
Exploring User Attitudes Towards Different Approaches to
Command Recommendation in Feature-Rich Software

Michelle Wiebe

University of Manitoba

Winnipeg, Canada

wiebem14@myumanitoba.ca

Denise Y. Geiskkovitch

University of Manitoba

Winnipeg, Canada

denise.geiskkovitch@gmail.com

Andrea Bunt

University of Manitoba

Winnipeg, Canada

bunt@cs.umanitoba.ca

ABSTRACT

Feature-rich software applications offer users hundreds of

commands, yet most people use only a very small fraction of

the available command set. Command recommenders aim to

increase awareness of an application’s capabilities by

generating personalized recommendations for new

commands. A primary distinguishing characteristic of these

recommenders concerns the manner in which they determine

command relevance. Social approaches do so by analyzing

community usage logs, whereas, task-based approaches

mine web documentation for logical command clusters.

Through a qualitative study with sixteen participants, in this

work we explored user attitudes towards these different

approaches and the supplemental information they enable.

Author Keywords

Software learnability; Recommender systems; Explanations

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

Feature-rich software, such as Photoshop and the GNU

Image Manipulation Program (GIMP), can contain hundreds

or even thousands of commands. Most users, however, take

advantage of very little of an application’s power. For

example, prior work indicates that people tend to use only a

very small percentage (e.g., 5%) of their software’s

command set (e.g., [9]).

One approach to helping users become more aware of their

software’s capabilities has been through command

recommender systems. These systems monitor the

commands that a user is using, and then return new and

ideally relevant commands. In determining command

relevance, such recommender systems have applied two

primary strategies. Social command recommender systems

apply collaborative filtering techniques on community usage

logs (e.g.,[11,12]), whereas task-based recommenders mine

web documents (describing how to perform particular tasks)

for logical command groupings [8].

Prior work indicates that the manner in which an intelligent

system communicates and justifies its advice can

substantially impact user attitudes towards, and acceptance

of the system (e.g., [3,5,7,13]). Prior work also suggests that

the nature of such explanations will depend heavily on the

system’s underlying reasoning techniques [16]. This is

particularly true when considering the fundamental

differences between social and task-based approaches to

command recommendation. For example, in explaining its

recommendations, a social recommender could provide

statistics on community and “peer” usage, whereas a task-

based recommender could list related tasks.

This research seeks to understand how users might respond

to social vs. task-based command recommenders from the

perspective of the explanations that they facilitate. In

particular, we conducted a qualitative laboratory study with

sixteen participants to examine how users respond to social

vs. task-based command recommendation approaches and

how the manner in which the systems justify their

recommendations impacts users’ attitudes. Our findings

point to potential individual differences with respect to

preferences and attitudes towards the utility of social vs.

task-based recommender systems, and highlight a number of

important considerations moving forward.

RELATED WORK

Our coverage of related work focuses on the two areas

central to this research: command recommender systems for

feature-rich software and intelligent systems that augment

their advice with supplementary explanations.

Command Recommenders

Prior work on command recommender systems for feature-

rich software has primarily focused on the algorithmic

components of providing tailored recommendations. As

described above, one primary approach to recommending

new commands has been to leverage usage logs collected

from an application’s community of users [10–12]. An

example is CommunityCommands [10,12], which uses

collaborative filtering techniques to determine relationships

between commands. A second approach to command

recommendation has been to use command clusters mined

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

IUI'16, March 07 - 10, 2016, Sonoma, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4137-0/16/03$15.00

DOI: http://dx.doi.org/10.1145/2856767.2856814

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2856767.2856814

from web documentation. For example, the QFRecs system

[8] leverages Query-Feature Graphs [4] (command-to-task

mappings mined from web documentation) as an

automatically generated plan library. Using this plan library

the system then estimates the user’s most likely set of current

tasks based on their recent command use. Based on these task

estimates, the system recommends additional commands that

have been associated with those tasks in online

documentation (see [8] for a more detailed description).

