affinity diagrams, we
held joint data interpretation sessions among the paper
authors where we extracted common themes.

The Desire to Continue Learning
All of our participants emphasized their desire to continually
learn new things, as the following two quotes illustrate:

[I’ve been using Photoshop] since I left school, which
was when I was 15. So, 10 years [of experience] … I am
learning all the time. You learn stuff you didn't realize
you could do. (P3)

I usually look at posts that… describe something I haven't
done before, so maybe [a] new style or new tools I haven't
accessed, or I might not have been really comfortable
with them. So I am always looking for stuff that's pretty
much new to me. And I also… look at the stuff that I've
done before, [that’s in] similar styles to mine. (P2)

These quotes not only emphasize that the desire to learn is
still strong after 10 years of experience (P3), but also
highlight that participants seek out topics completely new to
them (P2), or which enable them to compare others’ methods
of solving a problem to their existing practices (P2).

1 https://www.sketchapp.com/

Across all interviews, participants expressed a variety of
learning objectives including: staying up-to-date with the
latest industry standards, improving the efficiency of their
workflows, improving their end products, reinforcing
existing skill sets, and uncovering new tools or capabilities.
These findings are consistent with Lafreniere et al.’s analysis
of comments users post to online tutorials once they have
completed them. Their findings revealed a number of
tutorial users that go beyond task-specific learning, such as
seeking to expand one’s skills set, or to shadow the
techniques of other expert users [20].

Characterizing Continual Learning
We found evidence that participants regularly seek out
resources that provide pointers to new instructional
materials, which they hope will lead them in unexpected
directions. However, participants also recognized that they
may not find anything new, and thus stressed the need to
filter content. We expand on these themes below.

Habitual Monitoring. For some participants, the learning
process is an integral part of their daily routine. Participants
periodically check their favorite “trusted” websites, such as
official Adobe forums or Reddit, with the goal of staying
aware of what is happening in their field:

[Design] Reddit is nearly daily. For work, I'd say it'd be
every other day… I definitely like to… pop [in] and to see
what's going on. (P5)

Another popular trusted source is Twitter, where participants
reported following key individuals for new tips and tricks:

On Twitter, for example, …I follow people that are in
[the] design community, that are also in my field. They
regularly share links to interesting websites, or articles,
or tutorials... and if it fits my interest, I will click on it and
investigate further. (P1)

These behaviors suggest a clear desire to stay current and to
discover new techniques that may be useful to the
participant.

Looking for the Unexpected. Our participants reported that
curiosity and accidental discovery also play important roles
in their learning process. Due to the large number of features
in programs such as Photoshop, even our experienced
participants were not sure they knew how all the available
tools work. Some participants described specializing in
certain aspects of the program they use, yet still being keen
to discover new tools that might be relevant to their work:

Sometimes I will be stuck on a painting and I will start
staring off into the space and I will look at the buttons
and will be like 'hey, wait, I do not know what that does'.
So, I will open up a new document and I will start playing
with it. (P10)

As another example of an individual seeking the unexpected,
one participant reported watching tutorials on YouTube, in
hopes of seeing something new through recommended
videos:

 And I start with a YouTube video of something I do know
and then just seeing what else pops up. So that you learn
stuff that you don't think to ask. (P11)

Low Expectations for Learning. In some cases, participants
expressed low expectations for learning something new, but
still engaged in watching instructional videos, in case there
was something they could use in their own work:

You see what people do in interesting ways and they take
these tools and they use them in new ways and they post
their weird creations... and I will look at that, and even
though the method is not going to be useful to me, you
never know. You might learn something from that
method. (P5).

The Need to Filter Content. Our interviews showed that with
more experience, finding content for learning that is
personally interesting and new becomes more and more
difficult. The main challenge is that the more knowledge
people have, the less likely it is they will learn something
from a tutorial. As a consequence, participants spoke of the
high cost of viewing a tutorial and the desire to ensure that
they would benefit from it:

Tutorials are usually time-consuming, so you have to be
sure that it's worth your time... and to determine that... I
would really be in need of the skill [covered in the
tutorial]. (P1)

In summarizing our exploratory study, we found that
experienced software users continually seek to learn and
improve their abilities, but engage in ad libitum exploration
with the knowledge that they may not always find something
useful to them. The cost associated with finding new and
relevant information raises the importance of assessing a
resource’s learning potential quickly and accurately.

