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ABSTRACT 

Feature-rich software applications offer users hundreds of 

commands, yet most people use only a very small fraction of 

the available command set. Command recommenders aim to 

increase awareness of an application’s capabilities by 

generating personalized recommendations for new 

commands. A primary distinguishing characteristic of these 

recommenders concerns the manner in which they determine 

command relevance. Social approaches do so by analyzing 

community usage logs, whereas, task-based approaches 

mine web documentation for logical command clusters. 

Through a qualitative study with sixteen participants, in this 

work we explored user attitudes towards these different 

approaches and the supplemental information they enable.  
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INTRODUCTION 

Feature-rich software, such as Photoshop and the GNU 

Image Manipulation Program (GIMP), can contain hundreds 

or even thousands of commands.  Most users, however, take 

advantage of very little of an application’s power. For 

example, prior work indicates that people tend to use only a 

very small percentage (e.g., 5%) of their software’s 

command set (e.g., [9]). 

One approach to helping users become more aware of their 

software’s capabilities has been through command 

recommender systems.  These systems monitor the 

commands that a user is using, and then return new and 

ideally relevant commands. In determining command 

relevance, such recommender systems have applied two 

primary strategies.  Social command recommender systems 

apply collaborative filtering techniques on community usage 

logs (e.g.,[11,12]), whereas task-based recommenders mine 

web documents (describing how to perform particular tasks) 

for logical command groupings [8].   

Prior work indicates that the manner in which an intelligent 

system communicates and justifies its advice can 

substantially impact user attitudes towards, and acceptance 

of the system (e.g., [3,5,7,13]).  Prior work also suggests that 

the nature of such explanations will depend heavily on the 

system’s underlying reasoning techniques [16]. This is 

particularly true when considering the fundamental 

differences between social and task-based approaches to 

command recommendation. For example, in explaining its 

recommendations, a social recommender could provide 

statistics on community and “peer” usage, whereas a task-

based recommender could list related tasks.   

This research seeks to understand how users might respond 

to social vs. task-based command recommenders from the 

perspective of the explanations that they facilitate. In 

particular, we conducted a qualitative laboratory study with 

sixteen participants to examine how users respond to social 

vs. task-based command recommendation approaches and 

how the manner in which the systems justify their 

recommendations impacts users’ attitudes.  Our findings 

point to potential individual differences with respect to 

preferences and attitudes towards the utility of social vs. 

task-based recommender systems, and highlight a number of 

important considerations moving forward. 

RELATED WORK 

Our coverage of related work focuses on the two areas 

central to this research: command recommender systems for 

feature-rich software and intelligent systems that augment 

their advice with supplementary explanations. 

Command Recommenders 

Prior work on command recommender systems for feature-

rich software has primarily focused on the algorithmic 

components of providing tailored recommendations.  As 

described above, one primary approach to recommending 

new commands has been to leverage usage logs collected 

from an application’s community of users [10–12].  An 

example is CommunityCommands [10,12], which uses 

collaborative filtering techniques to determine relationships 

between commands. A second approach to command 

recommendation has been to use command clusters mined 
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from web documentation. For example, the QFRecs system 

[8] leverages Query-Feature Graphs [4] (command-to-task 

mappings mined from web documentation) as an 

automatically generated plan library.  Using this plan library 

the system then estimates the user’s most likely set of current 

tasks based on their recent command use. Based on these task 

estimates, the system recommends additional commands that 

have been associated with those tasks in online 

documentation (see [8] for a more detailed description). 

In evaluating the above approaches, researchers have 

focused on assessing the relevance of the system’s 

recommendations to a user’s workflow (e.g., [8,12]), as well 

as the impact of the recommendations on task performance 

(e.g., [8]) and recommendation uptake (e.g., [10]).  Little 

attention, however, has been provided to the manner in 

which the systems communicate their recommendations to 

their users, which is the focus of our work. 

Explanations in Intelligent Systems 

There is a rich history of exploring why and how intelligent 

systems should explain their behavior to their users (e.g., [1–

3,5,6,13,14]). While a great deal of this work supports the 

inclusion of such insight [5,13], prior work also suggests that 

the content of the explanations (or supplemental 

information) can impact user perceptions of the utility of 

those explanations and of the system’s behavior (e.g., 

[2,3,6,14]).  We extend this work by comparing two types of 

explanation interfaces for command recommender systems. 

THE RECOMMENDER SYSTEMS AND THEIR 
EXPLANATION INTERFACES 

In this section, we describe two explanation interfaces that 

we implemented and studied as part of this work: one for a 

social recommender based on the CommunityCommands 

approach [12], and one for a task-based recommender based 

on the QFRecs system [8]. In both cases, the systems’ 

explanations provide insight into why the commands have 

been recommended as opposed to explaining the technical 

details of the underlying algorithms. We created both 

recommender systems in a mock GIMP interface.   

Guided by previous work on explaining collaborative-

filtering based movie recommendations [6], our social 

recommender supplements each command recommendation 

with the percentage of all users who have used the command, 

along with the percentage of similar users who have used it 

(see Fig. 1, Right).    