In evaluating the above approaches, researchers have

focused on assessing the relevance of the system’s

recommendations to a user’s workflow (e.g., [8,12]), as well

as the impact of the recommendations on task performance

(e.g., [8]) and recommendation uptake (e.g., [10]). Little

attention, however, has been provided to the manner in

which the systems communicate their recommendations to

their users, which is the focus of our work.

Explanations in Intelligent Systems

There is a rich history of exploring why and how intelligent

systems should explain their behavior to their users (e.g., [1–

3,5,6,13,14]). While a great deal of this work supports the

inclusion of such insight [5,13], prior work also suggests that

the content of the explanations (or supplemental

information) can impact user perceptions of the utility of

those explanations and of the system’s behavior (e.g.,

[2,3,6,14]). We extend this work by comparing two types of

explanation interfaces for command recommender systems.

THE RECOMMENDER SYSTEMS AND THEIR
EXPLANATION INTERFACES

In this section, we describe two explanation interfaces that

we implemented and studied as part of this work: one for a

social recommender based on the CommunityCommands

approach [12], and one for a task-based recommender based

on the QFRecs system [8]. In both cases, the systems’

explanations provide insight into why the commands have

been recommended as opposed to explaining the technical

details of the underlying algorithms. We created both

recommender systems in a mock GIMP interface.

Guided by previous work on explaining collaborative-

filtering based movie recommendations [6], our social

recommender supplements each command recommendation

with the percentage of all users who have used the command,

along with the percentage of similar users who have used it

(see Fig. 1, Right).

The task-based recommender system, on the other hand,

displays a list of tasks associated with each command (see

Fig. 1, Left). This list of tasks is taken from the recommender

system’s underlying Query-Feature Graph, which maps each

command in the interface to a set of high-level descriptions

of potential tasks involving that command [4].

Both explanation interfaces include the system’s confidence

in its recommendation (displayed next to the command

name) and a tool-tip-like description of the command.

We implemented two presentations techniques for each

recommender type, which differ according to where the

recommendations are located in the interface. With the

integrated technique, recommendations are presented within

the menus (see Fig. 1 Right), whereas with the palette

technique, recommendations are removed from the menus,

found instead in a separate interface component (see Fig. 1

Left). We implemented these two techniques in the event

that user response towards the different forms of

supplemental information depends on where the

recommendations were located in the interface.

STUDY

The goal of our qualitative study was to solicit user attitudes

and opinions towards the social and task-based approaches

to command recommendation and the two forms of

supplemental information that they afford (i.e., information

on community usage vs. information on related tasks).

Figure 1: The supplementary information for each recommender system type: Task-Based (Left) and Social (Right). The left

shows what the recommendations looked like when displayed in a palette. The right is an example of integrated recommendations.

Design

Our primary factor of interest was system type (social vs.

task-based), which was a within-subjects factor in our study

(i.e., all participants experienced both systems). We also

included recommendation location (integrated vs. palette) as

a between-subjects factor.

Participants

Sixteen participants (7 male, 9 female) took part in the study.

Participants were 18-51 years old (mean age 29.5) and were

recruited from the university community through the use of

public bulletins. Three participants were GIMP novices, 8

reported using the software at least once per year, 4 used it at

least once per month and 1 used it at least once per week

Participants were provided with a $15 honorarium.

Tasks and Procedure

While our focus was on qualitative data (i.e., attitudes

towards the recommender systems and their supplemental

information), we wanted participants to be able to experience

working with the recommender systems. To do so, we

created four isomorphic tasks modeled after online tutorials

for the GIMP software. Each task involved a list of steps for

the participant to complete. The names of commands were

removed from the steps, and only information about what the

participant needed to accomplish in that step was included

(e.g., “remove all color from image” for the desaturate

command).