SUPPORTING AD LIBITUM EXPLORATION
Reiterating our definition in the Introduction, we define ad
libitum exploration as the process where users routinely seek
information that may help them improve, deepen, or expand
their skills and knowledge of a specific application. Building
on the results of our study, we further note that users
understand that they may not learn anything when engaged
in this process, and thus desire information that helps them
assess the learning potential of a given resource.

Supporting Ad Libitum exploration: Design Desiderata
Drawing on the findings from our exploratory study, we
define the following set of design desiderata for systems that
support ad libitum exploration:

• Continuous flow of recent content. To support the
habitual nature of ad libitum exploration, the system
should present new content that users can access on

demand (e.g. when they are taking a break from their
work). Ideally, this content should reflect recent trends
to help people stay up-to-date with the field.

• Serendipitous discovery. The system should support the
discovery of new content that diverges from a user’s
typical practices.

• Filtering and browsing. The system should allow users
to browse and filter learning materials. For example,
the presentation of an individual content item should be
descriptive enough to help people decide whether
watching or reading the content is going to be beneficial
for them. The system should also include filtering
capabilities that help the user target topics of interest.

Limitations of Current Strategies
In our study, we found a number of ways ad libitum practices
could be improved. For example, social media, such as
Twitter or Reddit, provide users with streams of links to new
content, but often lack adequate information to help users
determine whether it is worth viewing the full source
material. Conversely, dedicated learning portals, such as the
official Adobe forums, often provide high quality learning
materials, but the pace of information flow on such portals is
not as rapid as on social media, such as Reddit and Twitter.

We also note that search engines help people find
instructional materials for specific problems, but are not
necessarily conducive for helping users discover or browse
materials that push one outside one’s typical work practices.

To address these limitations, we designed and developed
Switter, a system for supporting ad libitum exploration.

SWITTER
Switter is an alternative Twitter client for software-centric
learning that allows users to browse tutorials for a specific
software product (in our implementation, Photoshop).
Switter (Figure 1) projects the content referenced by a tweet
into a user interface replica, and provides a Twitter timeline
in place of where the document would be found in the
replicated application. This enables users to browse and
explore tutorials broadcasted via Twitter using the target
application’s interface as a navigation aid. Our current
implementation of Switter is a prototype that makes use of a
Wizard-of-Oz backend for extracting commands from
tutorials, and inserting tweets about Photoshop into a read-
only Twitter timeline.

Switter’s interface consists of three main components: the
Twitter timeline (Figure 1, A), the interface replica (Figure
1, B-D), and the historical summary (Figure 1, E). We
discuss the role of each interface component in the following
subsections.

Twitter as a Data Source
To provide users with a continuous flow of recent content
(our first design goal), we use Twitter as a source for
discovering new tutorial-related information. This decision
was grounded in the results of our exploratory study, where

our participants positioned Twitter as one of the trusted
places they used to discover new relevant information.

To get a sense of the potential volume of tutorial-related
information on Twitter, we collected and examined a stream
of sequential tweets that contained the word “Photoshop”
over a one-hour time period. During this single hour, about
30 tweets (of a 300 total tweets) linked to Photoshop learning
resources. We believe this rate of information flow to be
sufficient for providing users with fresh learning material in
a continuous manner.

Projecting Tutorials onto the Software Interface
To address the need to filter and browse learning materials,
we highlight the areas of the interface mentioned in the
tutorial. This technique 1) provides awareness of the volume
and breadth of commands used in the tutorials, and 2) enables
users to browse tweets from an interface-centric perspective.
For completeness, our replica contains the main menu
(Figure 1, C), the toolbar (Figure 1, B), and the list of
accessible modal panels (Figure 1, D).

Switter highlights a command or tool by placing a red dot
next to it, with a number indicating the number of linked
tutorials. For the purpose of the study, we manually extract
commands from online content, as we focus on interaction
and design. In the future this could be automated using recent
advances in command extraction (e.g. [9,27,31]).

To support navigating and browsing tweets, the user can
click on a tool or command in the interface replica. Switter
responds by reducing the list of tweets to only show those
that mention the item selected.

Switter also augments each tweet with the list of commands
that it references. This supplemental information seeks to

help people make decisions about the utility of the individual
tutorial. When the user clicks on a menu item or a tool in the
list below the tweet, Switter automatically reveals the
referenced user interface element in the replica (see Figure
2).