The task-based recommender system, on the other hand, 

displays a list of tasks associated with each command (see 

Fig. 1, Left). This list of tasks is taken from the recommender 

system’s underlying Query-Feature Graph, which maps each 

command in the interface to a set of high-level descriptions 

of potential tasks involving that command [4].  

Both explanation interfaces include the system’s confidence 

in its recommendation (displayed next to the command 

name) and a tool-tip-like description of the command. 

We implemented two presentations techniques for each 

recommender type, which differ according to where the 

recommendations are located in the interface. With the 

integrated technique, recommendations are presented within 

the menus (see Fig. 1 Right), whereas with the palette 

technique, recommendations are removed from the menus, 

found instead in a separate interface component (see Fig. 1 

Left).  We implemented these two techniques in the event 

that user response towards the different forms of 

supplemental information depends on where the 

recommendations were located in the interface.  

STUDY 

The goal of our qualitative study was to solicit user attitudes 

and opinions towards the social and task-based approaches 

to command recommendation and the two forms of 

supplemental information that they afford (i.e., information 

on community usage vs. information on related tasks). 

  

Figure 1: The supplementary information for each recommender system type:   Task-Based (Left) and Social (Right). The left 

shows what the recommendations looked like when displayed in a palette.  The right is an example of integrated recommendations.   



Design 

Our primary factor of interest was system type (social vs. 

task-based), which was a within-subjects factor in our study 

(i.e., all participants experienced both systems).  We also 

included recommendation location (integrated vs. palette) as 

a between-subjects factor. 

Participants 

Sixteen participants (7 male, 9 female) took part in the study.  

Participants were 18-51 years old (mean age 29.5) and   were 

recruited from the university community through the use of 

public bulletins. Three participants were GIMP novices, 8 

reported using the software at least once per year, 4 used it at 

least once per month and 1 used it at least once per week 

Participants were provided with a $15 honorarium.  

Tasks and Procedure 

While our focus was on qualitative data (i.e., attitudes 

towards the recommender systems and their supplemental 

information), we wanted participants to be able to experience 

working with the recommender systems.  To do so, we 

created four isomorphic tasks modeled after online tutorials 

for the GIMP software.  Each task involved a list of steps for 

the participant to complete. The names of commands were 

removed from the steps, and only information about what the 

participant needed to accomplish in that step was included 

(e.g., “remove all color from image” for the desaturate 

command). 

Using fully implemented versions of the recommender 

systems as guides, we tailored the actual recommendations 

generated in the study to ensure that both recommender 

systems were equally helpful to the tasks at hand. 

Specifically, we ensured that the needed command was 

presented in the recommended set of commands for each 

step. For the social recommender system’s, we used GIMP 

usage data collected through the Ingimp project as the 

community data source [15]. For the task-based 

recommender system, we used the Query-Feature Graph as 

described in [8]. 

The remainder of the procedure for the study was as follows:  

Participants completed two tasks, with a maximum of 15 

minutes each, with each recommender system (social or task-

based). Upon finishing these two tasks, they completed a 

short system-specific questionnaire. After interacting with 

both systems, they completed an additional comparative 

questionnaire, and we conducted a semi-structured exit 

interview. The order of the recommender systems was 

counterbalanced, while task order was randomized.  The 

entire study session lasted 60-90 minutes. 

Results 

Our analysis did not find any interactions between 

participants’ attitudes towards the recommender systems and 

the location of the recommendations (integrated vs. palette).  

Thus our description of results considers only recommender 

system type.  We begin by presenting the questionnaire data, 

and follow this with insight from the interviews as to why 

participants preferred one system over another. 

Ratings and Overall Preference Data 

The questionnaires administered after each condition 

revealed limited impact of system type on user attitude 

toward each system directly after use (see Table 1).  As 

would be expected, an RM ANOVA confirmed that there 

was no significant impact of system type on participants’ 

mean responses towards their satisfaction with the system, 

the degree to which they would be motivated to learn new 

commands, and the trustworthiness of the recommender 

system ( p >= 0.5 in all cases).  We did, however, see a great 

deal of variability in participants’ responses, which we 

elaborate on in the next section. 

Responses on a comparative questionnaire revealed that 

users’ overall preference between the two systems was 

almost evenly divided (see Figure 2).  There was a larger 

difference, on the other hand, in terms of which system 

participants found more helpful (see “Helpfulness” in Fig. 2). 

Along this dimension, 11 participants favored the task-based 

system and 5 participants favored the social recommender.  

Interviews 

In the interviews, we asked participants to explain why they 

preferred one recommender system over another. Their 

responses point to a number of key issues for these types of 

command recommendations and their supplemental 

information. 

Valuing Context of Use: Given the focus on new commands, 

a number of participants appreciated the additional context 

that the task-based recommender provides.  The following 

two quotes illustrate this type of feedback: 

Questionnaire Item Task-Based Social 

How satisfied are you with the 

recommendation application? 

