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Figure 1: Mean maximum forces applied to keys across participants, captured from a three-state, force sensitive, virtual
keyboard while 10-finger typing. Our analysis shows that using a force threshold function (i.e., T-Force) allows us to propose
methods for classifying touch events between keypresses and non-keypresses. Furthermore, accommodating the variations
seen, we can further improve the utilization of force in classification.

ABSTRACT

Three state virtual keyboards which differentiate contact events
between released, touched, and pressed states have the potential
to improve overall typing experience and reduce the gap between
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virtual keyboards and physical keyboards. Incorporating force sen-
sitivity, three-state virtual keyboards can utilize a force threshold
to better classify a contact event. However, our limited knowledge
of how force plays a role during typing on virtual keyboards limits
further progress. Through a series of studies we observe that us-
ing a uniform threshold is not an optimal approach. Furthermore,
the force being applied while typing varies significantly across the
keys and among participants. As such, we propose three different
approaches to further improve the uniform threshold. We show
that a carefully selected non-uniform threshold function could be
sufficient in delineating typing events on a three-state keyboard.
Finally, we conclude our work with lessons learned, suggestion
for future improvements, and comparisons with current methods
available.
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1 INTRODUCTION

The widespread adoption of mobile devices immediately brought
rise to the use of virtual keyboards. To accommodate a reduction
in performance over dedicated physical keyboard peripherals, re-
search has explored many methods to enhance text-entry on touch
surfaces. In particular, studies have explored layout [28, 46], algo-
rithmic enhancements [13, 29], interaction modalities [31], comfort
[1, 35], optimizations [52] and improved feedback [44]. One key
advantage enabled by virtual keyboards has been to leverage their
software-defined nature to suit each user’s specific typing pref-
erences and profile [11, 26, 52, 54]. Now, with the possibility of
force-sensitive touch screens, such as in Apple’s 3D touch interac-
tions, recent attention has shifted to exploring the use of force for
keyboard input [57-59].

The lack of physical landmarks on virtual keyboards makes it
difficult for users to build haptic typing memory [25, 42]. Further-
more, virtual keyboards which primarily operate under two states
(i.e., whether or not a key has been touched and released) do not
allow users to rest their hands or fingers on the screen [26], making
this medium tedious for lengthier text-entry tasks [2, 35]. In fact,
resting on the keyboard has been found to be critical for efficient
10-finger typing [6, 7, 47]. Despite this, the majority of prior work
focuses on improving the two-state keyboard model mostly due to
the hardware limitations. Recent works that explore force-sensitive
touch surfaces to overcome these challenges use force as an input
for statistical decoding along with a mechanism to filter out acci-
dental or irrelevant touch events [14, 57]. It is worth noting that
these approaches use force as one of many features within data-
driven models to improve typing performance on virtual keyboards.
However, they do not explore characteristics of force behaviour
and its effects on three-state functionality. This insight can largely
improve performance, in terms of typing efficiency and user expe-
rience, and provide a more simple and robust means for discerning
touch and press states simply through force alone.

A three-state keyboard interface allows for two key benefits: 1)
Users are afforded the ability to rest their hands and fingers on
the touch surface, similar to common interactions with physical
keyboards; 2) The system would be able to provide feedback to
the user on events other than the keypress itself (e.g., feedback on
key gaps and resting fingers along the home row). This additional
feedback is not possible with two-state virtual keyboards [14, 26],
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where most, if not all, contact events are treated as input events. To
achieve these benefits and an efficient 10-finger typing experience
on a three-state virtual keyboard, we first need further insight
into force characteristics across the keyboard while resting and
typing. Specifically, we focus on understanding and exploring the
impact of using force data for the purpose of classifying touched and
pressed states. As such, we focus on two research questions within
this work: RQ1: What are the force characteristics present when
interacting on a virtual keyboard? RQ2: Can we use force values
to effectively distinguish between touched and pressed states [26],
allowing users to rest without accidentally triggering keystrokes
and type without missing keystrokes. Answers to these questions
combined with novel approaches to improving virtual keyboards
such as data-driven models [4, 8, 12, 49] and feedback mechanisms
[22, 38, 42, 44] could potentially further bridge the gap between
physical and virtual keyboards.

We explore these research questions through a sequence of user
studies. In two initial data collection studies (N=10 and N=12) we
observe how users rest and type on a flat touch-sensitive keyboard.
From the collected data, we first derive a flat force threshold. The
flat threshold is used to classify a contact event on the touch surface
as either touched or pressed, where a keystroke is only triggered in
the pressed state past the force threshold. In a third study (N=12),
we collect typing data while utilizing the flat force threshold. Our
analysis of the forces exerted show that there is an overlap between
resting and typing forces and having a flat threshold can lead to
false positives (incorrectly classified as pressed) and false negatives
(incorrectly classified as touched). We also observe that there is
a significant variation in the force being applied across different
regions of the keyboard and between participants. As such, we
derive three alternative approaches to having a flat threshold that
can potentially improve the balance between false positives and
false negatives when typing on a virtual keyboard: (1) Personalized
threshold (PT), (2) Non-uniform threshold (NUT), and (3) Dynamic
threshold (DT). In a final consequent study (N=12), we explore
these new force threshold functions within a typing task, where
we observe the new functions individually having an impact on the
number of false negatives as well as improving the user experience
over a constant threshold function.

Our contributions are threefold. C1: We present three user stud-
ies exploring force characteristics when resting and typing on a vir-
tual keyboard. Through detailed analysis of captured data, we show
that a threshold function based only on force could be sufficient
to define a three-state virtual keyboard. We further demonstrate
that the force exerted by typing on a virtual keyboard is not uni-
form across the keyboard or among participants. C2: We propose
three approaches for modifying the threshold function to account
for such variation and conduct a fourth user study for validation.
C3: We conclude with discussion of lessons learned through our
approach, comparisons to current methods, and how future work
can further improve on our approaches to further enhance the user
experience. Overall, our results aim to provide insight into how
future three-state virtual keyboards with force-sensitive surfaces
can be designed.
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2 RELATED WORK

We review work on methods for improving 10-finger virtual key-
board typing performance and on three-state virtual keyboards with
a focus on the addition of force. Studies have explored 10-finger
virtual keyboards as they become more prevalent. These keyboards
are often co-located on the same screen as the display itself [25],
such as on tablets [28] or table tops [8, 52]. Odell et al. [44] observe
co-location of text output and keyboard as a factor that influences
typing performance. However, it is not obvious if this translates to
non co-located scenarios. Additionally, there exists a large body of
work focused on typing on smaller screens (e.g., for smartphones
[18, 37] and smartwatches [16, 30]). While not directly applicable
to our work, we discuss these where relevant.