Temporal Awareness via Historical Summary
Switter includes a historical summary of tweet activities
(Figure 1, E) to provide both awareness and filtering
capabilities. For awareness, each tweet’s posted date is
mapped to the respective point on the timeline. This allows
users to get a sense of the volume of tutorials as well as their
distribution over time. For example, a user can see many
tweets were posted in the last three hours, providing cues as
to whether or not the volume of new information is worth
browsing. Users can also use the historical view to filter the
tweets projected onto the interface replica by specifying a
range of time.

FIELD EVALUATION
To test the utility of Switter, we conducted a weeklong field
study. The main goal of the study was to see how people
would adopt the tool, and to gain initial insight into Switter’s
ability to support ad libitum exploration.

Participants
We recruited nine designers and photographers (3 female)
who use Photoshop as their main working tool. All of our
participants were between 21 and 45 years old, and have been
working with Photoshop for at least one year. We recruited
participants through online postings on Reddit and via
snowball sampling. Participants received a $75 gift card for
their participation.

Procedure and Data Collection
Participants were asked to use the system at least once per
day over a period of seven days. We did not give participants
any specific task to perform, but rather asked them to browse
through the content, to look for something that would catch
their interest, or that could potentially teach them something
new. We did not specify how much time they should spend
in the system each day, nor how many tutorials to view.

We asked participants to fill out a short online journal entry
at the end of each day to record their experiences with Switter
that day. We also conducted two semi-structured interviews
with each participant: one in the middle of the study (day 3)
and one at the end of the study (day 7). Finally, we logged
key interactions with the Switter interface.

We analyzed the qualitative data using the same analysis
techniques as in our exploratory interview study.

Switter Content
We deployed Switter as a standalone web application.
Throughout this proof-of-concept field study, we manually
annotated the latest tweets pointing to Photoshop tutorials.
To ensure a relatively realistic flow of information, we wrote
a script to publish the content in this pool of annotated
tutorials to Switter in a periodic manner, using
randomization to assure irregularity of the content stream.

Figure 2: When the user clicks a command below the tweet,

Switter highlights the referenced interface element in the
interface replica and reveals its location.

We ran the entire field study over a period of 11 days, with
participants joining at different times. Consequently,
Switter’s initial state was not the same for all participants.
These different initial states helped us understand Switter’s
utility in a variety of contexts (e.g., for late starters, they were
presented with a backlog of tweets that they could sift
through).

Throughout the study, two of the paper authors actively
monitored Twitter for new tweets that linked to Photoshop
tutorials. For each such tweet, we manually labelled the
tweet with all commands referenced in the tutorial, and
added the labelled tweet to a repository. A randomized script
then gradually delivered Tweets from the repository to the
participants. This procedure made Switter’s data flow similar
in nature to the continuous data flow of Twitter. Over the 11
days, Switter displayed 311 tweets with a median of 30
tweets per day (IQR=9).

Findings: Usage Logs and Daily Journals
To gain some insight into how much people used Switter, we
calculated the number and duration of usage sessions. We
define a usage session as an interval of activity within Switter
longer than one minute, separated from other sessions by at
least one hour of inactivity. We used the above heuristics to
dismiss sessions that likely did not include true interaction.
For example, if the user leaves the system open in the
browser and occasionally hovers over the page while
switching tabs, we did not count this as a session. For these
reasons, we believe our summary statistics represents only a
conservative report of engagement with Switter.

We observed a total of 56 sessions, with a median session
duration of 24.2 minutes (IQR=27.5). Overall, the duration
of user sessions was skewed towards longer times, with
Q3=45min. In most cases, participants had one session per
day. However, in some cases the system was used more
extensively. For example, on most days, P6 had three
interaction sessions and on one day, P3 had four sessions of
interaction.

As part of the journal entries, we asked participants to
indicate how many new things they learned that day and how
many tutorials caught their interest. Despite daily email
reminders, most participants forgot to make an entry at least
once. Additionally, P8 encountered technical difficulties
with their company’s firewall. For these reasons, the total
number of entries we received was 49 (as opposed to 63).

In 46 out of 49 journal entries, participants indicated learning
at least one or two “new things”, while only three entries
indicated no learning. Interestingly, about half of the time
people reported learning one or two new things, the number
of tutorials they found interesting was effectively double that
number (from three to five). On several occasions,
participants reported seeing 10 interesting tutorials, while
indicating they learned only one or two new things. These
results suggest the difficulty in finding useful content, even
against the backdrop of interesting content.

