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Abstract— We investigated the effects of changing the tele-

operation feel of operating a robot by modifying its speed and 

acceleration profiles, and found that reducing a robot’s 

maximum speed by half can reduce collisions by 32%, while 

only increasing navigation task time by 10%. Teleoperated 

robots are increasingly popular for enabling people to remotely 

attend meetings, explore dangerous areas, or view tourist 

destinations. As these robots are being designed to work in 

crowded areas with people, obstacles, or even unpredictable 

debris, interfaces that support piloting them in a safe and 

controlled manner are important for successful teleoperation. 

We investigate modifying a teleoperated robot’s speed and 

acceleration profiles on an operator remotely navigating 

through an obstacle course. Our results indicate that lower 

maximum speeds result in lower operator workload, fewer 

collisions, and are only slightly slower than other profiles with a 

higher maximum speed. Our results raise questions about how 

robot designers should think about physical robot capability 

design and default driving software settings, the robot control 

interface, and the relation of robot speed to control. 

Keywords—teleoperation, telepresence, human-robot 

interaction, control, acceleration 

I. INTRODUCTION 

Robots are becoming increasingly practical for 
investigating dangerous areas, attending remote conferences, 
or exploring crowded tourist sites. Yet, operators must 
navigate the remote areas without damaging or injuring 
people, the environment, or the robot itself – a task that 
remains challenging. Operator error remains a primary cause 
of teleoperated robot accidents [1], [2], highlighting the 
potential for improved interface technique and technology. 
Our approach investigates how to change operator driving 
behavior by artificially modifying a robot’s driving properties 
in software, altering operator perception of the robot’s 
physical properties and capabilities (speed, power, weight). 

When operating a motor vehicle, people’s perceptions of 
the vehicle  are affected by different factors, such speed [3] or 
sound [4]. Intuitively, when one drives a heavy or large car, 
the inertia causes acceleration and braking to feel more 
resistance than with a small or light vehicle. This gives the 
driver physical cues as to how a vehicle responds to 
commands, helping a driver make better choices and 
potentially leading to safer driving. We propose that similar 
effects may occur when teleoperating robots – e.g. a robot that 
slowly accelerates and brakes may feel heavier and thus, 
perhaps, more dangerous to operate. Simple software changes 
can simulate such physical differences in a robot; we 
investigate how artificially changing a robot’s driving feel, to 
be heavier or lighter, could impact teleoperation. 

A similar situation exists in video games, where designers 
define how their virtual racecar, airplane, or agent, responds 
to input using only software-defined movement – virtual 
worlds do not have the physical constraints of a robot. 
Different movement profiles can be used to impact the player 
experience and to shape the interaction. For example, faster 
vehicles are commonly the most difficult to control in games 
(e.g., see Nintendo’s Mario Kart, or EA Sports’ Need for 
Speed Series). We draw from this approach in video games, 
overlaying an artificial software control profile overtop of a 
robot’s physical capabilities, for the purpose of shaping the 
teleoperator experience. 

In this paper, we present research into how changing a 
robot’s acceleration and speed profiles in software – the feel 
of a robot – impacts operator performance, operation safety, 
and perceptions of workload. Specifically, we aim to alter 
operator perception of robot weight and power by changing a 
robot’s maximum speed and acceleration rates. We make 
these changes with the intention of shaping operator 
psychology surrounding the capability and safety of the robot. 

We conducted an experiment where participants 
teleoperated a robot through an obstacle course, using 

Fig. 1 A telepresence robot navigates a crowded 

obstacle course. We encourage operator behavior 

change by modifying the robot’s speed and 

acceleration profiles. 



different locomotion profiles. Our results suggest we can 
reduce the number of critical incidents (in our case, by 32%) 
by simply slowing the robot down, without a proportional 
negative impact on task completion: our 50% speed reduction 
only resulted in a 10% increase in time. Our result implies that 
it reducing a robot’s speed, at least in crowded situations, may 
result in safer operation with only a small slowdown. 

Our results highlight the importance of considering robot 
capabilities during all stages of product design. Both hardware 
and software configurations that impact robot acceleration and 
speed may further impact the user experience, and ultimately 
safety, in non-obvious ways. For example, while it may be 
intuitive to increase robot speed for enabling faster operation, 
our results show a more nuanced result, where slow and steady 
almost wins the race, but finishes safer. 

