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ABSTRACT
Wepresent a novel framework for human-robot interaction designers to analyze and explore expec-
tations of their robot designs. It consists of a model of how people form expectations of robots, and
a taxonomy for classifying them. A known challenge in human-robot interactions is expectation dis-
crepancy, inwhich the expectations people formwhen interactingwith a social robot are not aligned
with its actual capabilities. This can disappoint users and hinder interaction. Research has proposed
ways tomitigate expectationdiscrepancy, but designers lack a systematic approach to analyzing and
describing expectations. We developed a rigorous theoretical framework by drawing from theories
and models from psychology and sociology on expectations between people, and by conducting a
field review of expectations in human-robot interactions. We further propose methods for design-
ers to leverage the framework in systematic analysis of how and why people form expectations of a
given robot and what those expectations may be. This can empower designers with greater control
over people’s expectations, enabling them to combat expectation discrepancy.
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1. Introduction

Social robots are designed to support collocated interac-
tion with people by leveraging outwardly lifelike social
features that people can readily understand [1]. How-
ever, when a person interacts with a social robot, they
may form a plethora of expectations of the robot based
on its design and their initial predisposition. For exam-
ple, a person may reasonably assume that if the robot
has hands and fingers, then it can pick up items [2].
Of course, the robot may not have this capability, cre-
ating an expectation discrepancy [2] where people may
not only misunderstand how to interact with the robot,
but may be surprised and disappointed by a lack of
ability, impacting the quality and success of interac-
tion [3]. These misunderstandings can have far-reaching
implications including misplaced trust and a host of
impacts on how robots integrate into society [4], plac-
ing the issue of expectation discrepancy – and man-
aging it – at the center of successful human-robot
interaction.

We use the term ‘expectations’ to refer to a person’s
beliefs, conscious or otherwise, about a robot’s capabili-
ties and potential behavior. Expectations of social robots
emerge from a range of sources, including decades of fan-
ciful media depictions [5,6], and are heavily influenced
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by the robot’s designed form and behavior [7,8]. Robot
designs can align a robot with some known mental cate-
gory (e.g. an animal) and thus imply capabilities which
are commonly associated with that category (e.g. can
think, has an emotional system, etc.) [9]. While out-
wardly human- or animal-like design features may be
effective for goals such as promoting familiarity [1] and
leveraging empathy [10], theymay simultaneously lead to
inflated expectations of human- or animal-like capability.
As these expectations emerge in part from robot design
choices, we may be able to mitigate or avoid inflated
expectations, and expectation discrepancy, by design-
ing robots that more accurately imply their capabilities
[11,12]. The first step toward this goal of enabling design-
ers to influence user expectations of robots is to better
understand this landscape of expectations: how and why
people form expectations of robots they encounter, and
what kinds of expectations they form.

Continuing the established tradition of consulting
work from human interaction to inform approaches to
human-robot interaction (e.g. [13–18]), we explored lit-
erature on expectations and human-robot interaction,
aiming to develop models of human-robot expectations
and expectation development. We analyzed key theories
that describe how people form and manage expectations
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of each other (human-human expectations), synthesizing
them from the perspective of interaction with robots.
This synthesis resulted in a novel model of the cognitive
process underlying human-robot expectation formation
that unpacks the influencing factors (e.g. robot design,
personal experience) and stages that a user goes through
to develop, maintain, and update their expectations. Fur-
ther, we conducted a field review of existing robots,
prototypes, behaviors, and literature on expectations
of robots more generally, analyzing them for potential
expectations and identifying commonalities and salient
patterns. This resulted in a novel two-dimensional tax-
onomy that describes the range of human expectations of
robots. Together, these two components (expectation for-
mation process model and taxonomy of expectations)
provide a novel, comprehensive framework for human-
robot expectations.

Finally, we present two new inspection methods for
human-robot expectations (systematic expectation dissec-
tion and cognitive expectation walkthroughs) that illus-
trate how our framework can be leveraged in practice
to analyze the expected capabilities of different robot
designs. To conclude, we conduct a critical evaluation of
our work to identify its effectiveness and limitations and
highlight opportunities for future work. Together, these
contributions (Figure 1) provide novel tools for ana-
lyzing potential human-robot expectations, to support
designers in gaining control over expectations and mit-
igating expectation discrepancies.