In terms of what participants reported learning, they
described discovering underused tools, learning ways to
combine several tools for neat effects, learning unknown
techniques, and brushing up on their existing skillset. The
following excerpts illustrate these findings:

The smudge or sponge tool are tools I rarely use so I
learned how and why are other people using them. (P3)

I was a bit weak at [the] pen tool, and today I was easily
able to find a tutorial for [the] pen tool and had a good
practice… I am more confident with [the] pen tool. Apart
from [the] pen tool, I explored some style tutorials. I was
familiar with the techniques, but discovered that there
are some pretty good alternatives to get same style for the
text with different techniques. (P7)

I learned about deeper use of the spot healing brush. I
gained a deeper understanding of mixing usage of the
tool with the clone stamp. (P9)

We note that the above findings describe participants’ self-
assessments of what they learned each day. Because we
provided a diverse set of tutorial content, and our participants
varied in their expertise and knowledge, we did not attempt
to quantify their learning beyond self-reports.

Findings: Interview Data
In the interviews, we asked participants to describe their
impressions of the system and their experiences using it. We
also referenced the logs and journal entries, and asked
participants to elaborate on certain behaviors and learning
outcomes.

We structure our findings by considering how Switter
supports learning via its ability to browse and filter content;
how it can be used as a reference tool; and opportunities for
improving these types of systems.

Browsing and Filtering Content
Overall, participants were positive about the system,
indicating that it was very helpful in finding useful content:

 It's much easier than Google. Like I said, if you just
[added] a search bar, it's competition to Google now for
tutorials. (P7)

Participants indicated that Switter’s features allowed for a
number of new browsing and searching behaviors that might
be hard to achieve with currently available tools. In what
follows, we highlight participants’ feedback on these
capabilities.

Projecting Commands on the Interface Replica.
Participants appreciated Switter’s ability to project the
commands and tools referenced in a tweet onto the
Photoshop interface replica. This domain-specific rendering
of the tweets helped them browse and filter the content
referenced by the tweets non-linearly. The following quotes
demonstrate this appreciation:

I haven't seen such [a] thing at all. I haven't imagined
that there can be a system where you could use
commands to filter tweets and learn from that. That part
is really awesome. (P7)

I really, really liked that, actually -- that it has the overlay
[highlighted commands]. I was actually showing a
couple of friends of mine… and they thought it was so
cool, the layout. They liked overlay. (P1)

Participants adopted a range of new browsing techniques that
leveraged command-specific filtering and the projection
indicators in the replica, which we describe next.

Engaging in Popularity-Driven Exploration. Participants
reported that the interface projections guided browsing
behavior by attracting their attention to commonly used tools
and commands. For example, P3 indicated that the
projections allowed her to identify commands frequently
referenced in the tweets, which made her curious about what
people use them for:

I just think it's really cool that you can click on everything
and you see people using [commands] and I am, like "I
wonder why, or how", you know? …And I feel like this is
more… for the curious mind, that is "ah, what is this? I
want to learn more about this thing". And then you can...
from there you click and it will show you this many
possibilities. I do like that a lot. (P3)

As hinted above, P3 would filter tweets by clicking on the
specific tools that she found most interesting. In turn,
command-level filtering satisfied her curiosity by exposing
her to the variety of use cases of the selected tool.

Exploring to Address Weaknesses. While P3 used the
popularity of highlighted elements to guide her exploration,
a few other participants started by first identifying
weaknesses in their skill set they wished to address:

So, I can just focus on my weaknesses here, like whenever
I jump in a system, I just go to the pen tool and start
practicing with it. I do not have to go through other stuff
that I do not want... I can just focus on my skills. (P7)

I am really bad at masking, so I always kept certain edges
when I did masking. And I saw the tool listed as masking
and I particularly got interested and just went there and
checked the video when it’s listed there. (P5)

Comparing Alternatives. Our interviews revealed that
Switter’s command filtering capabilities could be used to
draw comparisons between several commands, a use case we
had not anticipated. For example, P9 described the ability of
“jumping” between two commands as one of his favorite
aspects of the system:

For instance, one of the tools I was learning about
yesterday was the patch tool. That was the tool I haven't
used before. And the thing that I kind of found when I was
using it was it would be a good alternative to the clone
stamp tool. And the clone stamp was the thing I used in

the past most frequently for that type of work… One of
the things that I found the most useful about the program
was the ability to quickly jump between tutorials that use
the patch tool and back to tools with the clone stamp tool,
to see if there's overlap between the two, to kind of see
which tool would be most effective in which situation.
And being able to do that quickly was what allowed me
to make that comparison. Because obviously, if I did not
have something that allowed me to jump quickly... it's
kind of difficult to see where that overlap is. Just because
you kind of lose track of where you are at. (P9)

What is notable about this use case is that the participant
learned not by consulting a single resource, but by explicitly
juxtaposing the content of multiple learning resources to
compare and contrast alternative methods. Switter aided this
process by helping them first locate this similar content, and
then swiftly move between the resources.