II. RELATED WORK 

Transportation researchers have looked to psychology to 
change driving behavior [5], [6]. This research has shown that 
many factors affect driving behavior, including the 
surrounding environment (i.e. perceived risk of a situation) 
[7], vehicle type [8], and driver mood [9]. Interfaces can also 
affect driving psychology, including novel techniques such as 
a haptic accelerator pedal [10], or traditional choices such as 
standard or manual transmissions [11]. Teleoperation of 
wheeled robots is similar to driving a vehicle, so we leverage 
and extend this research to robotics, investigating the effects 
of certain robot design choices on driver behavior. 

Research in teleoperation has aimed to support operators 
by developing novel interface designs and technologies to 
make robots easier to control. Research approaches to 
improve interfaces for teleoperation include new or improved 
ways to control robots [12]–[17], show robot status and 
capabilities [14]–[16], leverage automation with mixed 
initiative interfaces [18], or display sensor data in new ways 
to improve an operator’s understanding of the remote 
environment [19]–[23]. These works use explicit interface 
modifications in on-screen displays, different physical 
controls, or additional processing to automate some actions to 
make an operator more successful. Our work follows a 
different, complementary approach, aiming to improve 
teleoperation by only modifying a robot’s speed and 
acceleration profiles with software. 

Others have attempted to affect the psychology of the 
operator to shape their teleoperation behavior. For example, 
cues leveraging the human psychology of perception and 
attention may be used to direct operator’s attention in non-
distracting ways [24], subtle haptic feedback mechanisms can 
help operators unconsciously avoid obstacles [23], or 
automated movement can be designed to make an operator 
feel safer [25]. One motivation in these works is to utilize 
knowledge of psychology to affect operation experience or 
behavior; our approach follows this idea and investigates how 
speed and acceleration profiles of a robot can affect behavior. 

III. MODIFYING TELEOPERATION DRIVING PROFILES 

Our approach for this initial investigation was to select a 
sample of simple teleoperation profile changes for 
comparison. Drawing from our psychology of driving project 

motivation, we selected three profiles: default robot, 
acceleration-limited robot, and speed-limited robot.  

The default robot kept all settings unchanged from the 
manufacturer’s provided settings. We assume that a default 
commercial-product setting would be a tested and reasonable 
control profile for the robot and task. Additionally, the default 
served as a comparison point for the other two driving 
profiles. 

For the acceleration-limited robot, we aimed to create a 
sense of more mass in the robot by applying a simple limiter 
on the robot acceleration and deceleration. We anticipated that 
a heavier robot may elicit safer driving behavior, given that 
the operator knows that it is more challenging to correct the 
robot’s movement and to stop.  

For the speed-limited robot, we simply limited the robot’s 
speed, without modifying the acceleration profile, inspired by 
a smaller vehicle that may have a lighter engine and so cannot 
move as quickly. We anticipated that this robot would feel 
lighter and less capable, and as such, perhaps would cause less 
stress as an operator may feel there is less risk to the robot’s 
surroundings. Further, we anticipated that the lower speed 
would negatively impact task completion time. 

IV. EXPERIMENT: THE EFFECTS OF SPEED AND ACCELERATION 

ON TELEPRESENCE ROBOT CONTROL 

We performed a within-condition experiment as an initial 
investigation into the effects of speed and acceleration profiles 
on telepresence robot operation, where participants completed 
an obstacle-course navigation task with each of the three 
profiles: acceleration-limited robot, speed-limited robot, and 
default (Table 1). 

A. Instruments 

Our platform was a Double 2 robot (Fig. 2) with the height 
set to the lowest value. The Double used an iPad Air 2, which 
provided the driving profile-related computation and the 
camera feed from its built-in back camera. The robot was 
remotely operated using a Microsoft Sidewinder 2 Force 
Feedback Joystick with the feedback set to the default spring 
setting. A joystick was important as it enabled the operator to 
modulate the speed of the robot by how far they moved the 
stick from the center at-rest position. The user sat at a 21-inch 
screen iMac that only displayed the robot’s camera feed. All 
communications took place over the university’s wireless 
networks.  