5 (1.2) 5.1 (1.3) 

This recommendation application 

would motivate you to learn new 

commands in the future. 

5.19 (0.96) 5 (2.4) 

How trustworthy were the 
recommendations? 

4.86 (1.85) 4.81 (1.10) 

Table 1: Mean (stdev) responses to questionnaire items 

administered after each system (1 == low, 7 == high).   

 

Figure 2: Users’ preference overall and in terms of the 

systems’ helpfulness and trustworthiness. 
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I found them both helpful, but the list of related tasks gave me 

more context for what other sorts of things this might do, or might 

be related to. (P8) 

I prefer when the recommendations give me some idea about 

which task each command can be used rather than what other 

people use. (P3) 

The quotes above suggest that when recommending new 

commands, an indication of how the command might be 

relevant to the user’s work is appreciated.  

Identifying Rare Commands: While not a commonly 

expressed sentiment, one participant felt that a task-based 

recommender system had the potential to recommend more 

nuanced commands that might not be as popular:  

The task specific ones were better for lesser known commands 

that a beginner user may not know about. (P10) 

Mixed Views on Command Popularity: As for the social 

recommender, participants expressed mixed views on the 

value of “popularity” based recommendations.  A couple of 

participants felt that knowing the popularity of a command 

could help them decide whether or not it was worth learning:   

If a lot of people are using a particular tool, it means that it must 

be useful, but if it’s something that maybe not a lot of people are 

using, then maybe it’s not that useful. (P12) 

Whereas many others felt skeptical of the “wisdom on the 

masses”: 

I felt that the percentages of users just meant that they might be 

making the same mistakes that I might be making. So just because 

everybody jumps off a cliff, doesn’t mean it’s the right thing to 

do. (P2) 

I want to do it the fastest way. Just because someone 

recommended it, doesn’t mean that it’s better.  (P5) 

It did say the percentage of people use this, but then I think ‘what 

if they could be wrong’ (P9) 

The above quotes suggest that with social recommender 

systems, some users are skeptical as to whether others are 

doing things the “right” or most efficient ways. 

Desire for Additional Information: A few participants 

wanted more insight into where the usage statistics were 

coming from.  Without this information, they lacked 

confidence that the “similar users” (see Fig.1, Right) had 

been properly identified: 

I trust my coworkers, I know what they’re capable of. I don’t 

necessarily trust other people. (P5) 

Some other participants felt that sheer usage statistics alone 

were not sufficient without knowing whether or not the 

command has been helpful: 

Success rate! So if this command was recommended to someone 

else, and they were successful at their task, that would be 

interesting to see. Because it’s not just recommendation, it’s like 

‘oh yeah they did it, and this is how it turned out.’ So it was 

successful or it wasn’t to what extent. (P2) 

While doubts concerning data source were most commonly 

expressed in regards to the social recommender, one 

participant wanted to be reassured that both data sources had 

been carefully selected:  

I think if I knew exactly where these recommendations came from, 

for example, the task specific coming straight from a useful 

website, and the social input coming from experienced users, then 

I think I’d be more likely to consider it reliable. (P11) 

DISCUSSION AND FUTURE WORK 

Our results indicate that the type of command recommender 

system that users’ value might to be highly dependent on the 

individual.  Our results also suggest a number of ways that 

these systems and their supplemental information can 

potentially be improved in the future.  We note, however, that 

our findings are based on a relatively small sample, which 

consisted primarily of novice or intermediate GIMP users. 

Participants in our study also interacted with the 

recommenders in a task-focused manner, as opposed to, for 

example, a more exploratory learning context. Future 

evaluations should explore the generalizability of our 

findings to larger sample sizes, as well the impact of software 

expertise and context of use on attitudes and preferences.   

Given our participants’ split opinions, one interesting avenue 

for future work would be to explore a hybrid approach for 

either the recommender itself or for the supplementary 

information it provides.  For example, if both approaches 

were implemented simultaneously, a user could potentially 

filter or inspect the recommendations according to the data 

source that they find most reliable or motivating.   

Our results also suggest an opportunity to allow users to tune 

the systems by letting them refine and restrict the data 

sources that each algorithm uses. For the social approach, 

however, this could potentially introduce privacy concerns, 

as a tightly restricted peer group could also permit detailed 

monitoring of command usages and workflows. 

Finally, in moving beyond qualitative impressions, future 

field evaluations should examine the impact of the different 

approaches on recommendation uptake.  For example, it 

could be that the social vs. task-based recommender systems 

differ in their abilities to ultimately encourage users to 

experiment with new commands.  

CONCLUSIONS 

In this paper we explored two different approaches to 

command recommendation for feature-rich software (social 

vs. task-based) from the perspective how they explain their 

recommendations. The results of our qualitative study 

revealed strong individual differences in users’ attitudes 

towards the systems and their command recommendations.  

Our results also point to a number of promising avenues for 

future investigation, including exploring hybrid approaches 

to command recommendation and creating interfaces that 

allow users to tailor the systems’ data sources. 
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