Using fully implemented versions of the recommender

systems as guides, we tailored the actual recommendations

generated in the study to ensure that both recommender

systems were equally helpful to the tasks at hand.

Specifically, we ensured that the needed command was

presented in the recommended set of commands for each

step. For the social recommender system’s, we used GIMP

usage data collected through the Ingimp project as the

community data source [15]. For the task-based

recommender system, we used the Query-Feature Graph as

described in [8].

The remainder of the procedure for the study was as follows:

Participants completed two tasks, with a maximum of 15

minutes each, with each recommender system (social or task-

based). Upon finishing these two tasks, they completed a

short system-specific questionnaire. After interacting with

both systems, they completed an additional comparative

questionnaire, and we conducted a semi-structured exit

interview. The order of the recommender systems was

counterbalanced, while task order was randomized. The

entire study session lasted 60-90 minutes.

Results

Our analysis did not find any interactions between

participants’ attitudes towards the recommender systems and

the location of the recommendations (integrated vs. palette).

Thus our description of results considers only recommender

system type. We begin by presenting the questionnaire data,

and follow this with insight from the interviews as to why

participants preferred one system over another.

Ratings and Overall Preference Data

The questionnaires administered after each condition

revealed limited impact of system type on user attitude

toward each system directly after use (see Table 1). As

would be expected, an RM ANOVA confirmed that there

was no significant impact of system type on participants’

mean responses towards their satisfaction with the system,

the degree to which they would be motivated to learn new

commands, and the trustworthiness of the recommender

system (p >= 0.5 in all cases). We did, however, see a great

deal of variability in participants’ responses, which we

elaborate on in the next section.

Responses on a comparative questionnaire revealed that

users’ overall preference between the two systems was

almost evenly divided (see Figure 2). There was a larger

difference, on the other hand, in terms of which system

participants found more helpful (see “Helpfulness” in Fig. 2).

Along this dimension, 11 participants favored the task-based

system and 5 participants favored the social recommender.

Interviews

In the interviews, we asked participants to explain why they

preferred one recommender system over another. Their

responses point to a number of key issues for these types of

command recommendations and their supplemental

information.

Valuing Context of Use: Given the focus on new commands,

a number of participants appreciated the additional context

that the task-based recommender provides. The following

two quotes illustrate this type of feedback:

Questionnaire Item Task-Based Social

How satisfied are you with the

recommendation application?

5 (1.2) 5.1 (1.3)

This recommendation application

would motivate you to learn new

commands in the future.

5.19 (0.96) 5 (2.4)

How trustworthy were the
recommendations?

4.86 (1.85) 4.81 (1.10)

Table 1: Mean (stdev) responses to questionnaire items

administered after each system (1 == low, 7 == high).

Figure 2: Users’ preference overall and in terms of the

systems’ helpfulness and trustworthiness.

0

5

10

15

Overall
Preference

Helpfulness Trustworthy

Task-Based

Social

I found them both helpful, but the list of related tasks gave me

more context for what other sorts of things this might do, or might

be related to. (P8)

I prefer when the recommendations give me some idea about

which task each command can be used rather than what other

people use. (P3)

The quotes above suggest that when recommending new

commands, an indication of how the command might be

relevant to the user’s work is appreciated.

Identifying Rare Commands: While not a commonly

expressed sentiment, one participant felt that a task-based

recommender system had the potential to recommend more

nuanced commands that might not be as popular:

The task specific ones were better for lesser known commands

that a beginner user may not know about. (P10)

Mixed Views on Command Popularity: As for the social

recommender, participants expressed mixed views on the

value of “popularity” based recommendations. A couple of

participants felt that knowing the popularity of a command

could help them decide whether or not it was worth learning:

If a lot of people are using a particular tool, it means that it must

be useful, but if it’s something that maybe not a lot of people are

using, then maybe it’s not that useful. (P12)

Whereas many others felt skeptical of the “wisdom on the

masses”:

I felt that the percentages of users just meant that they might be

making the same mistakes that I might be making. So just because

everybody jumps off a cliff, doesn’t mean it’s the right thing to

do. (P2)

I want to do it the fastest way. Just because someone

recommended it, doesn’t mean that it’s better. (P5)

It did say the percentage of people use this, but then I think ‘what

if they could be wrong’ (P9)

The above quotes suggest that with social recommender

systems, some users are skeptical as to whether others are

doing things the “right” or most efficient ways.