We measured driving performance in terms of completion 
time, collisions with obstacles, and subjective workload. 
Collisions were measured by a researcher present in the room 
with the robot, who watched and counted all collisions with 
obstacles in the course. The on-site researcher also recorded 
the completion time with a stopwatch. Subjective workload 
was measured via the NASA TLX [26] questionnaire, 
administered after each condition. The questionnaire included 
3 extra TLX-like scales on Enjoyability, Confidence, and 
Weight Perception (light to heavy), and open ended questions 
for free-form participant feedback. 

B. Manipulations 

 We used three different driving profiles in our experiment 
(Table 1), manipulated as a counterbalanced independent 



variable. The unchanged robot used the full capabilities 
provided by the manufacturer without change. The default 
maximum speed is 2.6 km/h, which we measured it 
accelerates to in approximately 2 seconds. 

The acceleration-limited robot was set to have half the 
maximum acceleration, but the same maximum speed, of the 
default. This was implemented using a simple first-derivative 
cap that limited how quickly the robot speed command could 
change (in both positive and negative directions). While this 
slows the robot down initially, the full speed capability means 
the robot can move quickly when necessary, e.g., over long 
distances. We expect avoiding obstacles to be more difficult, 
and as such, expect operators to be more careful to 
compensate. 

The speed-limited robot was set to have half the 

maximum speed of the default, with no modification or 

restriction to the acceleration. This was implemented with a 

simple cap on speed. We expected the speed-limited 

condition to have roughly twice the completion time as the 

default, as it can move at only half the speed. However, we 

expected this robot to have a lower perceived workload than 

the acceleration-limited robot, given the easier control, and 

as an additional consequence, to perhaps have more collisions 

due to less-careful driving. 

C. Task 

Participants piloted our robot through an obstacle course 
(Fig. 3, Fig. 4). They were instructed to complete the task as 
quickly as they could, while hitting as few obstacles as 
possible. Our task was designed to simulate navigating a 
crowded conference or office environment, where there are 
many obstacles in the form of people or furniture. 

Our obstacle course consisted of static obstacles placed at 
60cm intervals, with a path that changed each condition. The 
path through the obstacle course was marked with arrows 
throughout the course, to ensure that participant memory or 
spatial mapping was not a confound in the experiment. The 
obstacles stayed in the same place for each course design, but 
the path through the course was changed by changing the 

arrow position. Each course was designed to have the same 
number of turns and the same Manhattan distance (Fig. 3).  

D. Procedure 

Participants were briefed that we were testing three 
telepresence robots that were identical in all ways except their 
motors, and that they would be helping us select the one that 
was easiest to control – this deception (that we changed the 
motors, not the software) was to encourage the idea the robots 
may feel differently the way vehicles with different engines 
may feel different. We explained the obstacle course and 
measurement methods, and the participant read and signed our 
consent form. 

The researcher explained the robot controls, and allowed 
the participant to practice with the robot. Participants 
practiced again before each condition, to reduce short-term 
learning effects of the robot profile, and was always done with 
the upcoming condition’s movement profile. Once the 
participant indicated that they were feeling comfortable, or 
after a five-minute period passed, the researcher brought the 
robot to the obstacle course (Fig. 4); the participant stayed in 
a separate room and could not externally see or observe the 
robot. The participant completed two laps of the course to 
mitigate learning effects and increase the amount of data 
collected. After each condition, we administered the post-
condition questionnaires.  

Configuration Speed Acceleration 

Default Max Max 

Speed-limited Half Max 

Acceleration-limited Max Half 

Table 1. The three driving configurations for our robot. 

Fig. 2 The Double 2 robot (from doublerobotics.com) 

Start Finish 
Fig. 3. The three courses (labelled red, blue, or green). 



After all three conditions, we administered the post-test 
questionnaire, and debriefed the participant on the deception- 
that the robot was the same, but only the software changed. 

V. RESULTS 

We conducted the experiment with 19 participants (8 
female, average age of 27) recruited from our local university 
campus. We performed repeated measures ANOVAs on TLX 
sum, number of collisions, and time to completion. 