2.1 Improving virtual keyboard performance

The lack of tactile or localized haptic feedback on most touch sur-
faces, negatively impacts the typing performance on virtual key-
boards, causing hand drift [8, 33, 52] and finger touch misalignment
on a straight row [12, 27, 57]. A large body of work on improving
the performance of virtual keyboards has been built around such
observations. Broadly, these can be separated into three major re-
search directions:

1) Modelling Typing Behaviour. Due to a lack of tactile feedback
[27], modelling typing behaviour attempts to reduce errors. Such,
model-based approaches leverage the advantage of the virtual key-
board being software-defined. They use a range of different tech-
niques. Modelling touch locations [11, 27] and finger movement
[4, 49] attempt accommodate the inaccuracies resulting a touch
location not matching the expected location. Statistical decoding
[57] attempts to address this by predicting what the user would
have meant to type and fixing errors in the output text. These
approaches also include personalizing the model to fit the users
[11, 52] to further reduce errors.

2) Feedback Mechanisms. Visual [19, 23, 51], auditory [23, 38],
haptic [22, 38] and tactile [42, 44] feedback mechanisms have been
studied and incorporated within virtual keyboards. With 10-finger
typing, haptic and tactile feedback have gained more attention as
they have been shown to have a larger impact on typing perfor-
mance [6, 44]. Most of these approaches on providing feedback
assume a two-state model of the touch surface, where a contact is
either in a pressed or released state. As a result, the focus has been
on providing feedback during touch- and release-based keystrokes.
We note, additional information can also be encoded, such as how
close to the edge of a key a keystroke takes place [17, 45]. However,
this is not the case with touch typing on regular physical keyboards,
which allow for a resting state [26], and as such a pressed state.
Therefore, feedback alone is likely not sufficient to delineate resting
and pressing on a three-state, force sensitive, keyboard

3) Resting on virtual keyboards. The desire, and also the need,
to rest one’s fingers on the keyboard has been studied with ges-
ture typing on mobile devices [56, 60] and for different text-entry
mechanisms [14, 26, 59]. However, this resting state has not been
extensively studied in the context of 10-finger typing on virtual
keyboards [14, 26]. As soft-keyboards proliferate the many devices
we use (e.g., smartphones, tablets, tabletops, and in recent years
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laptops such as the Lenovo Yogabook), effectively addressing the
ability to rest the hand while typing requires a shift in how we view
touch-based virtual keyboards. To better enable resting, our work
looks towards incorporating force to enable a third pressed state on
virtual keyboards.

2.2 Three-state virtual keyboards and the use of
force

Despite the literature on physical keyboards emphasizing the im-
portance of being able to feel the keys and key-presses [6, 47], as
well as to match with currently available consumer devices, many
of the approaches to improve performance on virtual keyboards
assume the two-state model. One such approach considered to im-
prove two-state virtual keyboards is to disable touch input in the
region where the palms are resting [12, 52, 57]. While this allevi-
ates some of the issues that stem from constantly hovering over
a touch-enabled surface, high variability in finger touch location
[12, 52, 57] and fatigue when typing for long periods [50] remain.

Intuitively, the presence of a third state, combined with the dy-
namic nature of a virtual keyboard, can help reduce the gap between
virtual keyboards and their physical counterparts. Once a virtual
keyboard can effectively include a third resting state, related ap-
proaches on simulating textures [10], and localized haptic feedback
[21, 24, 48] on flat surfaces can be utilized. One notable work on
three-state virtual keyboards is TapBoard [26]. Within their pro-
totype, a resting state is simulated by constraining the temporal
dimension of a touch event. While this approach allows for the
addition of more dimensions to the typing experience, it is still lim-
ited in terms of providing a third-state for events such as rollover,
resting over a modifier key (e.g., shift), or pressing down while
resting the finger without tapping. An alternative solution, which
we explore in-depth, is to use a force-sensitive touch surface which
can provide a more robust resting state. While current touchscreens
do not embed force sensing, as seen in past devices, we can expect
methods that beneficially leverage such an auxiliary channel to
influence the inclusion of force sensing in future devices.

Many previous studies have made observations on the force or
pressure being exerted when typing on virtual keyboards [12, 20,
57], though they do not explicitly incorporate a resting state. This
resting state is crucial for when not actively typing [26] or when
positioning fingers correctly [12]. Kim et al. [20] observed that the
amount of pressure on a virtual keyboard is significantly lower
when compared to physical keyboards. Yi et al. [57] and Gu et al.
[14] successfully use pressure data as an input dimension to a sta-
tistical model for typing. Furthermore, Yi et al. [57] and Findlater
et al. [12] observed that during continuous typing contact is rarely
made with the virtual keyboard, unless performing a keystroke.
This observation is also echoed by Kim et. al [26] in which they
assume a keystroke is inherently a binary input in the form of a
tap. We believe this stems from not having a robust interface that
allows users to rest their fingers, combined with the bias of being
acclimated to touch surfaces where any contact is treated as an
input event. While data-driven approaches have shown promise
in providing this functionality [14, 57] they don’t provide insight
into how different variables influence typing. We believe that gain-
ing insight into how force as a specific variable can influence the
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classification process will help make these models more robust and
simple.

3 METHODOLOGY
3.1 Study Platform

We developed a platform to collect force profile data and for use
within our studies. The platform, built in Python, contains three
primary components: force data collection, finger-to-key mapping,
and the interface for typing tasks.

Force data collection. We used the Sensel Morph! to collect force
data while typing. It has a 230 mm by 130 mm touch surface, with
185 X 105 sensor elements operating at 120 Hz. A keypress is simu-
lated by our study platform when pressure is detected on a region
corresponding to a given key. At any given time the Sensel Morph
API provides data on readings from all sensor elements, which
include the following for each contact event: estimated area and
centroid of contact region, the total force in the contact region,
and state of the contact (beginning of a contact, continuation of
a contact event, and end of a contact event). The keyboard layout
used in all studies is identical to the Lenovo Yogabook layout (see
Figure 3).

