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 Abstract 

Owing to the importance of training datasets in the 

performance of AI systems, recent work in Explainable 

AI (XAI) has focused on communicating information 

about training datasets to stakeholders. While 

explaining this information can bring many potential 

benefits for the receivers, like other AI explanations, 

they can also bring negative consequences. In this 

position paper, we describe how we can use training 

dataset explanations to study the negative 

consequences of explanations and to explore potential 

mitigation strategies. We discuss potential challenges 

that researchers might face in these explorations.  
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Introduction 

With the increasing use of black-box Machine Learning 

(ML) algorithms and Artificial Intelligence (AI) in 

automated decision-making systems, it has become 
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essential that stakeholders are educated and informed 

about these systems to ensure a good human-AI 

collaboration. To help stakeholders in this regard, 

transparency into these systems and how they work 

has been identified as of utmost importance 

[14,22,31]. To improve transparency, many 

explanation approaches have focused on providing 

information on how the systems make decisions and 

the factors that impact those decisions 

[2,6,10,12,16,35,36]. While these explanations can 

provide a range of benefits to the receivers (e.g., 

calibrated trust [9,15,25,27]), they can also bring 

unintentional negative consequences [13,21,24,29]. 

For example, sometimes the presence of explanations 

can hinder people’s ability to identify system mistakes 

due to information overload [29]. Further, explanations 

can sometimes result in overtrust and overconfidence 

[21,24]. Prior work has defined these unintended 

negative outcomes as pitfalls of explanations [20].  

One of the important components of ML systems is 

training datasets as the performance of these systems 

is highly dependent on the datasets and the training 

process [3,7,11]. To improve this aspect of system 

transparency, we have investigated how to 

communicate information on the training data and the 

training process to the stakeholders [1]. Our results 

thus far have been promising. Our studies have 

suggested that end-users perceive the explanations 

positively and that they have the potential to inform 

their trust and fairness judgments.   

Despite the recent attention from the explainable AI 

(XAI) research community [1,6,18,19], there are open 

questions regarding explainability pitfalls. In the 

context of our studies with training dataset 

explanations, we saw indications of participants 

misinterpreting information on the training data and 

that this potentially impacted their perception of the 

system in an unintended way (e.g., participants 

interpreted the demographic distribution in a balanced 

way and perceived the system to be well-trained and 

positively when the demographic was imbalanced in 

many aspects). Training dataset explanations might 

also potentially lead to overconfidence in the system in 

situations where the training dataset was strong, but 

other performance metrics are weak.   

In this position paper, we describe our approach to 

investigating potential negative consequences of 

training dataset explanations and generating ideas to 

minimize or mitigate them. We discuss how we can use 

training dataset explanations to potentially explore and 

gather insights into the impact of explanation 

presentation, the potential benefit of such explanations, 

and how they can result in negative consequences. 

Through these investigations, we aim to contribute to 

the XAI community’s ongoing work on understanding 

what types of transparency can contribute to building 

effective human-AI partnerships. 

Current State of Research on Training 

Dataset Explanations 

To explore the idea of enhancing transparency by 

communicating training dataset information, we 

designed data-centric explanations [1] that provide 

information on training data (e.g., how the data was 

collected, the demographics of the data, and the 

recommended usage of the data). We used existing 

dataset documentation frameworks [23] to generate 

the information about a dataset and present it to the 

user via a Q&A-based approach. Through a user study, 



 

we found that participants generally received this style 

of explanation positively and that the information 

impacted their trust and fairness judgments of the 

system. 

Prior work in XAI has shown that information 

presentation in an explanation can impact receivers’ 

perceived comprehension of the explanations [25,33], 

their understanding of the system [12], and their 

perceptions of system fairness [5]. Motivated by this, in 

an ongoing study, we are exploring information 

presentation in training dataset explanation and how it 

impacts receivers’ understanding of it. In our 

exploration, we compare two different presentations for 

training dataset information - the existing Q&A-based 

approach [1,23] and a narrative-driven data story 

generated by following established properties of data 

storytelling [26,28,34]. In a between-subject study 

where participants critiqued an automated hiring 

system, we found that the presentation style of training 

dataset explanations influences what type of 

information participants focus on in their critique, their 

overall comprehension of the explanations, and impacts 

their perceptions of the system. However, we also 

noticed the possibility of participants misinterpreting 

some of the presented information which could impact 

their ability to develop calibrated trust. For example, 

some participants seemed to interpret the demographic 

distribution of a dataset as balanced even when this 

was far from the case. These types of 

misinterpretations motivate further study of how 

training dataset explanations might negatively impact 

the receivers.   