Outlier analysis indicated three participants being at least 
1.5 times the inter-quartile range of our data in at least two 
statistical tests. In addition, we observed that these 
participants demonstrated poor spatial awareness while 
driving the robot, for example, repeatedly getting the robot 
stuck without noticing, resulting in repeated similar collisions 
and long completion times, uncharacteristic of other 
participants. We excluded them from our analysis as outliers, 
resulting in n=16. 

We found an effect of driving configuration on completion 
time, (F2,30=8.2, η2 =.35, p<.001). Marginal means are shown 
in Fig. 5c. Bonferroni corrected post-hoc tests showed the 
default profile was faster than the acceleration-limited profile 
(mean difference = 42.8 seconds, p<.01, 95% CI [15.0 
seconds, 70.5 seconds]). 

We found an effect of driving configuration on number of 
collisions, (F2,30=6.2, partial η2=.29, p<.01). Marginal means 
are shown in Fig. 5b. Bonferroni corrected post-hoc tests 
showed the speed-limited profile had fewer collisions than the 
acceleration-limited profile (mean difference = 6.4 collisions, 
p<.01, 95% CI [1.5 collisions, 11.2 collisions]). 

We found an effect of driving configuration on subjective 
workload, (F2,30=4.4, partial η2=.23, p=.02). Marginal means 
are shown in Fig. 5a. Bonferroni corrected post-hoc tests 
showed the speed-limited profile was less demanding than the 
acceleration-limited profile (mean difference = 16.4 points, 
p=.01, 95% CI [3.1 points, 29.8 points]).  

To better understand the effects of each condition on 
different types of workload, we performed an ANOVA across 
the 6 individual TLX scales with Holm-Bonferroni correction, 
a standard practice with the TLX [27]. We found a trend of 
driving configuration on temporal load, (F2,36=4.6, partial 
η2=.20, p=.068). Marginal means are shown in Fig. 6a. 
Default had highest temporal load (mean=12.0 points, 95% CI 
[8.7 points, 13.0 points]). Acceleration-limited had second 

highest temporal load (mean=12.4 points, 95% CI [9.1 points, 
13.6 points]). Speed-limited had the lowest temporal load 
(mean=8.9 points, 95% CI [6.8 points, 11.1 points]). 

We found an effect of driving configuration on perceived 
performance, (F2,36=4.6, partial η2=.25, p<.04). Marginal 
means are shown in Fig. 6b. Note higher scores mean worse 
perceived performance. Acceleration-limited had the worst 
perceived performance (mean=10.8 points, 95% CI [8.8 
points, 12.9 points]). Default had second worst perceived 
performance (mean=10.6 points, 95% CI [8.6 points, 12.6 
points]). Speed-limited had the best perceived performance 
(mean=7.2 points, 95% CI [5.2 points, 9.1 points]). 

We found an effect of driving configuration on perceived 
effort, (F2,36=5.6, partial η2=.24, p=.04). Marginal means are 
shown in Fig. 6c. Acceleration-limited had highest frustration 
(mean=10.3 points, 95% CI [7.7 points, 12.8 points]). Default 
had second highest frustration (mean=8.5 points, 95% CI [6.1 
points, 10.8 points]). Speed-limited had the lowest frustration 
(mean=7.3 points, 95% CI [5.1 points, 9.4 points]). All other 
tests were not significant. 

VI. DISCUSSION 

Overall, our speed-limited robot profile had the strongest 
performance; it had the lowest subjective workload, least 
number of collisions, and second fastest completion time. 
Surprisingly, the speed-limited robot had only a 10% slower 
completion time than the quickest (the default profile), even 
though it was limited to 50% of the maximum speed of the 

Fig. 4 Our obstacle course with a specific path shown. 

There were three paths through the same obstacles 

(one per condition), marked with different colored 

arrows. Only one set of arrows is visible per condition. 
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other two profiles. Interestingly, we could not detect a 
difference between the speed-limited and default profile’s 
completion time. Though we did not perform equivalency 
testing, this result suggests that it is unlikely a large effect 
exists between the two profiles. 

The acceleration-limited robot performed poorly. 
Participants perceived it as having the highest workload, they 
hit the most obstacles with it, and completed the courses in the 
slowest times. In each measure, post-hocs found at least one 
profile statistically better performing than acceleration-
limited.  