Finger to key mapping. To observe the finger locations for key
mapping we used MediaPipe? and OpenCV?3. The mapping process
is carried out through post-processing of captured videos. The video
feed is captured using a standard web camera pointing down at the
keyboard (the camera on the top of the center display in Figure 2).
To calculate the finger-to-key mapping, a projection is calculated
from the four edges of the Sensel Morph’s touch surface in the video
to a rectangular space. The fingertip locations from the MediaPipe
are then projected to this rectangular space which is then mapped
to the array output from the Sensel Morph’s APIL The finger-to-
key mapping is calculated by getting the location of the projected
fingertip that is closest to a given contact’s centroid and used for
calculating which finger triggers the corresponding contact.

Typing interface. The transcription typing interface presented
to the participants can be seen in Figure 4 and was present on
the vertical display in Figure 2. The interface shows the text to
be transcribed on the top row and feedback from user input on
the bottom row. Based on the task, the feedback and text shown
could be modified. We had participants transcribe phrases from
MacKenzie and Soukoreff [41], presented in random order during
our studies.

3.2 Force function

To effectively characterize the force when typing, to distinguish
between the touched and pressed states, we utilize the following
function:

g9(f) = s € {touched, pressed} 1)

Where f is the total force exerted for a given contact event, and s
is the state of the contact. We refer to this function as T-Force. For

Uhttps://morph.sensel.com
Zhttps://mediapipe.dev
3https://opencv.org
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Figure 2: The study platform setup with the study web inter-
face displayed in the center (adjusted to match each partici-
pant’s eye-level). The camera on the top of this display was
used for capturing finger locations. The display on the right
contains the phrases used for the user study as described in
Section 6.

Figure 3: The Sensel Morph used, with the printed layout
attached for all studies. Highlighted with red ovals are the
locations of the physical markers (used only when collecting
resting data in Section 4.1) placed on the “f” and “j” keys as
well as near the top of the force sensor.

Figure 4: The user interface that was shown on a blank web
page and seen during the typing tasks. The upper row shows
the text to be typed. The lower row shows the participant’s
input. Depending on the task, the input shown is modified.
In this instance, any errors are highlighted in red (used in
Section 5.1 and Section 6.1).

a two-state virtual keyboard, the function g would be set to always
return pressed.

4 DERIVING FORCE THRESHOLD

The purpose of the following two data collection studies is to ex-
plore the force characteristics first of resting fingers and palms
and second of typing on the keyboard to derive a force threshold.
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Though not the primary focus, during these studies we also con-
sider additional factors (i.e., bias from constraining how the users
may interact with force-sensitive touch surfaces) which we believe
may influence the force exerted on the virtual keyboard. We aim
to observe the maximum force exerted of a contact event, and we
hypothesize there will be a significant variation in the force be-
ing exerted during typing. With force characteristics captured, we
conclude this section with a derived constant force threshold for
three-state virtual keyboards.

4.1 Resting forces and behavior

4.1.1  Design. We collected data across two conditions: (1) wrist-on,
with the wrist on the Sensel Morph where index fingers rest on
the top markers in Figure 3 and (2) wrist-off, with the wrist resting
outside the force sensitive surface where index fingers rest on the
bottom markers in Figure 3. We consider these two conditions
separately to assess if there is a subconscious bias to exert less
force when the wrists are not resting on the interaction surface. A
within-subjects study design was utilized with the conditions being
counterbalanced across participants. Within each condition, two
trials were conducted for a total of four trials per participant.

4.1.2  Participants. We recruited 10 participants, with ages ranging
from 21 to 31 (M = 26,5D = 3.4, 1 female). All participants were
right-handed.

4.1.3  Procedure. Throughout, and before explaining the study pro-
cedure, participants are asked to be seated at the study platform.
At the beginning of each condition a practice session, following
the procedure mentioned below, was conducted using a physical
keyboard. This was to practice the procedure to be experienced as
well as to normalize one’s self with their natural action of resting
on a keyboard. Each of the two trials in each condition started
with participants’ hands completely off the force sensor. A trial
was conducted by prompting the participant to place both hands
on the keyboard with their index fingers on the markers fixed to
the Sensel Morph for consistency (please see Figure 3) and rest as
they would before typing on a regular keyboard. After five seconds,
participants were instructed to move their right hand to a dummy
keyboard placed on the right side of the force sensitive surface
(simply used as an anchor point to rest away from the surface) and
to rest for another five seconds. Then they were instructed to move
their right hand back to the force sensitive surface. After another
five seconds, a similar process was repeated for the left hand. Each
participant spent five to ten minutes completing the entire study.

4.14 Results. To remove the noise resulting from accidental touches,
only contact events that lasted more than 1 second were considered.
This filtering resulted in 870 contact events. In the wrist-on condi-
tion, the wrist resting forces were excluded by removing the con-
tacts that are closer to bottom left and right corners. The excluded
regions can be seen in Figure 5 highlighted by rectangles, where
139 contact events were removed. Note that the wrist data should
be interpreted with care, given the anatomy of the hand and total
contact surface of the wrist, the force surface reads the wrist resting
event as multiple contact events. This filtering resulted in a remain-
ing 731 contact events. The effect of the two conditions on the log of
the maximum force of a contact event, averaged by participant and
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condition, was analyzed with repeated measures ANOVA following
testing for normality. The results show no significant difference
between the wrist-on (M = 19.8¢f,SD = 13.05gf) and wrist-off
(M = 22.72gf,SD = 12.61¢gf) conditions (F(1,9) = 2.04,p = 0.19).

4.2 Typing forces and behavior

4.2.1 Design. In the second data collection and observation study,
participants were asked to type on the force sensitive surface. Here,
the platform was set up to function as a two state keyboard across
two conditions: (1) Unrestricted; this is similar to the unrestricted
condition used by Findlater et. al [12]. In this condition, the force
sensitive surface was left blank without a keyboard layout. As such,
any contact event is considered a valid keystroke, and the typing
interface shows only asterisk feedback. This condition allows us
to capture the most natural typing behaviour of participants as it
provides minimal constraints. (2) Restricted; in this condition, the
printed keyboard layout was present on the force sensitive surface.
Text feedback was provided on the transcription typing interface,
with incorrectly typed letters being shown in red. This condition
allows us to capture how participants type when they have to be
more precise with the keystrokes, including correcting mistakes
while typing. Again, a within-subjects design was utilized with the
two conditions being counterbalanced across participants. Within
each condition, three trials were conducted for a total of six trials
per participant.

