
A Simple and Lightweight Algorithm for Social Robot Speech

Turn Taking

Adriana Lorena González
 University of Manitoba

 Winnipeg, MB, Canada

 gonzala1@myumanitoba.ca

James E. Young
 University of Manitoba

 Winnipeg, MB, Canada

 young@cs.umanitoba.ca

ABSTRACT

Simple, but effective, social robot voice-based interaction designs

are possible with only rudimentary speech analysis. Robust full

analysis, including syllable, word, and meaning extraction, is still

an open research problem, with existing solutions being

computationally expensive (and thus a power drain) while suffering

from high error rates. Instead, we note that it is sufficient for many

social interactions for a robot to simply distinguish when a person

starts and finishes talking, and indeed argue that designing social

robot interactions around such a constraint may – in the short term

– result in more robust behaviors. We introduce a simple solution,

using standard lightweight signal processing techniques (i.e.,

involving the derivative of the audio’s RMS value), that detects the

beginning and end of speech utterances, including a preliminary

evaluation. We envision that this simple, easy to implement

algorithm may be useful for researchers aiming to simply and

quickly implement basic robotic speech turn taking on low-

capability or power-constrained robot devices. Further, the

approach can support innovation in simple conversation with social

robots.

CCS CONCEPTS
Human-centered computing ~ Human computer interaction (HCI) ~

Interaction techniques

KEYWORDS
Social Robots, Technical Implementation

1 Introduction

Although human-like conversation with a social robot is highly

sought after in human-robot interaction, accurate and reliable

speech recognition is unfortunately recalcitrant. In practice, speech

recognition errors such as misinterpreting what a person said or

failing to acknowledge a person is talking [1], [2], severely hinders

interaction. We propose a constrained design challenge that focuses

on robust, but simplified, robotic capability: speech-based

interactions which do not require a robot to understand speech

content, but only to identify when a person starts and stops talking

(e.g., see [3]). For example, a pet-like robot might want to wait for

the person to finish talking to it before doing their sleep routine or

making a sound to show that it wants to play more. Although this

does not reduce the need for more complex speech recognition, we

believe this approach to be more feasible and robust in the short

term for deployed social robots. In this paper, we present a simple

and lightweight algorithm for realizing this, enabling a social robot

to understand when a person begins and stops talking.

Recent full-featured speech recognition solutions often

require significant computation resources, and as a result are

typically deployed on cloud-based services (e.g., Google’s 1 or

Microsoft’s 2 solutions); however, these still have accuracy

problems [4], [5], particularly given fast or slow speech, non-

common words, or accents [6]. Further, on-line systems introduce

network infrastructure, cost, and delay challenges. Completely

offline systems, with reduced capability for less-capable

computers, tend to lack the accuracy to be useful for many tasks

[2]. These challenges are due to the shear complexity of true speech

recognition, which requires an algorithm to correctly identify

syllables, words, and full phrases that the person is saying, despite

background noise, changes in speech, and unexpected transient

sounds. The output then must be analyzed and used within context

to create an appropriate response.

For research, a common solution is to employ the Wizard of

Oz technique (researcher controlling the robot remotely without a

participant knowing [7]); some claim this is the most reliable way

to do speech recognition [1], [4]. However, this approach is not

deployable for use in practice, or unsupervised research such as

longitudinal field studies. For deployed robots, solutions typically

employ enforced structure or stratification to simplify the problem

space. A common approach is key-phrase spotting, where

algorithms only search for static predefined phrases [4], [8] (e.g.,

“How’s the weather?”, “Can you dance?”). This unfortunately

suffers from rigidity, where a person can be ignored or completely

misunderstood with even small variants from a pre-programmed

phrase (e.g., “what is the weather today” versus “how’s the

weather?”).

In this paper we present a simple, light-weight algorithm

using standard signal processing techniques that enable a social

robot to easily recognize speech start, pause, and stop.

1 https://cloud.google.com/speech-to-text/
2 https://azure.microsoft.com/en-ca/services/cognitive-services/speech-to-text/

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

2 Approach

To detect important parts of speech: the start, small pauses, and end,

we analyze the amplitude of a robot microphone audio signal.