2. Related work

A range of existing frameworks describe interactions
between humans and robots, including those focused
on specific components and properties of an interac-
tion, such as, identifying frequent interaction patterns
[19], or classifying aspects such as interaction modalities
[20] or basic structural relationships of the participants
[21]. Others target specific domains, such as human-
robot dialogue, for example classifying instances as linear
or branching in nature [14], or identifying fine-grained
patterns like repetition [22]. Some frameworks relate
to outcomes, such as considering factors that lead peo-
ple to accept a robot into their homes [13], and many
consult peripheral areas to incorporate novel perspec-
tives into the field (e.g. consulting literary analysis for
human-robot dialogue systems [14]). In sum, our work
builds on this rich methodological tradition of synthe-
sizing knowledge from other fields to provide a human-
robot-targeted framework that offers structure and sup-
ports analysis of human-robot expectation formation and
discrepancy.

2.1. Impact of robot design on interaction

The impact of robot design on expectations, and thus
interaction, is well documented, with a large body of
work exploring the impact of specific robot design fac-
tors such as with respect to users’ trust in the robot (e.g.
[8,23,24]). Much of this work considers effects of robot
aesthetic form, following a common pattern where par-
ticipants are shown a series of robot variants and asked
to rate them on specificmetrics [24,25] (sometimes using
standardized scales, e.g. [26–28]). One common focus is
in linking features to anthropomorphism [29] and how
this impacts user reactions [8,30,31], such as the effect of
robot sound during movement [32], or the effects of the
robot’s embodiment (e.g. virtual vs. physical robots) on
aspects such as users’ trust [23,33].

Similar work looks additionally to the impact of robot
behaviors on user expectations (e.g. [7]), including com-
monly testing the effects of robotmistakes on perceptions
and interaction [34–38]. Others have studied the impacts
of using social cues [39] such as facial expressions [40],
gaze [41], verbal communication [35], and self-gendering
[42]. More holistically, a recent work explored using
metaphors to explain and understand robots, suggesting
that placing a robot into a known, familiar social category
can support a person to understand a robot and shape
expectations [43]. We complement this growing body
of largely-empirical work with a procedural, explanatory
perspective on howmetaphor and resemblance to known
entities can contribute to a person’s expectations.

2.2. Expectation discrepancy

The impacts of expectation discrepancies in human-
robot interaction are well documented, often highlight-
ing user disappointment, such as when a person attempts
to talk with a robot that cannot converse [44]. These dis-
crepancies can detract from a user’s experience [45] and
in many cases can create a sense of incompetence and
lower trust [46], while a robot exceeding expectations
may cause a person to trust and rely on it more [3] (in
some casesmistakenly, with potentially dangerous conse-
quences [4]). This relationship between expectation dis-
crepancy and user impressions ismore nuanced however,
as some robot failures can in fact increase familiarity and
likeability [34,36–38]. A more developed understanding
of how users form and maintain expectations of robots is
thus necessary to determine both how and when expec-
tation discrepancy should be mitigated.

Methods for moderating expectations to be more in
line with robot abilities include explaining the capabili-
ties [12], making forms congruent to function [47,48], or
having the robot use expressive gestures of incapability
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Figure 1. Using literature on expectations in both human-human and human-robot interactions, we produced an analytical frame-
work for examining people’s expectations of robots, and proposed inspection methods to employ this framework. These methods are
demonstrated in case studies on example robots, including the SoftBank Pepper [102] (pictured), in Appendices A and B.

[11]. Rosén et al. [18] offers a framework for evaluat-
ing human-robot expectation discrepancy that adapts a
human expectation formation model [49] identifying a
set of factors and metrics to measure expectations and
discrepancy. This measures a person’s affect toward the
robot, expectation of easy interaction, and cognitive load
during interaction to identify expectation discrepancies.
Our contributions add to this emerging body of work
by offering a holistic framework for describing and clas-
sifying expectations, and structured tools to systemati-
cally analyze how expectations emerge and evolve during
interaction.