Discovering Synergies. In addition to comparing workflows,
we found that participants would also use Switter’s filtering
capabilities to learn which commands could be used in
conjunction with another:

I was looking into ones that have burn and dodge, but
then it was interesting to see what they use in conjunction
with [burn and dodge] … So that's kind of when I would
look into, like, the menu items… It's cool to see
combinations. Like, it's not always about the one. It's
about how they fit together. (P1)

At present, Switter lets users filter tweets based on single
selections. However, several participants expressed interest
in filtering tweets by multiple commands at the same time.
We believe that adding such functionality might help users
compare command capabilities and search for tutorials that
illustrate specific tool combinations.

Filtering Tutorials using the Command Summaries.
Participants also made use of the summary of commands
Switter provides below each tweet. One participant preferred
these summaries over interacting with the interface replica
directly, which she sometimes found overwhelming:

It's a little bit overwhelming, you know? …If I click on
layers, there's a huge amount here… Whereas if I am
looking at this one video and I click on the layer there, it
takes me to that specific tool it's going to be using, in that
context. (P6)

As hinted at by this quote, clicking on commands in the
summary list carries with it the advantage of teaching one
where the command can be found in the interface.

Seeing the list of commands also enabled experienced users
to quickly assess what is being covered in a tutorial. For
example, several participants described how this information
allowed them to essentially recreate the tutorial in their heads
without having to look inside:

I see that they use “Desaturate,” I see that they use
“Gaussian Blur,” and it makes sense. It's like, I do not
need to go into the video and spend 15-30 minutes there,
because [by] just looking, and “Oh, desaturation is what
takes away the gloss from the photo.” Like I know how to
use the texture, or I know how to blend. I know WHY
would they use “Gaussian Blur,” I know why they would
use desaturation. (P4)

Uncovering Unexpected Usages. Conversely, when
participants could not imagine how the list of commands
could achieve a given result, they pursued the tutorial to learn
a new workflow. In these cases, participants compared their
existing workflow to the one in the tutorial to find out which
one is more efficient:

So, it's pretty much just looking for a way to do things
quicker than you are already doing. So, sometimes seeing
the commands it's like "ah, that makes way more sense to
be doing it this way instead of the way I've been doing
that.” (P1)

Similarly, unexpected uses of a specific command or tool
incited participants’ curiosity. For example, P4 noted that
looking for such “out-of-the-box” knowledge was something
he was most interested in:

If someone, for example, comes and tells me that “I used
my hammer to eat my noodles,” I'd be very curious, like
“how did you do that?” Because a hammer is for banging
a nail in its head… It's something that's out-of-the-box
knowledge that you get from people. (P4)

Switter as a Reference Tool
While we originally requested that participants use Switter at
least once a day, a number of participants integrated Switter
into their existing workflow. For example, P6 indicated that
he used Switter as a convenient place to look up how others
use the tool he had just struggled with:

I was trying to use the clone stamp tool. So, I wasn't quite
getting it the way I wanted it to, so I ended up in [Switter]
and clicked on a clone stamp tool and simply filtered
down to all of those videos using clone stamp tool, and
that's a much easier way for me to find tutorials in context
with certain things I am struggling with, you know? (P6)

Findings: Opportunities for Improvement
Participant comments also provide insight into ways that
Switter could be improved to better support ad libitum
exploration.

Curating Incoming Tutorials. Many participants
appreciated being constantly exposed to fresh learning
materials. However, a few reported that the quality of the
delivered tutorials often did not meet their expectations:

what deterred me the last few times, was that some of the
content did not appeal to me at all […] another one is
like "how to make water drops" and the picture of water

drops […] Look at those water drops. No offense, but
those are really bad water drops. (P1)

This quote suggests that low-quality content might
discourage some users from exploring new learning
materials. In future design iterations, one could explore
mechanisms to curate twitter-retrieved tutorials, so that only
higher-quality tutorials are delivered to the users.