However, simply monitoring the amplitude (e.g., and thresholding

it) is fragile, as it rapidly changes, and the target peaks (speech

loudness) would depend on ambient noise, distance of speaker, and

other related factors. Our solution is the following:

1) Re-sample the audio to a lower-than-typical rate, to

around 600 Hz. Why: high frequencies may be important

for understanding details of speech, but are irrelevant for

detecting start and stop of talking. Lower sample rate

dramatically reduces computational cost.

2) Calculate Root Mean Square (RMS) of the waveform with

a 0.25 second window. Why: RMS provides a more

accurate measure of how power (loudness) changes over a

time window and frequency range than simple amplitude

[9], which is rapidly changing. 0.25s was selected ad-hoc

to balance large window (smoother result) with

minimizing delay caused by require look-ahead.

3) Calculate the logarithm of the RMS. Why: perception of

audio loudness has a logarithmic relationship to power.

This transform compresses the range, making the low

amplitude signals higher and lowering the high amplitude,

resulting in a more balanced dynamic range reflective of

how people hear.

4) Smooth the log RMS using a gaussian kernel over a 1

second window. Why: reduce the impact of rapid changes

(less than 1 second) and focus more on the general volume

over the 1 second window. (Original and smoothed RMS

data seen in Fig. 1). This adds a slight additional delay to

detection.

5) Take the derivative of the smoothed data. Why: enables us

to analyze the change in RMS amplitude as well as the

RMS amplitude itself. We use this to detect sudden

increases and decreases, irrespective of changing

background noise or closeness to the microphone.

6) Test the derivative and filtered RMS value against

thresholds to detect phase of speaking. Starting from no

talking detected, monitor the derivative for a positive

spike to mark beginning of talking. While talking, if there

is a simultaneous low RMS value and negative derivative,

assume a pause (see fig 2). If the pause continues without

a new sufficient positive derivative spike, assume talking

has ended.

Figure 3 demonstrates all the stages of our processing in a

14 second window, from raw data, to smoothed log RMS,

derivative of the log RMS, and finally the thresholding result

showing a short pause and a stop. Currently, our exact window

sizes and threshold values (see next section) were chosen through

trial and error. We are working toward automatically tuning these

values based on the environment, for example, using baseline RMS

noise over a given timeframe to set the target thresholds.

3 Sample Code

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

We provide a sample code sketch here, including our specific

parameters, to clarify the algorithm. A complete working

MATLAB sample file is available permanently online <link

removed for anonymization>; this code was used to generate

graphs 1-3.

data = csvread("44.1KHzPCMdatafile.csv");

% down sample PCM data, 44.1 kHz to 544.4Hz
reducedData = resample(data, 1,81);

% get RMS values and use the kernel to smooth the data
RMSData=zeros(size(reducedData,1),1);

for i = 137:size(RMSData,1) % .25 sec is 136 samples
 RMSData(i) = rms(reducedData(i-136:i));
end

RMSData = log10(RMSData+1); % match perception

% use 1 second Gaussian filter
RMSDataFiltered = conv(RMSData, GaussianFilter, "same");

% get derivative of RMS data
Derivative = conv(RMSDataFiltered, [1 -1], "same");

% set treshold. RMS treshold based on "silence" at start
DerivativeThresh = .004; % chosen via trial and error
RMSThresh = max(reducedData(1:250))*1.5;

%test for status
for i = 1: size(reducedData,1)
 if (status ~= talking && ...
 Derivative(i) > DerivativeThresh)
 status = talking;
 end
 if (status == talking && ...
 Derivative(i) < -DerivativeThresh && ...
 RMSDataFiltered(i) < RMSThresh)
 PauseStart = i;
 status = smallPause;
 end
 if (status == smallPause && ...
 (i - PauseStart) > 1088) %pause > 2 sec
 status = stop;
 end
 detection(i) = status;
end

This code works by having full access to the waveform and

processing it at once. For a live robot, we simply process live by

adding the blocks received from the sound driver to our processing

chain as they arrive. The only resulting delay is the larger of either

our window size or the driver block size.

5 Informal Validation

We performed an initial validation by applying our algorithm

against a range of samples from LibriSpeech [10], a dataset of read

audiobooks in English sampled at 16 kHz widely used to train

automatic speech recognition models; thus, we down sampled by a

factor of 27, instead of the 81 previously used. We used 10 samples

from their test set: 5 from their “clean” speech samples and 5 of

“other” speech. We chose the longest samples we could find,

ranging from 19 to 33 seconds and from different readers. Because

these audio samples are cut to not have long pauses, we can only

test the ability to recognize pauses and not fully stopping to talk.