3. How people form expectations of robots

In this section we analyze current knowledge of how peo-
ple build expectations of other people to inform how we
may expect people to make expectations of robots. We
rely on the assumption that people tend to treat physi-
cally embodied robots as if they were alive [50], follow-
ing concepts of anthropomorphism and zoomorphism
(collectively, animorphism), the tendency for people to
attribute life-like or human traits to non-human entities
[50–54]. Evidence has mounted supporting the fact that
people treat robots as lifelike social entities [50] (even
more than with other interactive technologies such as

personal computers [55,56]) and demonstrating a range
of effects including feeling obliged to assist robots [57],
engaging them with rapport building behaviors [58], etc.

This tendency may be biological and instinctual, as
even infants react to robots as if they were alive [59]. It
may also be based in deliberative (conscious) elements
[50] or psychological motivations, such as one’s need
for socialization or potentially inventing social actors
(e.g. a social robot) to interact with and rationalize their
environment [51]. Regardless, studying how people form
expectations of other people can inform how they may
form expectations of robots.

3.1. Fundamentals of forming expectations
between people

To understand how people form expectations of robots
we conducted a literature review of human-human
expectations in communication studies, sociology, inter-
action studies, and cognitive science to identify the dom-
inant theories and models. We did not conduct a full
systematic review, which would have mapped out and
provided a comparative analysis of the state of the field
(including edge cases and open problems) [60,61], but
instead aimed simply to leverage relevant aspects of
the current understanding of this phenomenon using
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a standard literature review with a narrative synthesis
[60,61], to inform how we may expect people to form
expectations of robots. While our exploration and selec-
tion contains a qualitative component [60], the result is
the identification of four rigorously-developed and well-
established theories within their respective communities,
serving as critical grounding for our contributions. We
present and analyze these below, and synthesize into a
cognitive process, to explain how people will form expec-
tations of robots.

This process – drawing inspiration from human-
human interaction to inform approaches to human-robot
interaction – follows prior successful work, such as using
models from social psychology to understand acceptance
of robots in homes [13], analyzing human behavior to
inform how robots should act in public spaces [15,16],
consulting literature on human conversation to develop
frameworks for human-robot dialogue [14,17], or closely
related to this work, leveraging a model of expectation
development in people to help evaluate expectation dis-
crepancy in interaction with robots [18] (as discussed in
Section 2.2).

3.1.1. Message passing
A predominant paradigm for analyzing inter-personal
interaction is message passing [62], which deconstructs
complex interaction into a serial set of discrete mes-
sages between interlocutors. For example, the encod-
ing/decoding model [63] breaks complex communication
into a series of messages that are broadcasted by one
party (e.g. spoken, facial expressions, gestures, etc., inten-
tional or not) and observed by a receiver (e.g. by lis-
tening or watching). All messages go through multiple
stages before a receiver can interpret them: messages are
encoded, sent (by the sender), transmitted through a
medium (e.g. physical world), received, and decoded (by
the receiver), before one can make sense of them.

Each phase provides an opportunity for information
to be altered, lost, or misconstrued (i.e. corrupted [63]).
The observer thusmust rely on their particular, imperfect
decoding ofmessages, and not any necessarily truemean-
ing or intent, to form expectations. For example, people
may erroneously decode a scene and see faces in inani-
mate objects where none exist (pareidolia [64]), receiving
and decoding amessage and developing inaccurate inter-
action expectations, even when nomessage was explicitly
sent. The receiver must resolve this expectation discrep-
ancy using additional information.

This framing highlights several important points per-
taining to constructing expectations of robots. First,
we can dissect complex human-robot interactions into
discrete units, or messages (e.g. a smile, a particu-
lar response, that a robot has hands) for targeted

analysis regarding expectation formation. Second, we
assume that all information is heavily filtered and
modified from the transmission and receiving process;
these imperfect messages, emitted by a robot, shape
expectations.

3.1.2. Expectancy violations theory
Expectancy violations theory [65] is a standard lens
in communication studies which unpacks interaction
between two people. It emphasizes how people hold
and maintain expectations of an interlocutor as inter-
action unfolds or changes. Pre-existing or initial expec-
tations (at the start of an interaction) draw from the
person’s background and disposition, including social
expectations and prior experience, whether in general,
with the particular interlocutor, or with related enti-
ties. As the interaction proceeds, new information may
not match expectations, creating an expectancy violation
[66,67]. Violations can be dramatic, such as an expected-
to-be calm person becoming surprisingly violent, but
are typically more incremental, such as a person tak-
ing an unexpectedly informal and familiar tone given a
professional situation, or even mundane and unremark-
able, such as an unexpected switch in topic within a
conversation.