Desire for Additional Information: A few participants

wanted more insight into where the usage statistics were

coming from. Without this information, they lacked

confidence that the “similar users” (see Fig.1, Right) had

been properly identified:

I trust my coworkers, I know what they’re capable of. I don’t

necessarily trust other people. (P5)

Some other participants felt that sheer usage statistics alone

were not sufficient without knowing whether or not the

command has been helpful:

Success rate! So if this command was recommended to someone

else, and they were successful at their task, that would be

interesting to see. Because it’s not just recommendation, it’s like

‘oh yeah they did it, and this is how it turned out.’ So it was

successful or it wasn’t to what extent. (P2)

While doubts concerning data source were most commonly

expressed in regards to the social recommender, one

participant wanted to be reassured that both data sources had

been carefully selected:

I think if I knew exactly where these recommendations came from,

for example, the task specific coming straight from a useful

website, and the social input coming from experienced users, then

I think I’d be more likely to consider it reliable. (P11)

DISCUSSION AND FUTURE WORK

Our results indicate that the type of command recommender

system that users’ value might to be highly dependent on the

individual. Our results also suggest a number of ways that

these systems and their supplemental information can

potentially be improved in the future. We note, however, that

our findings are based on a relatively small sample, which

consisted primarily of novice or intermediate GIMP users.

Participants in our study also interacted with the

recommenders in a task-focused manner, as opposed to, for

example, a more exploratory learning context. Future

evaluations should explore the generalizability of our

findings to larger sample sizes, as well the impact of software

expertise and context of use on attitudes and preferences.

Given our participants’ split opinions, one interesting avenue

for future work would be to explore a hybrid approach for

either the recommender itself or for the supplementary

information it provides. For example, if both approaches

were implemented simultaneously, a user could potentially

filter or inspect the recommendations according to the data

source that they find most reliable or motivating.

Our results also suggest an opportunity to allow users to tune

the systems by letting them refine and restrict the data

sources that each algorithm uses. For the social approach,

however, this could potentially introduce privacy concerns,

as a tightly restricted peer group could also permit detailed

monitoring of command usages and workflows.

Finally, in moving beyond qualitative impressions, future

field evaluations should examine the impact of the different

approaches on recommendation uptake. For example, it

could be that the social vs. task-based recommender systems

differ in their abilities to ultimately encourage users to

experiment with new commands.

CONCLUSIONS

In this paper we explored two different approaches to

command recommendation for feature-rich software (social

vs. task-based) from the perspective how they explain their

recommendations. The results of our qualitative study

revealed strong individual differences in users’ attitudes

towards the systems and their command recommendations.

Our results also point to a number of promising avenues for

future investigation, including exploring hybrid approaches

to command recommendation and creating interfaces that

allow users to tailor the systems’ data sources.

ACKNOWLEDGMENTS

This work was supported by the National Sciences and

Engineering Research Council (NSERC).

REFERENCES

1. Andrea Bunt, Matthew Lount, and Catherine Lauzon.

2012. Are explanations always important? A study of

deployed, low-cost intelligent interactive systems.

Proceedings of the ACM Conference on Intelligent User

Interfaces, 169–178.

http://doi.org/10.1145/2166966.2166996

2. Andrea Bunt, Joanna Mcgrenere, and Cristina Conati.

2007. Understanding the utility of rationale in a mixed-

initiative system for GUI customization. Proceedings of

the International Conference on User Modeling, 147–

156. http://doi.org/10.1007/978-3-540-73078-1_18

3. Kate Ehrlich, Susanna E. Kirk, John Patterson, Jamie C.

Rasmussen, Steven I. Ross, and Daniel M. Gruen. 2011.