4.2.2  Participants. For this study, we recruited 12 participants,
with ages ranging from 21 to 31 (M = 26,SD = 3.4, 2 female). All
participants were right-handed.

4.2.3  Procedure. Participants were asked to be seated through-
out the study. To familiarize themselves, participants performed
a transcription typing task with the study platform on a physical
keyboard. After taking a break, they started the trials. Throughout,
we instructed participants to type as fast and as accurately as possi-
ble. Here, each trial lasted 65 seconds for an average session length
of 10 to 15 minutes.

4.2.4 Results. We collected a total of 12517 contact events (4614
with the restricted and 7903 with the unrestricted condition). The
contact events follow a common trend of raising to a peak value
and gradually decreasing until the contact event ends. Also notable
is that some keystrokes reach the peak value within the first frame
of the contact, i.e, they reach the peak force value within 8ms. For
statistical analysis, average maximum force of contact events for
each participant for each condition was used. Since the data does not
violate the normality constraint, repeated measures ANOVA was
used to test the effect of the conditions used (restricted/unrestricted).
Results shows no significant effect (F(1,11) = 0.355,p = 0.56)
between the restricted (M = 62.1gf, SD = 31.8gf) and unrestricted
(M =36.269f,SD = 21.9¢gf) conditions.

4.3 Constant force threshold for a three-state
keyboard

Figure 6 shows a summary of the forces observed from the data
collected within our studies. We define the T-Force function in
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Figure 5: Participant contact points for the wrist-on (left) and wrist-off (right) conditions. In the wrist-on condition, the classified
wrist contacts are highlighted by the rectangles in the bottom left and right corners.
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Figure 6: Box plot of the maximum force results from the
two data collection studies split by the respective conditions
used in both studies. The dashed line references the mean
wrist force collected from the study in Section 4.1.

Equation 1 with a threshold Ty

pressed
touched

f > Tf’
f< Tf
To define a constant force threshold. we use a linear Support Vec-
tor Machine (SVM) to estimate Ty using the maximum force data
collected. To do this, we first removed the outliers ( < 3 SD) from
the labeled resting (Section 4.1) and typing data (Section 4.2). We
utilized only two labels as no significant differences were found
between the respective conditions in each study (i.e., wrist-off com-
pared to wrist-on for the resting data and restricted compared to
unrestricted for the typing data). Due to the data imbalance, we
trained SVM models by randomly sampling 500 data points from
each class (i.e., resting and typing). We trained 300 models, of which
the top 100 performing models (M = 0.82,SD = 0.008) were used
to estimate the threshold. The training data was then used for se-
lection as we were interested in models that best fit the trained
data. Since there is only one input feature, the hyperplane from
the SVM models would be an approximation to Ty. These values
are then averaged to obtain the final value for Tg, which is 31gF
(SD = 3.7gF).

9(f) = { (2)

5 TYPING WITH A CONSTANT FORCE
THRESHOLD

To understand how the T-Force function 2 performs and can be
improved, we run another typing study to collect data with a three

state virtual keyboard. In place of using the derived 31gF, in this
study, we use a lower value of 20gF for the T-Force function 2. Due
to an overlap between the resting and typing data, a limitation of
prior SVM-based estimated threshold is that the recall of the key-
stroke events from the typing data is 81%. That is, one in every five
keystrokes would have been misclassified as “touched” states with
the estimated threshold when using the T-Force function 2. Ideally,
a three-state virtual keyboard will minimize the false positives and
false negatives at the same time. Thus, we use a lowered threshold
to observe keystrokes that would have resulted in false negatives
and to also reduce the number of typing errors which could lead to
frustration.

5.1 User study

5.1.1  Design. For this study we consider two tasks. First is a tran-
scription typing task, where a participant types a random sequence
of phrases similar to the second data collection study (Section 4.2).
Second is the memory typing task, similar to the memorization
tasks used by Varcholik et al. [53] and Gu et al. [14]. This task
allows us to study a typing experience that is increasingly similar
to one experienced in typical daily routines. To type from memory,
we use the first sentence of the Gettysburg address. We expect
there to be a difference in the force patterns between these two
tasks. Note, that within this study we are not measuring typing
performance, still only collecting force data for confirmation and
further improvement of our force threshold function.

5.1.2  Participants. For this study, we recruited 12 participants,
ages ranging from 21 to 31 (M = 26.6,SD = 3.6, 2 female). All
participants were right-handed.

5.1.3  Procedure. To familiarize participants with the study setup,
we first asked them to perform one warm-up trial with a physical
keyboard. Throughout the procedure, we instructed participants
to type the phrases shown on screen as accurately and quickly as
possible. Throughout this study, the feedback provided was in plain
text without highlighting any errors. First, the participants com-
pleted the transcription typing task across three sixty-five-second
trials. While typing, the participants were shown a prompt to pause
for 5 seconds after 30 seconds of continuous typing. This inter-
mittent pause was introduced to observe the effect of pausing and
resuming while typing (e.g., while thinking about what to type next
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when composing an email). Second, before administering the mem-
orization task, the participants were given the phrase they were
expected to memorize and type. To further familiarize themselves
with the phrase, we provided them with three regular transcription
typing tasks with the memorization phrase as the target phrase.
This practice stage was not included in the analysis. Then, partic-
ipants conducted three trials, with a maximum of 65 seconds for
each trial, where they had to type the memorization phrase. The
participants were allowed to take breaks between any of the trials.
Sessions lasted between 30 to 40 minutes.

5.1.4  Results. We collected a total of 18953 contact events, of which
15098 were keystroke events. To determine a keystroke, we combine
data from contact location on the Sensel Morph, finger tracking,
and finally incorporate the forces captured. Since the data violated
normality constraints, we conduct Kruskal-Wallis tests throughout.

We analyze the mean maximum force of all contact data as a
dependent variable across the two task conditions of the study
(transcription/memorization), the finger association for each key-
stroke (Figure 7b), and the 12 participants (Figure 7a). We observe
finger association (H = 52.3,df = 9,p < 0.01) and participant
(H =72.08,df = 11,p < 0.01) to have a main effect on the mean
maximum force of the contact events, while the two conditions
did not (H = 2.21,df = 1,p = 0.13). Dunn’s test with Bonferroni
correction with the finger association shows that all significant dif-
ferences are between the pairwise combinations between either the
index, middle or ring finger combined with either the pinky finger
or thumb. Dunn’s test with Bonferroni correction with participants
doesn’t show any larger trends.