Violations iteratively feed into evolving expectations:
new information leads to expectations being revised
rather than replaced. Thus expectations are relatively per-
sistent and may be based on pre-conceptions or prior
experience [67]. This highlights the importance of prior
expectations on interpreting violations. For example,
consider if a self-proclaimed topic expert (initial expec-
tation) joins one’s team, only to demonstrate moderate
performance (violation); the updated expectation may
be that the person has poor self-assessment or is dis-
honest. Instead, if the person introduced themselves as
a beginner (initial expectation) but then demonstrated
the same still-unexpected moderate behavior (violation),
one may instead lead to updated expectations of the per-
son being modest or a fast learner. In this way, expecta-
tion formation is reflexive: rather than being set accord-
ing to most recent observations, expectations are the
accumulation of ongoing incremental violations over
time.

In human-robot interaction, initial expectations may
be dominated by predisposition towards technology and
prior ideas, often shaped by media portrayals (as argued
in [13]), particularly given limited prior experience with
robots. These initial expectations are likely to persist
even as one interacts with a real robot. Over time, how-
ever, we anticipate expectations to evolve incrementally
as violations accumulate.
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3.1.3. Simulation theory
Simulation theory provides a complementary view on
expectations, postulating that people develop expecta-
tions of others by attributingmental states and projecting
their own likely behavior [68], conducting internal cog-
nitive simulations of how they themselves would behave
given the situation [69]. Mirror neurons may provide
biological evidence of this, where neurons activate when
observing an action as if one were doing the action them-
selves [68,70]. In contrast, theory theory [sic]1 [71] pos-
tulates that people instead systematically apply logical
rules or cognitive theories to develop their expectations
of how others may behave. Pragmatically we expect peo-
ple to leverage a combination of simulations and internal
theories to develop expectations of others’ behavior.

These simulations are necessarily constructed from
the observer’s individual perspective, biases, and knowl-
edge of the others’ circumstances [72], which formaplau-
sible understanding [73]. This explains common prob-
lems such as naïve realism, where people see their own
experience as an objective reality from which to under-
stand others [74], and realist bias [75] or the curse of
knowledge [76], where a person assumes that their knowl-
edge is shared by others. For example, consider observing
someone litter near a clearly visible garbage can. The
observer may simulate what would lead them to litter
[75], perhaps concluding that the litterer has poor moral
character [74] (based on their worldview against litter-
ing). However, suppose the observer knows the litterer
personally and would expect better behavior. This alter-
nate perspective shapes the simulation, and may instead
lead them to hypothesize that the litterer did not notice
the trash can, updating their expectation accordingly
[72,73]. In either case, simulations are rooted in the per-
spectives of the observer [71].

Simulation theory has been applied to animals and
mechanical devices [77–79], suggesting that anthropo-
morphism helps people fit observations into existing
knowledge to support simulation [80]. Simulation theory
supports our position that animorphism leads people to
develop lifelike expectations of robots. However, robots
present important differences (e.g. robot design, previous
knowledge of robots, etc.) that may influence simulations
and thus expectations.

3.1.4. Embodied interaction
Embodied interaction is integral to understanding how
people formexpectations of others, including robots [81].
From foundations in Heideggerian philosophy, embodi-
ment provides a phenomenological approach to commu-
nications studies (e.g. see [82]), and has become central
to human–computer interaction under the perspective
of embodied interaction [81]. Embodiment highlights the

role of a person’s body and existence within the world
(tangible, social, etc.) as foundational to cognition and
interaction. All interactions with an ‘other’ – human,
animal, or robot – are mediated through one’s embod-
iment in the world, their structural coupling with their
environment [83]. In other words, a person’s experience
of the world (expectations, simulations, interpretations,
etc.) cannot be decoupled from their body (size, shape,
abilities, senses) and social reality (race, gender identity,
nationality, background, etc.).