Improving Tutorial Summaries. Participants appreciated
the command summaries below each tweet, but many wanted
more detailed information about each tutorial. For example,
some requested that command summaries reflect the order in
which operations are performed in the tutorial. Some
participants also wanted the tutorials labelled according to
the higher-level skills covered, similar to the approach
explored by Kim et al. [18]. Moving forward, the challenge
will be both obtaining accurate labels and finding ways to
provide this additional information without visual overload.

Re-finding Tutorials. Some participants reported finding a
useful tutorial early in the study, but had difficulties re-
finding it later. Participants also commented that they did not
always have enough time to watch and follow a tutorial that
caught their attention. These two needs suggest that it may
be worthwhile to include search-based capabilities, or
bookmarking functionality, to enable re-finding interesting
content at a later date.

DISCUSSION AND FUTURE DIRECTIONS
Social media like Twitter provide a platform for users to
easily share and discuss instructional materials for software.
Our field study provides encouraging evidence that Switter’s
approach of projecting these tweets onto a replica of the
application’s interface helps support ad libitum exploration,
by helping users browse and locate learning materials of
interest. Our results also suggest that Switter’s organization
of these resources helps preserve the curiosity-driven
component central to ad libitum exploration: users in our
field study described a number of instances where they used
the tool to uncover unanticipated and sometimes unorthodox
bits of new knowledge.

In light of these promising initial results, we discuss a
number of directions for future work.

Leveraging Social Media Affordances
In our current implementation, we primarily make use of
Twitter’s timeline capabilities. However, there are a number
of other capabilities built into this platform that could be
leveraged in a system like Switter. For example, one can
“favorite” or “retweet” content with Twitter. These actions
serve as signals that could be used to help users filter and
browse tweets. For example, Switter could augment the
interface replica by showing which commands link to
tutorials that are being favorited or retweeted.

Switter could also make use of hash tags added to a tweet.
For example, Switter could add a new menu to the
application replica’s menu bar, where the menu items are

hash tags that open up to submenus containing all tweets with
that hash tag. This capability would provide a means for the
community to explicitly organize instructional materials
within Switter’s interface at the time of authoring a tweet.

Scalability of the Approach
During the study, Switter published around 30 new tutorials
per day. This information flow was sufficient for the purpose
of our study, but did not allow us to test how well our design
scales to a larger volume of tweets. For example, our
preliminary analysis suggests that there might be closer to 30
Photoshop tutorial tweets per hour. Our current design
attempts to address this issue by providing a historical
overview and time-based filtering of tweets. Nonetheless,
how well this approach scales needs further research.

Generalizability of the Approach
In this work, we observed ad libitum software exploration for
a specific user group – expert designers and artists. Although
the selected user group is rather broad, in the future we plan
to investigate the prevalence of ad libitum exploration among
other user groups.

We chose Photoshop as Switter’s target application because
of its popularity among a wide range of design professionals:
graphic and Web designers, digital artists, photographers,
etc. Implementing similar design ideas for other command-
driven feature-rich applications should be straightforward,
but the current approach may not generalize to other types of
feature-heavy applications, particularly ones in which users
rely on macros to execute complex tasks.

Extending the approach to other social media platforms, such
as Facebook or Reddit, is another open research problem.
These platforms differ from Twitter in a number of ways,
including their social dynamics and the way that they
organize information. Consequently, future work should
examine their potential for supporting ad libitum exploration.

Integration with Software
We implemented Switter as an independent web tool, rather
than integrating it into Photoshop itself primarily for ease of
prototyping. However, we also believe that Switter’s
independent format has its own benefits, for example,
enabling users to browse the resources on devices that do not
have Photoshop installed. Investigating the tradeoffs
between in-application instrumentation and independent
application is an area for future work.

Measuring Effects on Software Learning
While our participants reported learning one or two things
each day, our study did not include a control condition to
provide a baseline for comparison, nor did we explicitly test
what they learned. Thus, one fruitful path for future work is
to compare Switter to existing, general-purpose social media
clients, with respect to their ability to support ad libitum
exploration. From our study results, it is clear that Switter
provides some clear benefits compared to existing clients
(e.g., the ability to quickly toggle between sets of learning

resources by clicking on commands), but it is worthwhile to
quantify the impact of these features.