To gain insight into how the impact of using different fingers
and their movements (e.g., flexion/extension of fingers) can be
useful to improve the T-Force Function 2, we group the contact
events based on the key under the location of the keystroke for
analysis. We consider two factors: row of the key (Figure 7c), and
column of the key (Figure 7d). The row of a key is one of either
the numeric, top (row starting with “qwer.”), middle (row starting
with “asdf.”), bottom (row starting with “zxcv.”), or the space-bar
row. The columns were based on the common mapping of fingers
to keys [4], which has a total of 9 groups (see Figure 8). Note, that
though this grouping is referred to as column the space-bar in this
case is considered as a separate region. The dependent variable in
all cases was the maximum force applied during a contact event. We
run two Kruskal-Wallis tests for each group to test their effect on
the maximum force of each keystroke, averaged over the respective
groups and participants. We observe a main effect for both factors.
Post-hoc analysis with Dunn’s test with Bonferroni correction show
that with the rows (H = 33.34,df = 8,p < 0.01), the space-bar row
has a significantly lower (p<0.01) maximum force compared to the
other rows. A similar outcome can be observed with the results
of the columns (H = 20.39,df = 4, p < 0.01), where the space-bar
region is significantly lower (p<0.01) than all other columns. Among
the rows, the only other significant difference is between the top
row and the middle row (p=0.03). Among the columns, the results
show no significant difference between combinations of columns 3,
4,5, and 6 (p>0.05). Whereas differences are observed among the
other pairs.
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In the data collected, of the total contact time with the force sur-
face, 24.6% of that time is from non-keystroke contact events. This
includes unintentional touches, false negatives, and other typing
behaviour related touch events such as rollover. To further expand
on our results, we also analyze false negatives. We did not analyze
false positives as the data collected does not allow us to directly
observe this type of error (i.e., keystrokes that were false positives
and errors due to general typing behavior cannot be distinguished).
We further analyzed two types of false negatives. First, we include
keystrokes below the derived Ty (31gf), which would have been
registered as non-keystroke contact events. Second, the contact
events below the used Ty (20gf) for the study, which should have
been a keystroke which is extracted by filtering contact events that
do not trigger a keystroke event, and are immediately followed by
a keystroke which is a deletion error or the letter that would have
been triggered as a keystroke. From the first type of false negatives,
we have 1190 contact events (6.2%). From the second type of false
negatives, we get 489 contact events (2.5%). Figure 10 shows all false
negatives as a ratio to total keystrokes recorded in each respective
group.

Correlation analysis between this ratio and the mean maximum
force for the three factors show that there is a significant nega-
tive correlation between them for columns (r(7)=-0.85, p=.003) and
participants (r(10)=-0.73, p=.005), but not for the rows (r(3)=-0.58,
p=-29). Another observation that we make is the accuracy of using
the derived T: the percentage of keystrokes whose maximum force
applied is above the derived Ty of 31 gf is 91% compared to the 81%
previously calculated. This could imply that participants adapt to
requiring to exceed a threshold by typing harder. This also requires
the analysis of the false negatives to be considered with care.

5.2 Improved T-Force functions

Results above inspired three different approaches for improving
the T-Force Function 2:

(1) Personalized threshold: Motivated by the observation that
different participants use different force levels, a simple approach is
to set thresholds that are personalized to the participant. Utilizing
individually captured wrist-off (Section 4.1) and restricted (Section
4.2) data, we followed the same procedure to that in Section 4.3 to
derive a personalized threshold.

(2) Non-uniform threshold: As seen from the data grouped by
columns and rows, different regions of the keyboard lead to keystrokes
with different levels of force applied. Here, the threshold we utilize
would differ based on the location of the keystroke on the keyboard.
This could be as granular as having a threshold for each individual
key (see Figure 1). A consideration with the grouping considered
in the above analysis is the interaction between the two groupings.
On average the spacebar has the lowest mean maximum force for
both row and column, which also corresponds to the thumb’s mean
maximum force as seen in Figure 7b. Similarly, in regards to the
numeric row, a large portion of the keystrokes are for the backspace
(86%). In addition, we observe a larger variation between the char-
acter keys in column groupings and a significant correlation with
the false negatives. Hence, for the non-uniform threshold, we chose
to use the column groupings.
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Figure 9: Force profile of 100 randomly sampled keystrokes.
Please note, t=0 is when the keystroke was registered by the
platform.

To derive the non-uniform threshold, we use the relative changes
between the columns. We use the derived Ty of 31gF as the maxi-
mum threshold (for column 3) and the Ty used earlier (20gF) as the
minimum threshold (for the space-bar column (column 9)), with

the other columns thresholds set to the relative difference between
the columns as seen in Figure 7d.

(3) Dynamic threshold. A dynamic approach allows for different
thresholds to be used across contexts. An initial hypothesis, rejected
by the data, was that the force being applied would differ based
on the context of what is being typed. We tested the following
scenarios: (1) Continuously typing for a period, expecting the force
to lower over time. (2) Successive characters typed by the same
finger. (3) Force applied after typing a space or correcting an error.

We chose to base the threshold on the force being applied over
time, as seen in Figure 9. We observed that most keystrokes were
taps, where the mean total contact time of a tap was 133 ms, with the
median being 103 ms. Additionally, two force profiles for keystrokes
were seen. First, a gradual increase and then decrease. Second, a
quick peak within one frame (< 8 ms) and reducing from then on.
Of the keystrokes data collected, 71% of them were triggered within
the first frame following the second force profile discussed. Of the
keystrokes that are below 31gf, 37% of them are triggered in the
first frame, where the mean total contact time (0.09s) of a contact
event is less than the overall mean.

Motivated by these observations, and the approach used in Tap-
board [26], we define the T-Force for dynamic threshold as follows:

We use 31gf for Ty, 20gf for T _secondary @nd 0.15s for tsecondary
which is the ~95% percentile of the total contact time distribution
of keystrokes below 31gf.
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Algorithm 1: Function g(.) with dynamic threshold
if f > Ty then
| return pressed;
else if contact ended & total contact time <

Lsecondary & fmax > Tf_secondary then
| return pressed;

else
| return touched;

6 TYPING WITH MODIFIED THRESHOLD
FUNCTIONS

6.1 User study

We conducted a final user study to explore the modified thresh-
old functions, false negatives and positives, and additional resting
behaviour under increasingly natural typing scenarios. The modi-
fied functions are studied individually to assess how the variations
perform in comparison to the uniform thresholds.