Taking advice from intelligent agents: The double-

edged sword of explanations. Proceedings of the ACM

Conference on Intelligent User Interfaces, 227–134.

http://doi.org/10.1145/1943403.1943424

4. Adam Fourney, Richard Mann, and Michael Terry.

2011. Query-feature graphs: Bridging user vocabulary

and system functionality. Proceedings of the ACM

Symposium on User Interface Software and Technology,

207–216. http://doi.org/10.1145/2047196.2047224

5. Shirley Gregor and Izak Benbasat. 1999. Explanations

from intelligent systems: theoretical foundations and

implications for practice. MIS Quarterly 23, 4: 497–530.

http://doi.org/10.2307/249487

6. Jonathan L Herlocker, Joseph a Konstan, and John

Riedl. 2000. Explaining collaborative filtering

recommendations. Proceedings of the ACM Conference

on Computer Supported Cooperative Work, 241–250.

http://doi.org/10.1145/358916.358995

7. Anthony Jameson. 2009. Understanding and dealing

with usability side effects of intelligent processing. AI

Magazine 30, 4: 23–40.

8. Adnan Alam Khan, Volodymyr Dziubak, and Andrea

Bunt. 2015. Exploring personalized command

recommendations based on information found in Web

documentation. Proceedings of the ACM Conference on

Intelligent User Interfaces, 225–235.

http://doi.org/10.1145/2678025.2701387

9. Benjamin Lafreniere, John S Whissell, Charles L. A.

Clarke, and Michael Terry. 2010. Characterizing large-

scale use of a direct manipulation application in the

wild. Proceedings of Graphics Interface, 11–18.

10. Wei Li, Justin Matejka, Tovi Grossman, Joseph A.

Konstan, and George Fitzmaurice. 2011. Design and

evaluation of a command recommendation system for

software applications. ACM Transactions on Computer-

Human Interaction 18, 2: 1–35.

http://doi.org/10.1145/1970378.1970380

11. Frank Linton and Hans-Peter Schaefer. 2000.

Recommender systems for learning: Building user and

expert models through long-term observation of

application use. User Modelling and User-Adaptive

Interaction 10, 2-3: 181–208.

http://doi.org/10.1023/A:1026521931194

12. Justin Matejka, Wei Li, Tovi Grossman, and George

Fitzmaurice. 2009. CommunityCommands : Command

recommendations for software applications.

Proceedings of the ACM Symposium on User Interface

Software and Technology, 193–202.

http://doi.org/10.1145/1622176.1622214

13. Pearl Pu and Li Chen. 2006. Trust building with

explanation interfaces. Proceedings of the ACM

Conference on Intelligent User Interfaces, 93–100.

http://doi.org/10.1145/1111449.1111475

14. Simone Stumpf, Vidya Rajaram, Lida Li, Margaret

Burnett, Tomash Dietterich, Erin Sullivan, Russell

Drummond, and Jonathan Herlocker. 2007. Toward

harnessing user feedback for machine learning.

Proceedings of the ACM Conference on Intelligent User

Interfaces: 82–91.

http://doi.org/10.1145/1216295.1216316

15. Michael Terry, Matthew Kay, Brad Van Vugt, Brandon

Slack, and Terry Park. 2008. Ingimp: introducing

instrumentation to an end-user open source application.

Proceedings of the ACM Conference on Human Factors

in Computing Systems, 607–616.

http://doi.org/10.1145/1357054.1357152

16. Nava Tintarev and Judith Masthoff. 2011. Designing

and evaluating explanations for recommender systems.

In Recommender Systems Handbook. 479–510.

http://doi.org/10.1007/978-0-387-85820-3