Embodiment provides a foundation for understand-
ing the critical role of one’s own embodiment in message
interpretation, expectations violations, and simulation
theory. All interpretation is foundationally biased from
an individual’s own perspective, regardless of the reality
of robot capability. Taking this to logical extremes, sym-
bolic interactionism argues that people act according to
an understanding of an object rather than the object as it
truly is, embeddedwithin the context inwhich the person
exists [84]. We can consider society itself to be con-
structed from embodied interpretations formed through
interactions between people [85].

We analyzed and introduced prevailing theories
of how people develop expectations of other people,
through passing and interpreting messages, and inter-
preting the imperfect information to build and refine
expectations of others. This includes iteratively updating
expectations (through violations) and cognitive simula-
tions of how one would act (simulation theory), all from
an individual’s particular embodiment. Below we ana-
lyze and synthesize these ideas from the perspective of
human-robot interaction, developing a cognitive process
that explains how a person may form expectations of a
robot.

3.2. Synthesis of human-human expectation
formation

We synthesize the above discussion into a set of key
points for understanding how we may expect people to
form, update and maintain their expectations of a robot
over time, culminating into a model of the cognitive pro-
cess of human-robot expectation formation.

Embodied interaction highlights how people inter-
act with robots, with their personal complex physical
and social contexts [86] only narrowly overlapping with
the robot’s presence within the world [83]. Thus all
information received from a robot goes through this
limited narrow overlap of embodiments, and all obser-
vations, messages, and violations are colored by one’s
biases, world view, etc. (Figure 2); expectations result
from observed robot capabilities interpreted within one’s
embodiment. For example, a robot’s cloud computing
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Figure 2. Embodied interaction between a person and a robot
where each party is physically and socially embodied and struc-
turally coupled to the world. Interaction between the two parties
can only occur at the intersection between their embodiments.

or facial recognition capabilities are irrelevant if a per-
son cannot observe or understand them (e.g. as with
[87]); in this case, the robot’s world would include what
it can access over the internet, but this online environ-
ment is not a part of the person’s observed world. We
cannot expect people to self-educate, reflect on, or to
analyze observations to understand robot abilities. Thus,
our first insight into the expectation formation process
is that individual perspectives dominate expectations
more than any objective reality.

Animorphism, embodied interaction, and simulation
theory collectively posit that people perceive social robots
and build expectations as if they were alive. People have
biological and social tendencies toward animorphism,
understand others by simulating their actions [68,70],
and have mirror neurons that activate when observing a
robot [88–90]. Evidence of this continues to mount for
both human-like [88,90] and mechanical designs [89].
Following, we anticipate that people will apply naïve real-
ism [74], projecting their personal circumstances, rea-
soning, and motivations, onto robots to interpret obser-
vations and form expectations (Figure 3). Thus, our next
insight is that peoplemake sense of robots and observa-
tions in terms of their own (or another person’s) likely
behavior.

Regardless of designer intent for a robot, the encod-
ing/decodingmodel [63] highlights that all signals (robot
design, behaviors, etc.) are transmitted and translated
before being interpreted (Figure 4). As we expect people
to draw more from their own understanding than objec-
tive robot reality [84], message interpretationmay rely on
robots as culturally-constructed concepts (e.g. fantasti-
cal media depictions) more than as technological objects
[91,92]. We cannot expect people to clearly distinguish

Figure 3. We expect people tomake sense of observations using
self-simulations based on what they observe. Here, observing a
robot with closed eyes, lowered head, and limp arms, a person
may simulate themselves, and linking to human sleep, conclude
that the robot is in a sleep-like state.

between fact and fiction for expectations of robots [91].
For example, even if a robot is designed to look station-
ary by not having legs, a person may apply media-based
expectations of robots beingmobile and assume the robot
has hidden wheels. Thus our next insight is that a robot’s
designed features (e.g. visual appearance, behaviors)
rely on individual interpretation and only have indi-
rect influence on expectations.Designers only have lim-
ited power to directly shape expectations and should
consider designs within the interpretation context.