6.1.1 Design. Five conditions were tested, the three approaches
defined in Section 5.2 and two baselines with uniform thresholds,
uniform-low with the previously derived T (i.e., 31gF) and uniform-
high to mirror the typical force required on physical keyboards (i.e.,
50gF). A within-subjects study design was utilized with the condi-
tions being balanced through latin square design across participants.
We collected 3 trials per participant per condition.

6.1.2  Participants. We recruited 12 participants, with ages ranging
from 21 to 31 (M = 26.6,SD = 3.6, 2 female). All participants were
right-handed.

6.1.3  Procedure. Similar to previous studies, participants used the
study platform. First, the participant was asked to perform a tran-
scription typing task for 30 seconds on a physical keyboard as a
warmup. Following this, the wrist-off condition from the resting
data collection study (Section 4.1) and the restricted condition from
the typing data collection study (Section 4.2) were each presented
three times, alternating between them. The data collected from
this stage was then used to calculate a personalized threshold as
discussed prior. This stage also functioned as a baseline for typing
on a virtual keyboard. Figure 12 shows the thresholds obtained for
the personalized condition of each participant.

Inspired from work by Kim et. al [26] and Varcholik et al. [53],
the main task used for the study was designed to resemble real-
life typing and is as follows. In place of transcription typing, as
seen in previous studies, we generated a 4x25 grid of 100 sampled
phrases [41], which were presented to the participants on a separate
display (see Figure 2). Within a trial, twenty phrases were sampled
randomly. For each phrase, participants were shown an instruction
to type the content of the cell containing the phrase on the grid.
The participants were expected to find the phrase on the gird, type
it accurately, and then press Enter. If the phrase entered had any
errors, highlighted in red during typing, the trial would not proceed
until errors were corrected. When the phrase was entered correctly,
a popup was shown instructing the participant to wait to start
the next trial while resting their hands on the virtual keyboard.
Additionally, the popup showed a textbox which printed out any
character if it was accidentally triggered during the resting period.
This was added for participants to better understand the resting
forces on the virtual keyboard throughout.

After typing the 20 phrases in a trial, 5 additional phrases with
the words “asdf”, “jkI;”, “fdsa” and “;1kj” were presented to be typed.
We refer to these phrases as homerow phrases. As the participants
did not have to move their fingers around the virtual keyboard to
perform a keystroke on the homerow phrases, we consider these
as controls for false positives during typing. For the purpose of
comparison, we assume the chances of an erroneous input being a
result of typing errors is significantly less when typing the homerow
phrases.

We note that there was no time limit to complete the trials. After
each condition (i.e., after conducting three trials of 20 phrases each
for a condition), participants were asked to complete the NASA
TLX questionnaire and provide subjective feedback on their typing
experience. Each session lasted between 70 to 90 minutes in total.

6.1.4  Results. To understand the impact these non-uniform thresh-
old approaches have on false negatives, we extract the ratio between
false negatives and keystrokes from the typing data as done in
Section 5.1.4; Figure 11 shows the ratio of false negatives to total
keystrokes grouped by condition. Overall, we observe that the non-
uniform thresholds have a lower number of false negatives. As the
data violated normality constraints we used a Kruskal-Wallis test
comparing the false negatives across conditions, where it shows
a main effect (H = 14.0,df = 4,p = .007). Pairwise comparison
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Figure 11: False negatives as a ratio between number of false
negatives and total number of keystrokes from typing data
grouped by the tested conditions. Significant pairs are de-
noted by ** where p < 0.01.

using Dunn’s test with Bonferroni corrections shows only the non-
uniform threshold condition (M = .043, SD = .016) is significantly
different from the uniform-high condition (M = .106,SD = .047).
Lastly, we calculate the number of keystrokes that would have
been classified as “touched” events with the 31gf threshold; 468
keystrokes with the dynamic threshold approach, 481 with the
non-uniform threshold approach and 318 with the personalized
threshold approach.

Similar to the observations from the data collected in Section
5.1.4, here also we observe contact events that are not keystrokes.
In this data set, the percentage of total contact time that is from
non-keystroke contact events, during study periods not includ-
ing resting, is 73.3% compared to 24.6% from the data collected in
Section 5.1.4. This increase in the percentage of time could have
been influenced by the design of the study itself; resting behaviour
could have been encouraged due to participants resting their hands
during the rest periods between trials. Nonetheless, during the
trials, participants were inclined to keep contact with the virtual
keyboard, even when not typing, which was not required. As an ex-
ample, while searching for a phrase in-between moments of typing
participants often kept their hands rested on the keyboard.
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Figure 13: Number of errors during typing the “homerow”
phrases as a ratio between the errors and the total number of
keystrokes. The number of errors are treated as an estimate
to the false positives. Has no pair-wise significance.

and total keystrokes, averaged across participants can be seen in
Figure 13. We use the error as an estimate of the false positives,
where we assume the errors from the uniform-high condition can
act as a baseline due to the minimal number of false positives in
this condition. As the data violated the normality constraint, we
conducted a Kruskal-Wallis test. Results showed no significant effect
among the conditions (H = 2.49,df = 4, p = 0.64). Although, we
do observe that the dynamic threshold and non-uniform threshold
approaches have a lower error rate compared to the uniform-low
threshold and the personalized threshold.

We also analyze the data from the resting periods for false pos-
itives. We count the number of times a character was entered
while participants were resting between phrases. Figure 14 shows
the summary of these false positives as an average for each rest-
ing interval. As the data violated the normality constraint, we
conducted a Kruskal-Wallis test. Results showed a main effect
(H =15.1,df =4, p = 0.004). Pair wise comparison using Dunn’s
test with Bonferroni corrections shows the dynamic (M = 1.02SD =
0.67,H = —2.9, p = 0.03) and personalized threshold (M = 1.3,SD =
1.05, H = —=3.6, p = 0.002) conditions are significantly different from
the uniform-high condition (M = 0.08, SD = 0.15).
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Figure 12: Personalized force threshold was calculated during
the study for each participant.

We analyze the typing data from the homerow phrases to observe
the impact these approaches have on false positives. The errors
made during this task, as a ratio between the number of errors
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Figure 14: Average number of false triggers during each rest-
ing period. Significant pairs denoted by * where p < 0.05 and
by ** where p < 0.01.

