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ABSTRACT 

Simple, but effective, social robot voice-based interaction designs 

are possible with only rudimentary speech analysis. Robust full 

analysis, including syllable, word, and meaning extraction, is still 

an open research problem, with existing solutions being 

computationally expensive (and thus a power drain) while suffering 

from high error rates. Instead, we note that it is sufficient for many 

social interactions for a robot to simply distinguish when a person 

starts and finishes talking, and indeed argue that designing social 

robot interactions around such a constraint may – in the short term 

– result in more robust behaviors. We introduce a simple solution, 

using standard lightweight signal processing techniques (i.e., 

involving the derivative of the audio’s RMS value), that detects the 

beginning and end of speech utterances, including a preliminary 

evaluation. We envision that this simple, easy to implement 

algorithm may be useful for researchers aiming to simply and 

quickly implement basic robotic speech turn taking on low-

capability or power-constrained robot devices. Further, the 

approach can support innovation in simple conversation with social 

robots. 
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1 Introduction 

Although human-like conversation with a social robot is highly 

sought after in human-robot interaction, accurate and reliable 

speech recognition is unfortunately recalcitrant. In practice, speech 

recognition errors such as misinterpreting what a person said or 

failing to acknowledge a person is talking [1], [2], severely hinders 

interaction. We propose a constrained design challenge that focuses 

on robust, but simplified, robotic capability: speech-based 

interactions which do not require a robot to understand speech 

content, but only to identify when a person starts and stops talking 

(e.g., see [3]). For example, a pet-like robot might want to wait for 

                                                                                                                      
 

 

the person to finish talking to it before doing their sleep routine or 

making a sound to show that it wants to play more. Although this 

does not reduce the need for more complex speech recognition, we 

believe this approach to be more feasible and robust in the short 

term for deployed social robots. In this paper, we present a simple 

and lightweight algorithm for realizing this, enabling a social robot 

to understand when a person begins and stops talking. 

Recent full-featured speech recognition solutions often 

require significant computation resources, and as a result are 

typically deployed on cloud-based services (e.g., Google’s 1  or 

Microsoft’s 2  solutions); however, these still have accuracy 

problems [4], [5], particularly given fast or slow speech, non-

common words, or accents [6]. Further, on-line systems introduce 

network infrastructure, cost, and delay challenges. Completely 

offline systems, with reduced capability for less-capable 

computers, tend to lack the accuracy to be useful for many tasks 

[2]. These challenges are due to the shear complexity of true speech 

recognition, which requires an algorithm to correctly identify 

syllables, words, and full phrases that the person is saying, despite 

background noise, changes in speech, and unexpected transient 

sounds. The output then must be analyzed and used within context 

to create an appropriate response.  

For research, a common solution is to employ the Wizard of 

Oz technique (researcher controlling the robot remotely without a 

participant knowing [7]); some claim this is the most reliable way 

to do speech recognition [1], [4]. However, this approach is not 

deployable for use in practice, or unsupervised research such as 

longitudinal field studies. For deployed robots, solutions typically 

employ enforced structure or stratification to simplify the problem 

space. A common approach is key-phrase spotting, where 

algorithms only search for static predefined phrases [4], [8]  (e.g., 

“How’s the weather?”, “Can you dance?”). This unfortunately 

suffers from rigidity, where a person can be ignored or completely 

misunderstood with even small variants from a pre-programmed 

phrase (e.g., “what is the weather today” versus “how’s the 

weather?”).  

In this paper we present a simple, light-weight algorithm 

using standard signal processing techniques that enable a social 

robot to easily recognize speech start, pause, and stop.  

1 https://cloud.google.com/speech-to-text/ 
2 https://azure.microsoft.com/en-ca/services/cognitive-services/speech-to-text/ 
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2 Approach 

To detect important parts of speech: the start, small pauses, and end, 

we analyze the amplitude of a robot microphone audio signal. 

However, simply monitoring the amplitude (e.g., and thresholding 

it) is fragile, as it rapidly changes, and the target peaks (speech 

loudness) would depend on ambient noise, distance of speaker, and 

other related factors. Our solution is the following: 

1) Re-sample the audio to a lower-than-typical rate, to 

around 600 Hz. Why: high frequencies may be important 

for understanding details of speech, but are irrelevant for 

detecting start and stop of talking. Lower sample rate 

dramatically reduces computational cost. 

2) Calculate Root Mean Square (RMS) of the waveform with 

a 0.25 second window. Why: RMS provides a more 

accurate measure of how power (loudness) changes over a 

time window and frequency range than simple amplitude  

[9], which is rapidly changing. 0.25s was selected ad-hoc 

to balance large window (smoother result) with 

minimizing delay caused by require look-ahead. 

3) Calculate the logarithm of the RMS. Why: perception of 

audio loudness has a logarithmic relationship to power. 

This transform compresses the range, making the low 

amplitude signals higher and lowering the high amplitude, 

resulting in a more balanced dynamic range reflective of 

how people hear. 

4) Smooth the log RMS using a gaussian kernel over a 1 

second window. Why: reduce the impact of rapid changes 

(less than 1 second) and focus more on the general volume 

over the 1 second window. (Original and smoothed RMS 

data seen in Fig. 1). This adds a slight additional delay to 

detection. 