Simulation theory and embodiment both highlight
how an individual’s predisposition and background
influence how they interpret received information – ten-
dencies that are likely to resist change, even when con-
fronted with new information [72]. Consequently, new
information is processed within one’s embodiment and
predispositions to update existing (perhaps prior) expec-
tations. Expectations tend to be resistant to change, and
violations rarely lead to entirely new expectations; rather,
they evolve reflexively [67]. It generally requires accu-
mulated violations to greatly alter expectations, even
quickly-adopted first impressions [93]. For example,
empirical evidence in HRI has demonstrated the last-
ing effect of first impressions [94], and how impressions
evolve with repeated interactions [95] (Figure 5). This
underscores the importance of understanding a person’s
background when predicting how they will interpret
robot designs. For example, the pratfall effect demon-
strates how a person may be seen as more likable when
they make mistakes, if they were initially seen as compe-
tent [96]. Conversely, a person previously seen as incom-
petent may be seen as less likable upon making the same
mistake, a result also observed in human-robot interac-
tions [36]. This results in the insight that expectations
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Figure 4. Any objective robot reality is translated and filtered, withmany opportunities for alteration and error, and highly biased by the
user, before it feeds into building a person’s understanding and expectation of the robot.

Figure 5. Expectations evolve during interaction, starting from
a-priori beliefs; new information modifies existing expectations.
For example, an observer (1) upon seeing a humanoid robot
may assume intelligent interaction ability. (2) Poor conversation
behavior may lower expectations but the personmay still assume
it can talk. (3) Only after observing continued poor ability do
they perhaps expect it cannot talk at all. Initial expectations thus
change gradually, and can be recalcitrant in the face of contrary
evidence.

are biased toward initial impressions, relatively resis-
tant to change, and are reflexively updated with new
information, rather than being replaced.

All these insights emphasize the significant conceptual
gap between the objective reality of a robot’s capabilities
and actions, and expectations that people form about the
robot, with many steps of indirection, translation, and
interpretation.

3.3. Model of the cognitive process of human-robot
expectation formation

The four key insights presented in Section 3.2 each
describe an important component of human-robot
expectation formation. Shifting our focus more broadly,
we further synthesize these points into a detailed pro-
cess that describes and analyzes how we expect a per-
son to develop and maintain expectations of a robot
they encounter. This cognitive process model encapsulates
several simultaneous processes and inputs that shape a
person’s evolving expectations of a robot.

For illustrative purposes we detail a potential path-
way through the inherently parallel process (Figure 6). A
robot emits visual and behavioral design signals, which
are encoded through its embodied form as they are trans-
mitted into the environment. Alongside these are periph-
eral signals that provide exposition such as introducing
the robot or the context of use (e.g. a factory), which
may not relate to objective robot capabilities. A person
receives these signals, interpreting and processing from
within their biased physical and social embodiment. All
of these signals together become inputs into the person’s
internal cognitive processes of expectation formation.

The person simulates what their observations would
mean for them, promoting animorphic interpretation.
This feeds into evolving robot expectations, weighted
toward persistent predispositions and prior expectations.
Observations feed back into long-term experiences and
become prior expectations that over time influence new
ones.

Our cognitive process model helps unpack the sig-
nificant gap between robot design, objective capabili-
ties, and resulting expectations, as a concrete analysis
tool for exploring expectations and anticipating results of
hypothetical robot designs. Designers can thus use this
model to support efforts of mitigating expectation dis-
crepancy while acknowledging limits of designer influ-
ence. In the following section, we employ this model as
an exploratory guide to consider the range of possible
expectations that people may form of robots.

4. Classifying expectations: a novel taxonomy

So far, this paper has followed the trend of using ‘expec-
tations’ less formally to refer to general beliefs in the
presence or absence of robot qualities and capabilities
(e.g. [2,7,45]). However, designers needmore precise lan-
guage to specify and differentiate expectations, for exam-
ple, that a robot can physicallymove or be a friend.While
some work provides specific definitions, such as using
future event probabilities [18], these are limited to tar-
geted instances. Instead, we develop a broad taxonomy
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Figure 6. Our proposed Cognitive Process of Human-Robot Expectation Formation illustrating how people form andmaintain expecta-
tions of robots.

that covers the wide range of expectations regarding a
robot or interactions with it.

4.1. Development process

Through our background investigation into human-
robot expectations, we found no existing literature enu-
merating or quantifying the types of expectations that
people may develop. Thus, we conducted a semifor-
mal field review to generate a representative expectation
dataset with broad coverage which we could inductively
analyse for dominant themes, focusing on saturation of
expectations discovered. We did not conduct a system-
atic review as our process does not require a full nuanced
summary on the state of knowledge [97]. While a sys-
tematic reviewwouldmore exhaustively identify possible
expectations, our goal of identifying the key, but broad
themes and categories of expectations does not require a
full enumeration. However, we highlight that our result-
ing taxonomy can serve as structure for more exhaustive
systematic reviews.