For completeness, and as an initial observation, we also analyzed
the average words per minute (WPM) in this study (see Figure
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Figure 16: Mean WPM for each study condition. Black lines
denote 95% confidence intervals. Significant pairs denoted by
** where p < 0.01 and by *** where p < 0.001.

16). As the log of the WPM satisfied the normality constraint, re-
peated measures ANOVA was used. Results show a significant
effect (F(4,44) = 8.36,p < 0.01). Post-hoc analysis with Turkey
HSD shows a similar trend to that of false negatives and false
positives, the uniform-high condition (M = 24.9,SD = 7.8) has a
lower WPM compared to the other conditions, significantly dif-
ferent from dynamic threshold (p < 0.01), non-uniform thresh-
old (p < 0.001) and personalized threshold (p < 0.001). Though
not significant, dynamic threshold (M = 32.8,SD = 12.1), non-
uniform threshold (M = 34.5, SD = 14.1) and personalized thresh-
old (M = 33.8,SD = 12.4) on average have better WPM than the
uniform-low condition (M = 30.8,SD = 9.9).

From the NASA TLX workload rating (see Figure 15) we observe
the personalized threshold approach and the non-uniform threshold
based approaches perform slightly better than other conditions in all
measures. Although we observe no significant effect. The dynamic
threshold approach performs comparable to the uniform or worse
on some measures. Based on the subjective feedback at the end
of each condition, the participants found the dynamic approach
the most confusing, due to its perceived unpredictability. To this
effect, participants noted that the non-uniform and personalized
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approaches were easier, however, were prone to false positives
which is reflected in the quantitative results above.

7 DISCUSSION

We present lessons learned regarding the use of force on a three-
state virtual keyboard, a discussion surrounding potential improve-
ments to T-Force, and compare our results to that of earlier work.
Throughout, we touch upon limitations and future work. We restate,
the primary contribution we make is the investigation and accom-
panying analysis towards the use of force in defining a threshold
function for three-state virtual keyboards. As such, a more com-
prehensive comparison with other three-state virtual keyboard
techniques, along with longitudinal typing performance and abla-
tion studies concerning how the different formulations for T-Force
can be combined, is left for future work.

7.1 Lessons learned

7.1.1 The role of force in a three-state keyboard. Through the data
collected, we uncover many characteristics towards the use of force
in defining a functional three-state keyboard. When incorporating
force within a virtual keyboard, we can enable people with the abil-
ity to rest their fingers, similar to the action on a physical keyboard,
without fear of registering a keystroke upon releasing a touch. It is
worth noting that mechanical keyboard switches offer actuation
forces generally around the 50gf level. Yet, on virtual keyboards, the
force exerted can be much lower, which also corroborates results by
Kim et al. [20] and the 31gf value found in Section 4.3. While resting
forces are relatively consistent, the force exerted by people when
typing is however not uniform across a virtual keyboard (Figure
1). The difference in the maximum force exerted on the keyboard
surface varies the most across columns, but also across rows. In
particular, regions pertaining to the pinky fingers and thumbs see
significantly less force being applied. Furthermore, and importantly,
different users have different levels of average maximum force ex-
ertions and even individual keystroke force profiles. Thus, a simple
constant threshold function may not be the optimal solution for
incorporating force.

7.1.2  Force threshold functions. The primary goal of the T-Force
Function 1 is to allow the users of a virtual keyboard to have a
“touched” state, while also ensuring that keystrokes are not missed.
In defining a constant threshold function, the data suggests that
there is a large overlap between force exerted when resting and
typing. An obvious solution to allow resting without the fear of
triggering a keystroke is to increase the threshold. As seen in the
results with our uniform-high condition, this approach would allow
one to rest on the keyboard without the worry of triggering a key,
however, comes at the cost of having a higher number of false neg-
atives and being less comfortable for typing. By simply modifying
the constant threshold function to consider the variations in forces
we found throughout our studies, improvements can be afforded.
We propose three different formulations for the threshold function
that leverages these variations.

The results from the user study in Section 6.1 show that these ap-
proaches can decrease false negatives, though they are not efficient
in reducing the false positives, which is a limitation of the ap-
proaches discussed. This is also reflected by the subjective feedback
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received from the participants. Particularly with the non-uniform
threshold, participants felt that it was easier to type with the pinky
fingers where they have to apply less force but tend to miss-trigger
while resting. While the dynamic threshold approach is seen less
favorably by the participants, we observe that the false positives
with this approach are lower compared to the other two approaches.
One drawback participants highlighted with the dynamic thresh-
old approach is that they could not clearly understand when the
key would be triggered. Similar feedback was provided by some
participants for the non-uniform threshold approach. This could
potentially be offset by adequate feedback mechanisms, however,
remains to be studied. Importantly, the subjective feedback towards
the non-uniform and personalized threshold approaches shows
participants rate it to be less frustrating and more comfortable on
average. We believe that with further enhanced threshold functions,
utilizing feedback and results captured in this work, the overall
experience and typing performance on virtual keyboards could yet
improve. As future work, we intend to explore the choice of max-
imum and minimum values for the non-uniform force threshold
method and create increasingly personal force threshold functions.

As limitation, results from the analysis across our studies should
be interpreted with care due to the smaller number of participants.
An example in our final study, instead of fully counterbalancing
across the five conditions (which would require 120 participants),
we instead used a balanced Latin square design. This yields ten or-
derings for the five conditions [3] and offers a compromise between
validity and practicality. However, since this approach can only mit-
igate the risk of carryover and ordering effects to a certain degree,
we explicitly chose to include all data from the twelve participants
we recruited. Additionally, we acknowledge that our participant
diversity could be improved and that an equal balance is something
we strive for. As gender seems to play a marginal role with regard
to touch characteristics [5], such differences reinforce the need to
individualize beyond gender or even age, for example. As a result,
our findings suggest the need to personalize force thresholds re-
mains to provide beneficial insight into the design of force-sensing
virtual keyboards.

7.2 Improving T-force

Our approach towards the definition of a threshold function stems
from the perspective that false positives and false negatives should
both be eliminated. As we have observed, not only is there a large
overlap on the force exerted between resting and typing, the thresh-
old functions are not always able to successfully filter them out.
This is also seen in other recent work with three-state virtual key-
boards [14]. Another perspective to consider in optimizing the
threshold function is to find a trade-off between the false positives
and false negatives. That is, to explore the following question: are
users more tolerant to false positives or false negatives when using
three-state keyboards? The threshold could be adjusted accordingly
to minimize the overall frustration of the user.