5) Take the derivative of the smoothed data. Why: enables us 

to analyze the change in RMS amplitude as well as the 

RMS amplitude itself. We use this to detect sudden 

increases and decreases, irrespective of changing 

background noise or closeness to the microphone. 

6) Test the derivative and filtered RMS value against 

thresholds to detect phase of speaking. Starting from no 

talking detected, monitor the derivative for a positive 

spike to mark beginning of talking. While talking, if there 

is a simultaneous low RMS value and negative derivative, 

assume a pause (see fig 2). If the pause continues without 

a new sufficient positive derivative spike, assume talking 

has ended. 
 

Figure 3 demonstrates all the stages of our processing in a 

14 second window, from raw data, to smoothed log RMS, 

derivative of the log RMS, and finally the thresholding result 

showing a short pause and a stop. Currently, our exact window 

sizes and threshold values (see next section) were chosen through 

trial and error. We are working toward automatically tuning these 

values based on the environment, for example, using baseline RMS 

noise over a given timeframe to set the target thresholds.  

3 Sample Code 
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We provide a sample code sketch here, including our specific 

parameters, to clarify the algorithm. A complete working 

MATLAB sample file is available permanently online <link 

removed for anonymization>; this code was used to generate 

graphs 1-3. 

data = csvread("44.1KHzPCMdatafile.csv"); 
 
% down sample PCM data, 44.1 kHz to 544.4Hz 
reducedData = resample(data, 1,81); 
 
% get RMS values and use the kernel to smooth the data 
RMSData=zeros(size(reducedData,1),1); 
 
for i = 137:size(RMSData,1) % .25 sec is 136 samples 
  RMSData(i) = rms(reducedData(i-136:i)); 
end 
 
RMSData = log10(RMSData+1); % match perception 
 
% use 1 second Gaussian filter 
RMSDataFiltered = conv(RMSData, GaussianFilter, "same"); 
 
% get derivative of RMS data 
Derivative = conv(RMSDataFiltered, [1 -1], "same"); 
 
% set treshold. RMS treshold based on "silence" at start 
DerivativeThresh = .004;  % chosen via trial and error 
RMSThresh = max(reducedData(1:250))*1.5; 
 
%test for status 
for i = 1: size(reducedData,1) 
    if (status ~= talking && ... 
            Derivative(i) > DerivativeThresh) 
        status = talking; 
    end 
    if (status == talking && ... 
            Derivative(i) < -DerivativeThresh && ... 
            RMSDataFiltered(i) < RMSThresh) 
        PauseStart = i; 
        status = smallPause; 
    end 
    if (status == smallPause && ... 
            (i - PauseStart) > 1088) %pause > 2 sec 
        status = stop; 
    end 
    detection(i) = status; 
end 

 

This code works by having full access to the waveform and 

processing it at once. For a live robot, we simply process live by 

adding the blocks received from the sound driver to our processing 

chain as they arrive. The only resulting delay is the larger of either 

our window size or the driver block size.  

5 Informal Validation 

We performed an initial validation by applying our algorithm 

against a range of samples from LibriSpeech [10], a dataset of read 

audiobooks in English sampled at 16 kHz widely used to train 

automatic speech recognition models; thus, we down sampled by a 

factor of 27, instead of the 81 previously used. We used 10 samples 

from their test set: 5 from their “clean” speech samples and 5 of 

“other” speech. We chose the longest samples we could find, 

ranging from 19 to 33 seconds and from different readers. Because 

these audio samples are cut to not have long pauses, we can only 

test the ability to recognize pauses and not fully stopping to talk. 

However, this is not a problem since the stopped state is only when 

the pause has been going on for too long. 

For these tests, the derivative threshold was set to 0.004 and 

the RMS threshold was tuned using the baseline approach 

mentioned earlier section 2: the RMS threshold was calculated as 

50% higher than the highest value in the first 250 samples of 

silence. We calculated success through visual inspection. 

Figure 4 shows one example, where the reader of the book 

section did multiple short pauses. All samples tested, from both the 

clean and other datasets, always registered a pause when a pause 

was present. If a person was breathing heavily between utterances, 

it would sometimes fail to recognize this as a pause. 

 6 Future Work 

While our initial prototype for detecting start, pause, and stop 

in speech has initial signs of success, we need to implement 

automatic detection and tuning of all parameters based on 

background noise and qualities of a particular robot microphone. 

Further, to better understand the limits of our approach we need to 

conduct a more formal and thorough evaluation, including a wider 

range of conditions and situations (e.g., background conversation 

noise, robot motor noises, etc.). 

7 Conclusion 

In this paper we present a simple and lightweight solution to 

capturing the beginning and end of utterances and conversation by 

a user. This leverages simple signal processing and is able to give 

reliable results without the need of computationally expensive 

algorithms or libraries that might not be available in different 

programming languages or robotic platforms. We conduct an 

informal evaluation of our solution where we observe initial 

positive results. This simple, lightweight algorithm supports 

exploring novel social robot designs and speech-based interactions 

that do not rely on the content of the speech. We envision that this 

approach can be used when computing power is limited or robust 

interaction is prioritized, and our algorithm can be a starting point 

for those wishing to prototype and explore such behaviors.  
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