The default profile was only the best performer in terms of 
completion time, although it was not found to be statistically 
different from the speed-limited profile. Interestingly, in both 
collisions and subjective workload, we could not statistically 
distinguish it from either of the other profiles. While it is likely 
still the middle performer in these measures, default’s 
measured means were closer to the acceleration-limited 
profile’s performance, rather than the speed-limited profile.  

When we looked deeper into the individual TLX scales, 
we found that the speed-limited profile was perceived as 
requiring less effort to pilot (agreeing with the overall 
workload result), and achieving higher perceived 
performance. Better perceived performance is interesting, as 
the speed-limited profile was 50% slower and had a negative 
impact on completion times (10% slower) on average. We 
found an interesting trend in perceived temporal load which, 
if confirmed with more data, would imply that people may 
have felt less rushed, even with the slower speed. This may 
suggest that people perceive collisions as a more stressful 
occurrence than slow movement, even when our obstacles 
where harmless cardboard. It is possible this effect could be 
stronger if real people are around the robot. 

While our results imply that the acceleration-limited robot 
performed badly, we note that there should be a relationship 
between all three of our measures: collisions take time to 
recover from, so perhaps the high number of collisions 
increased the completion time, and the stresses from both 
these factors contributed to a worse perceived workload. Less 
crowded and collision-prone environments than ours may 
result in the acceleration-limited profile performing 
differently. 

Our results suggest that, in some conditions such as our 
crowded setup, a speed-limited robot can help operators avoid 
collisions without a large increase in lost time. Further, we 

found evidence that operators may perceive collisions with 
obstacles to be more stressful than a slower travel time. How 
this result generalizes to different tasks and robot speed 
configurations remains important future work. These results 
suggest that it may prove useful to investigate dynamic speed 
limits placed by software, based on the surrounding 
environment.  

VII. FUTURE WORK AND LIMITATIONS 

We hypothesized slower acceleration would promote 
cautious driving behavior because it is harder to control. 
However, it appeared future implementations should be more 
nuanced than ours; we halved both acceleration and 
deceleration, but the deceleration anecdotally appeared to 
make it difficult for participants to stop and correct their path 
if they moved the robot incorrectly. Acceleration and 
deceleration perform different functions: slowing down is 
often about safety (stopping, driving carefully). Thus, we 
recommend robots have asymmetrical acceleration and 
deceleration curves, and how such asymmetry should be 
handled is interesting future work.  

Our choice of joystick as an input should be considered 
with our results. It allowed for modulation of speed control (vs 
discrete forward and backward buttons), but may have made 
it hard to maintain speed due to the difficulty of holding a 
joystick in a precise position. This was likely not a problem 
for the speed-limited robot, as participants could easily keep 
the joystick at the maximum radius by pushing against the 
unmoving plastic limiter at the joystick’s edge. For other 
profiles, this would result in a fast speed that was potentially 
unsuited for our environment. Other mappings of joystick to 
speed or acceleration should be investigated, as well as other 
input devices. 

One difficulty we encountered in our work was objective 
measurements. While measuring collisions and time allowed 
us some insight into a participant’s driving style, it hides other 
aspects, such as physical effort (constantly adjusting the 
controls, straining to maintain a precise joystick position), or 
whether they truly thought the robot was more powerful or 
heavier. While we took TLX measurements for subjective 
load, other objective measures could be investigated, such as 
by analyzing the paths taken by the joystick, or participant 
facial expressions. Further, new measurement techniques or 
experiment designs should be developed to better measure if 
perception of a robot has changed driving behavior. 
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VIII. CONCLUSION 

We investigated how changes to a robot’s acceleration and 
speed profile can impact operator performance and driving 
behavior. Our results indicate that such changes can indeed 
modify operator performance, in terms of task completion 
time, critical incidents, and workload. In particular, we found 
that simply slowing down a robot can reduce collisions (by 
32%) and lower workload, while not being as slow as one may 
expect – in our case, halving the speed only resulted in 10% 
longer task completion times. These results point to the 
importance of exploring the effects of robot motor control 
design choices to improve the ease of piloting a teleoperated 
robot, and indicate that such choices may be even handled 
dynamically in software, without major hardware changes.  
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