Where Do We Go from Here? 

Reflecting on the importance of training data in AI 

systems and the results of our initial investigation, the 

potential of training dataset explanations as an 

important measure of transparency in AI systems is 

evident. However, to utilize the benefits of the 

explanation, we need a better understanding of what 

impacts this type of explanation, how they are used by 

stakeholders, and how they might potentially result in 

negative consequences. Further, we need to be alert 

about the potential challenges in studying the 

explanation. In the following paragraphs, we provide 

more details about these directions for investigation.   

Understanding the Benefits and Negative Impacts of 

Training Dataset Explanations 

To gain insights into how design decisions made in 

training dataset explanations impact users’ interaction 

with and understanding of the material, in our ongoing 

work, we are investigating the impact of presentation 

style. We have initial insights that receivers primarily 

focus on a subset of presented information and 

presentation style impacts their focus. Consequently, 

this potentially can negatively impact receivers’ 

perception of the overall system as they might end up 

ignoring certain aspects of the information. Beyond 

presentation style, there are other design factors (e.g., 

comprehensiveness, modality) that can also impact the 

explanations. For example, due to the huge volume of 

information that can be provided about a training 

dataset, it is possible that training dataset explanation 

can lead to potential information overload and leave a 

negative impact on the receivers.  

Based on these initial findings, we feel that it is 

important to gain a more systematic understanding of 



 

how design factors of training dataset explanations 

impact the receivers and how we need to adapt the 

information for different contexts and stakeholders. For 

example, what is the right balance between the breadth 

and depth of the information being presented? Are 

there certain aspects of information that are important 

only in a context-specific way? 

Identifying Strategies to Mitigate Potential Negative 

Consequences of Training Dataset Explanations 

As outlined in the previous section, training dataset 

explanations can potentially lead to unintended 

negative consequences (pitfalls) for receivers. Further 

investigations are required to identify strategies that 

can mitigate the potential negative consequences. 

Since these pitfalls can appear based on how receivers 

perceive and interact with the explanation, one way of 

approaching this research is to involve AI and XAI 

practitioners. As supported by prior research, they are 

the ones who are most involved in the design of the 

explanations [4,17,30], and therefore, might be best 

suited to identify how pitfalls might appear in an 

explanation. They can also provide strategies on how to 

prevent or lessen the potential pitfalls. Further 

evaluations with the potential receivers can then assess 

the impact of these strategies on different 

stakeholders.  

Challenges to Gathering Empirical Insights on How 

Stakeholders Use Training Dataset Explanations 

While we have initial data suggesting that training 

dataset explanations are received positively by users 

[1], we do not know how different stakeholders might 

use training dataset explanations in practice. Moving 

towards more real-world deployments requires 

addressing several challenges. For example, owing to 

the volume of information presented, our initial 

evaluation suggested that training dataset explanations 

might be more important in high-stake domains than 

low-stakes domains [1]. However, studying the utility 

of the explanations in a high-stakes real-life context 

requires access to participants with specific skill sets, 

making recruiting challenging. Given these types of 

challenges, scenario-based studies [32] are often used 

to simulate high-stakes situations, however, these 

study designs lack ecological validity and can lead to 

evaluation pitfalls (e.g., proxy tasks, subjective 

measures)  [8].  As such, there is a need for exploring 

the challenges with the evaluation of explanations, 

especially in high-stakes situations, to maximize the 

potential benefit of the explanations. For example, what 

are the challenges stakeholders face when using the 

explanation in practice? What is the most appropriate 

objective measure of evaluation?   

Additionally, being a global explanation that provides 

information about training data, it is possible that 

training dataset explanations might create good initial 

impressions and help in the onboarding process. 

However, this could lead to an overreliance on the 

system when it comes to individual decisions. It is 

important to ensure that stakeholders can use such 

explanations over time. Therefore, there is also a need 

to gain an understanding of how training dataset 

explanations (or other types of explanations) are used 

by stakeholders over time. 

Summary 

In this position paper, we described our approach to 

investigating training dataset explanations as a type of 

system transparency. We also discussed the need for 

further work to understand and handle the potential 



 

negative consequences of such explanations. We 

further touched on the potential challenges in studying 

this type of explanations and how we can work on 

maximizing the benefit of the explanations with the 

ultimate goal of having better human-AI collaboration.  
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