Switter also takes a qualitatively different approach to
supporting software learning compared to other approaches,
such as command recommender systems. We consider
Switter complementary to these other approaches, but
providing users with simultaneous access to different types
of ad libitum exploration tools will likely provide useful
insights to guide future research.

Tutorial Annotation
Our field study included a Wizard-of-Oz component by
virtue of us hand-annotating each tweet with the commands
used in the referenced tutorial. Prior work has examined
ways to automatically extract commands from both text
[9,17] and videos [27,31]. Incorporating automated
extraction techniques into a system like Switter will
introduce noise into the system, which will alter the user
experience. However, there are alternative approaches to
determining the commands mentioned in a tutorial. For
example, if workflows are automatically captured within the
application, as Chronicle does [15], precise command
metadata is readily available. Command annotations could
also be crowdsourced, for example, within an application
like Switter.

Beyond command annotations, some participants desired
more descriptive labels for the instructional content. For
example, they wanted to know whether it described a
particular technique, or the intended general audience for the
material (e.g., an interface designer vs. graphic artist). These
labels are further candidates for crowdsourcing approaches,
given that automatically categorizing tutorials across
dimensions (such as audience) is currently a challenging
problem. Alternatively, one could provide explicit support to
organize tweets by hash tags, as described above.

CONCLUSION
In this paper, we explored an expert software learning
activity that we refer to as ad libitum exploration. We used
an exploratory interview study to understand current
practices with respect to this type of ongoing, curiosity-
driven software learning. Based on our findings, we designed
Switter, an alternative Twitter client that is embedded in a
replica of a target application’s interface. Our weeklong field
study revealed a number of compelling use cases for Switter.
Our field study also suggests opportunities for future
research in ad libitum exploration.

ACKNOWLEDGMENTS
We would like to thank the National Sciences and
Engineering Research Council (NSERC) and the University
of Manitoba’s Graduate Enhancement of Tri-Council
Stipends (GETS) program for funding this research.

REFERENCES
1. Andrea Bunt, Patrick Dubois, Ben Lafreniere, Michael

A. Terry, and David T. Cormack. 2014.
TaggedComments : Promoting and Integrating User

Comments in Online Application Tutorials.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI’14

2. John M. Carroll and Caroline Carrithers. 1984.
Training Wheels in a User Interface. Communications
of the ACM

3. Parmit K. Chilana, Andrew J. Ko, and Jacob O.
Wobbrock. 2012. LemonAid: Selection-Based
Crowdsourced Contextual Help for Web Applications.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI’12

4. Juliet Corbin and Strauss Anselm. 2008. Basics of
Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. SAGE Publications

5. Tao Dong, Mira Dontcheva, Diana Joseph, Karrie
Karahalios, Mark Newman, and Mark Ackerman.
2012. Discovery-Based Games for Learning Software.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI’12

6. Brian Dorn and Mark Guzdial. 2010. Learning on the
Job: Characterizing the Programming Knowledge and
Learning Strategies of Web Designers. Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems - CHI’10

7. Michael Ekstrand, Wei Li, Tovi Grossman, Justin
Matejka, and George Fitzmaurice. 2011. Searching for
Software Learning Resources Using Application
Context. Proceedings of the 24th annual ACM
symposium on User interface software and technology
- UIST’11

8. Jennifer Fernquist, Tovi Grossman, and George
Fitzmaurice. 2011. Sketch-Sketch Revolution: an
Engaging Tutorial System for Guided Sketching and
Application Learning. Proceedings of the 24th annual
ACM symposium on User interface software and
technology - UIST’11

9. Adam Fourney, Ben Lafreniere, Richard Mann, and
Michael Terry. 2012. “Then Click OK!”: Extracting
References to Interface Elements in Online
Documentation. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems -
CHI’12

10. Adam Fourney and Ben Lafreniere. 2014. InterTwine:
Creating Interapplication Information Scent to Support
Coordinated Use of Software. Proceedings of the 27th
annual ACM symposium on User interface software
and technology - UIST’14

11. Adam Fourney, Richard Mann, and Michael Terry.
2011. Query-feature Graphs: Bridging User
Vocabulary and System Functionality. Proceedings of
the 24th annual ACM symposium on User interface
software and technology - UIST’11

12. Saul Greenberg. 1993. The Computer User as
Toolsmith: The Use, Reuse and Organization of
Computer-based Tools. Cambridge University Press.