However, this is not a problem since the stopped state is only when

the pause has been going on for too long.

For these tests, the derivative threshold was set to 0.004 and

the RMS threshold was tuned using the baseline approach

mentioned earlier section 2: the RMS threshold was calculated as

50% higher than the highest value in the first 250 samples of

silence. We calculated success through visual inspection.

Figure 4 shows one example, where the reader of the book

section did multiple short pauses. All samples tested, from both the

clean and other datasets, always registered a pause when a pause

was present. If a person was breathing heavily between utterances,

it would sometimes fail to recognize this as a pause.

 6 Future Work

While our initial prototype for detecting start, pause, and stop

in speech has initial signs of success, we need to implement

automatic detection and tuning of all parameters based on

background noise and qualities of a particular robot microphone.

Further, to better understand the limits of our approach we need to

conduct a more formal and thorough evaluation, including a wider

range of conditions and situations (e.g., background conversation

noise, robot motor noises, etc.).

7 Conclusion

In this paper we present a simple and lightweight solution to

capturing the beginning and end of utterances and conversation by

a user. This leverages simple signal processing and is able to give

reliable results without the need of computationally expensive

algorithms or libraries that might not be available in different

programming languages or robotic platforms. We conduct an

informal evaluation of our solution where we observe initial

positive results. This simple, lightweight algorithm supports

exploring novel social robot designs and speech-based interactions

that do not rely on the content of the speech. We envision that this

approach can be used when computing power is limited or robust

interaction is prioritized, and our algorithm can be a starting point

for those wishing to prototype and explore such behaviors.

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

REFERENCES
[1] O. Mubin, J. Henderson, and C. Bartneck, “You just do not understand me!

Speech Recognition in Human Robot Interaction,” IEEE RO-MAN 2014 -

23rd IEEE Int. Symp. Robot Hum. Interact. Commun. Human-Robot Co-

Existence Adapt. Interfaces Syst. Dly. Life, Ther. Assist. Soc. Engag.

Interact., pp. 637–642, 2014.

[2] V. A. Kulyukin, “On natural language dialogue with assistive robots,” HRI

2006 Proc. 2006 ACM Conf. Human-Robot Interact., vol. 2006, pp. 164–

171, 2006.

[3] A. L. González and J. E. Young, “Please Tell Me about It: Self-Reflection

Conversational Robots to Help with Loneliness,” HAI 2020 - Proc. 8th Int.

Conf. Human-Agent Interact., pp. 266–268, 2020.

[4] J. Kennedy et al., “Child Speech Recognition in Human-Robot Interaction:

Evaluations and Recommendations,” ACM/IEEE Int. Conf. Human-Robot

Interact., vol. Part F1271, pp. 82–90, 2017.

[5] J. Novoa, J. Wuth, J. P. Escudero, J. Fredes, R. Mahu, and N. B. Yoma,

“DNN-HMM based Automatic Speech Recognition for HRI Scenarios,” in

Proceedings of the 2018 ACM/IEEE International Conference on Human-

Robot Interaction, 2018, pp. 150–159.

[6] S. Goldwater, D. Jurafsky, and C. D. Manning, “Which words are hard to

recognize? Prosodic, lexical, and disfluency factors that increase speech

recognition error rates,” Speech Commun., vol. 52, no. 3, pp. 181–200,

2010.

[7] L. D. Riek, “Wizard of Oz Studies in HRI : A Systematic Review and New

Reporting Guidelines,” vol. 1, no. 1, pp. 119–136, 2012.

[8] C. Breazeal, C. D. Kidd, A. L. Thomaz, G. Hoffman, and M. Berlin,

“Effects of nonverbal communication on efficiency and robustness in

human-robot teamwork,” 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst.

IROS, pp. 708–713, 2005.

[9] Wikipedia, “Audio Power,” 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Audio_power#Measurements. [Accessed:

13-Dec-2020].

[10] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An

ASR corpus based on public domain audio books,” ICASSP, IEEE Int.

Conf. Acoust. Speech Signal Process. - Proc., vol. 2015-Augus, pp. 5206–

5210, 2015.