A presumable solution to improve the threshold function would
be a combination of the three different approaches; where the max-
imum and minimum values used in the non-uniform threshold
approach are scaled and each column follows a dynamic approach,
both based on personalized data. In this work, we have studied
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these approaches individually to assess how accounting for differ-
ent variations in force exerted would impact a threshold function’s
performance. Selection of the optimal parameters, that minimize
both false positives and false negatives, for this combined threshold
function and the impact it would have on the different metrics ex-
plored are non-trivial. Future work should explore these elements
of using a threshold function to further enable three-state func-
tionality on virtual keyboards. Another approach that we have not
considered here is the thresholds changing over time as a person
types. This can even further personalize the virtual keyboard to
account for each user’s unique force profiles. As seen in more recent
work on personalized interaction [55], utilizing an individual’s data,
maybe an increasingly optimal and viable approach.

7.3 Comparison to previous work

While we reserve direct comparison with different approaches for
three-state virtual keyboards for future work, here we discuss our
findings in comparison to previous work.

7.3.1 Resting behaviour and differentiating contact events. Through-
out our typing studies, participants looked to rest directly on the
Sensel Morph; similarly, Tapboard [26] and TypeBoard [14] re-
ported the trend of participants resting on the keyboard when they
are made familiar with the capability. This highlights a natural
action, similar to the use of physical keyboards, that should be
supported. Furthermore, while not the focus of this paper, we also
observed that participants did not rest their fingers in a straight
line similar to findings in previous studies [12, 27, 57]. These rest-
ing behaviours can potentially be impactful in defining keystrokes
versus non-keystrokes on three-state virtual keyboards.

In contrast to earlier work [12, 57], our results do not support
the claim that all contacts are keystrokes. Instead, a large portion
of these consists of resting the fingers on the screen, presumably
for comfort. While this would include accidental touches, it can be
argued that it is also a result of other typing behaviors commonly
seen in 10-finger touch-typing on physical keyboards [7, 9]. We
intend to further investigate this in future work. Another aspect that
we believe might influence the resting behaviour is the study design
itself. When considering real-life typing applications, users seldom
continuously type like they would in a transcription typing task.
While transcription typing tasks are important when comparing
the efficiency of different text input methods, it may not capture
all aspects of typing. Such aspects include small pauses to think
or refer to something or the use of shortcuts and hotkeys. Other
methods such as memorization and copy tasks [53] and real-world
tasks where participants annotate the input after completing the
task [14] could help in capturing such typing characteristics.

7.3.2  Incorporating time. Looking towards time as a means for
differentiating touch events, Kim et al. [26] argue for a trade-off
between resting and typing by defining a temporal threshold. How-
ever, one key limitation to their approach is that a keystroke is
always triggered at the end of a touch event. Furthermore, as seen
in our analysis, keystrokes are triggered within a much smaller time
window (see Figure 9) than the threshold they utilized (i.e., 300 ms).
While they propose this approach as an alternative on non-force
sensitive virtual keyboards, time could still beneficially augment
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the threshold functions within our work. For example, time could be
used as another layer of filtering, similar to the dynamic threshold
approach.

7.3.3  Machine learning models for three-state keyboards. With a
similar goal to our work, Gu et al. [14] use data provided by a
Sensel Morph to train a machine learning model for classifying
intentional (i.e, contact resulting in a “pressed” state) from unin-
tentional (i.e., contact resulting in a “touched” state) events. Our
results complement their findings on using a force-sensitive surface
to define a three-state virtual keyboard, emphasising the value in
investigating the impact of factors, and specifically force, on model
classification. Our force threshold function proposed could assist in
simplifying models required. For example, T-Force does not make
the assumption that only one finger from a hand is in contact with
the surface when performing a keystroke, and does not suffer from
any time delays since the keystroke would be registered as soon as
the force exceeds the threshold. It is also possible to combine other
input modalities for data-driven models such as with touch location
[8, 12], finger motion [4, 49] and gaze [15]. Analyzing character-
istics of these individually, and in combination with force would
further inform future data-driven models to be more robust and
efficient.

7.3.4 Typing speeds. Words per minute (WPM) as a metric for
typing speed was captured within our final study as a preliminary
assessment of the efficiency of our T-Force methods. Due to the
lack of tactile feedback afforded when compared with physical key-
boards, flat surface keyboards do not provide comparable WPM
rates [43]. Consequently, prior work on flat surface and on-screen
typing show WPM rates between 20 and 35 WPM without aug-
mentation [14, 36, 39, 43], 40 WPM when augmented with haptics
[39], 30 WPM for altered layouts [34], and between 35 and 41 WPM
when force is considered [14, 57]%. Our results show already com-
parable typing speeds to these previously proposed methods, with
our non-uniform condition reporting 34.5 WPM. Taking the knowl-
edge gained from our results within this work, we can now move
forward in optimizing the use of force for flat surface typing. Future
work can then begin to study typing efficiency through appropriate
study methodologies, specifically over many blocks as typing is
a learned behaviour which betters over time [40], where we can
expect improved WPM rates from those found within this work.
Comparing with other text entry platforms, we note that flat surface
typing typically affords lower typing speeds. Physical keyboards
offer an average of 51 WPM [7]. These speeds offer a target WPM
for flat surface typing which we strive to achieve in the future.

8 CONCLUSION

In this paper we explore the use of a force sensitive touch surface
to define three state virtual keyboards for 10-finger typing. More
specifically, we focus on capturing force characteristics during rest-
ing and typing that allow us to distinguish between “touched” and
“pressed” states. Furthermore, we focus on minimizing miss recog-
nition while also allowing to rest on the virtual keyboard without
accidentally triggering a keystroke. Initially we define a constant

*Please note we have used a conversion of 1 word per minute to 1.3 Chinese characters
per minute [32] where needed.
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force threshold function, where any contact event that exceeds
the threshold is considered to be in a “pressed” state. In order to
derive this threshold we collect resting and typing data across two
data collection studies. In a third study, we observe that the con-
stant force threshold is not an optimal solution. However, we gain
knowledge regarding variations of force being used across the key-
board, participants, and fingers. As such, we propose three different
force threshold approaches that leverage these variations, which
we compare with constant thresholds in a final user study. Though
not significant, the results show improvements both quantitatively
and qualitatively. Throughout, we shed light on how force based
three-state virtual keyboards can be designed and conclude with
discussions on lessons learned, improvements that can be made,
and comparisons with prior work.
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