13. Tovi Grossman, George Fitzmaurice, and Ramtin
Attar. 2009. A Survey of Software Learnability:
Metrics, Methodologies and Guidelines. Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems - CHI’09

14. Tovi Grossman and George Fitzmaurice. 2010.
ToolClips: an Investigation of Contextual Video
Assistance for Functionality Understanding.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI’10

15. Tovi Grossman, Justin Matejka, and George
Fitzmaurice. 2010. Chronicle: Capture, Exploration,
and Playback of Document Workflow Histories.
Proceedings of the 23nd annual ACM symposium on
User interface software and technology - UIST’10

16. Caitlin Kelleher and Randy Pausch. 2005. Stencils-
Based Tutorials : Design and Evaluation. Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems - CHI’05

17. Adnan Alam Khan, Volodymyr Dziubak, and Andrea
Bunt. 2015. Exploring Personalized Command
Recommendations based on Information Found in Web
Documentation. Proceedings of the 20th International
Conference on Intelligent User Interfaces - IUI’15

18. Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J.
Guo, Robert C. Miller, and Krzysztof Z. Gajos. 2014.
Crowdsourcing Step-by-Step Information Extraction to
Enhance Existing How-to Videos. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems - CHI’14

19. Nicholas Kong, Tovi Grossman, Björn Hartmann,
Maneesh Agrawala, and George Fitzmaurice. 2012.
Delta: a Tool for Representing and Comparing
Workflows. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems - CHI’12

20. Ben Lafreniere, Andrea Bunt, Matthew Lount, and
Michael Terry. 2013. Understanding the Roles and
Uses of Web Tutorials. Proceedings of the 8th
international AAAI conference on weblogs and social
media - ICWSM’13

21. Ben Lafreniere, Tovi Grossman, and George
Fitzmaurice. 2013. Community Enhanced Tutorials :
Improving Tutorials with Multiple Demonstrations.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI’13

22. Ben Lafreniere, Tovi Grossman, Justin Matejka, and
George Fitzmaurice. 2014. Investigating the Feasibility
of Extracting Tool Demonstrations from In-Situ Video
Content. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems - CHI’14

23. Gierad Laput, Eytan Adar, Ann Arbor, Mira
Dontcheva, and Wilmot Li. 2012. Tutorial-Based
Interfaces for Cloud-enabled Applications. Proceedings
of the 25th annual ACM symposium on User interface
software and technology - UIST’12

24. Wei Li, Tovi Grossman, and George Fitzmaurice.
2012. GamiCAD: A Gamified Tutorial System For
First Time AutoCAD Users. Proceedings of the 25th
annual ACM symposium on User interface software
and technology - UIST’12

25. Wei Li, Tovi Grossman, Justin Matejka, and George
Fitzmaurice. 2011. TwitApp: In-Product Micro-
Blogging for Design Sharing. Proceedings of the 24th
annual ACM symposium on User interface software
and technology - UIST’11

26. Frank Linton, Andy Charron, and Debbie Joy. 2000.
OWL : A Recommender System for Organization-
Wide Learning. Educational Technology & Society,
62–76.

27. Justin Matejka, Tovi Grossman, and George
Fitzmaurice. 2011. Ambient Help. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems - CHI’11

28. Justin Matejka, Tovi Grossman, and George
Fitzmaurice. 2011. IP-QAT: In-Product Questions,
Answers, & Tips. Proceedings of the 24th annual ACM
symposium on User interface software and technology
- UIST’11

29. Justin Matejka, Tovi Grossman, and George
Fitzmaurice. 2013. Patina: Dynamic Heatmaps for
Visualizing Application Usage. Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems - CHI’13

30. Justin Matejka and Wei Li. 2009.
CommunityCommands: Command Recommendations
for Software Applications. Proceedings of the 22nd
annual ACM symposium on User interface software
and technology - UIST’09

31. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, et
al. 2011. Pause-and-Play: Automatically Linking
Screencast Video Tutorials with Applications.
Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST’11

32. John Rieman. 1996. A Field Study of Exploratory
Learning Strategies. ACM Transactions on Computer-
Human Interaction - TOCHI’96

33. Barry J. Zimmerman. 1989. Models of Self-Regulated
Learning and Academic Achievement. In Self-
Regulated Learning and Academic Achievement (1st
ed.), Barry J. Zimmerman and Dale H. Schunk (eds.).
Springer New York, New York, NY, 1 – 25.