We collected research literature to represent recent
results and the state of expectation discourse, as well as
robot platform and behavior design exemplars (both real
and science fiction) to serve as data for cognitive pro-
cess analysis (Section 3).We searched via Google, Google
Scholar, and the ACMDigital Library using the keywords
‘robot’, ‘expectation’, ‘impression’, and ‘evaluation’. This

resulted in a corpus of research papers, images, videos,
and behaviors representing a broad range of expectations
and potential design elements that we aim to cover with
our taxonomy.

Our next step was to analyze this corpus to enumer-
ate a range of possible expectations that people may
form, using literature, analysis and informal brainstorm-
ing supported by our cognitive processmodel (Section 3).
This process of open-ended ideation of expectations was
conducted following standard HCI principles to explore
potential user experiences [98]. Using real data from
expectations we found in the literature as a starting point,
we expanded our list by considering how these expec-
tations may evolve and change over the course of an
interaction based on ourmodel of expectation formation.
For example, starting from the expectation that a robot
can talk (a simple expectation which is well-attested in
the literature), we considered interactions in which the
user has this expectation violated to examine how they
may interpret the robot’s silence. As our model antici-
pates that the user will understand the silence in terms
of their own behavior, they may conclude that the robot
is refusing to speak to them, and develop a new expecta-
tion that the robot is aloof, or perhaps hard of hearing,
depending on the context and their past experiences.
Thus our model served as a generative exploration tool
to aid in the generation of a broad, plausible corpus of
expectations of robots. This resulted in an expansive list
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Figure 7. The SoftBank Pepper [102] (left) and Sony aibo [103]
(center) used as examples throughout this section.

of plausible expectations with wide coverage of robot
designs.

Following, we employed standard inductive, itera-
tive thematic analysis to distill these expectations into a
minimal set of dominant categories [99], supported by
informal affinity diagramming (e.g. [100]). We started
with initial intuitive categories, iteratively redefining and
reclassifying expectations until our categories succinctly
and accurately described our corpus. As is common with
qualitative methods, we note that this process involves
a degree of subjectivity that is embedded in the result-
ing classification [60,101]; however, this process results
in a novel and robust perspective to support a deeper
understanding of people’s expectations.

4.2. Taxonomy of expectations

Based on the salient themes identified in our review, we
constructed a two-dimensional taxonomy: one dimen-
sion categorizes expectations based on the type of capa-
bility (e.g. physical, social, etc.) and the other categorizes
based on the level of abstraction (e.g. motor abilities vs.
attributed personalities). For brevity we describe these
categories with examples involving the SoftBank Pepper
[102] and Sony aibo robots [103] (Figure 7) instead of
extensive data from our corpus.

4.3. Taxonomy dimension: domains of expected
capability

We identified three primary groupings of expectations of
robot capabilities (Figure 8):

Physical Capabilities – People form expectations about
how a robot may interact with and move within its phys-
ical environment. This can include expectations of the
robot’s actuators, including manipulators or wheels, and
the strength, finemotor, or generalmovement or locomo-
tion ability, etc. of those actuators. For example, people
may expect that Pepper can use its arms to wave at them,
or the legged aibo robot to walk across a room. This
includes outputs such as light or sound emissions, and
sensory capacities such as being able to see, feel, touch,
or receive radio transmission.

Social Capabilities – People form expectations about
a robot’s social abilities, including communication and
participation in society. For example, they may expect
that the humanoid Pepper can speak, hold a conversa-
tion, use social gestures (such as a wave or high five), or
pay attention to a person. Similarly, people may expect
the dog-like aibo to have internal emotional states and
to be able to interpret theirs to some degree. People may
further expect a robot to understand interpersonal rela-
tionships, social dynamics in a group, or participate in
social conventions such as yielding access to an elevator
when appropriate [104].

Computational Capabilities – People form expecta-
tions about a robot’s ability to perform computation,
encompassing a similar range of expectations to those of
a traditional PC. People may expect that Pepper can per-
formmathematical or logical calculation, or that aibo can
remember their face and past interactions with inerrant,
computer-like precision. This can include access to infor-
mation sources (e.g. databases, encyclopedias, etc.), or
learning capability.

Note the blurred boundaries between categories in
Figure 8; this indicates that expectations can span cate-
gories. For example, the expectation that aibo can learn
to perform tricks relates to both physical abilities (per-
formmovements) and computational abilities (learn and
remember tricks), and the belief that Pepper will shake a
person’s hand is both physical and social.

4.4. Taxonomy dimension: levels of expectation
abstraction

We found expectations to range from purely mechan-
ical (e.g. a motor can move [105]) to high-level com-
plex behaviors such as intentions and personalities (e.g.
[106]). Our analysis resulted in four ordinal abstraction
levels (Figure 9).

Rudimental Expectation – People form expectations of
basic mechanical robot capabilities, independent of the
robot’s environment. For example, people may anticipate
that Pepper can speak and perform calculations, or that
aibo’s legs have motors sufficiently strong to walk. This is
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Figure 8. Examples of expectations in each of the three domains of expected capability. The blurred domain boundaries indicate that
some expectations may span multiple domains.

Figure 9. Examples of expectations representing each of the four levels of expectation abstraction.

expectation of raw capability, not a robot’s ability to use
it to perform operations.

Operational Expectation – People form expectations
that a robot can use its rudimental capabilities (e.g. has
motors, can calculate) to perform specific operations in
its environment (e.g. can lift a box, can solve amath prob-
lem). This covers what a robot could do in practice; for
example, a person may expect that Pepper can engage in
friendly conversation (given speech ability), or that aibo
could climb over a small obstacle (given its legs).

Purposive Expectation – People will form expecta-
tions of a robot’s goals, what it intends to do, using its
operational capabilities. For example, given that a per-
son believes a warehouse robot can lift a box, they may
expect that it will try to collect boxes. Conversely, oper-
ational capability and intention may not align; a person
may believe that Pepper will not idly chat with them in
a busy, task-focused context, despite having that ability.
Expectations of high-level goals can shape expectations
of intended actions; if an aibo aims to navigate across the
room, a personmay expect it to climb over obstacles in its
way. Purposive expectations can further draw from ani-
morphic attributions of will and desire, such as believing
that aibo – analogous to a dog – wants attention from the
user and will act accordingly.

Characteristic Expectation –People will form expec-
tations of a robot’s characteristic behavior, analogous
to a personality and similar to animals or other peo-
ple. For example, one may assess their particular aibo as
being strong and reliable or a Pepper they encounter as
being friendly but professional. These traits can be more
or less animorphic in nature (e.g. ‘strong’ may simply
refer to an overall assessment of the robot’s mechanical
strength, while ‘friendly’ ascribes a life-like personality to
the machine).

Note how Figure 9 has clear boundaries, in contrast to
the blurring in Figure 8: all expectations in our corpus

could be cleanly placed into a single expectation abstrac-
tion category. However, we found considerable depen-
dency between the layers of abstraction. For example, if
a person expects that a robot has eyes and can see (rudi-
mental), it may be natural to assume that it can recognize
people (operational) and is trying to monitor them (pur-
posive). Inversely, if a person expects a robot to be chatty
(characteristic), this may infer lower-level expectations
such as that the robot wants to talk to them (purpo-
sive), is able to hold a conversation (operational), and has
speakers and a microphone (rudimental). Expectations
resulting from this logic may not match robot capability,
resulting in expectation discrepancy.

4.5. A two-dimensional taxonomy of expectations

Together, the domains of expected capability and levels of
abstraction form two orthogonal dimensions of a taxon-
omy of expectations one may develop for social robots,
enabling us to categorize and position how expectations
relate to one another. Any given expectation has both a
capability domain (physical, social, computational) and
a level of abstraction (mechanical, personal, etc.).

We propose a polar two-dimensional diagram to visu-
alize the taxonomy, plotting domains of expected capa-
bility along the angular axis (around the circle) and levels
of expectation abstraction along the radial axis (from the
outside inward to the center, Figure 10).Domain is simple
to differentiate at the rudimental level, for example, with
the ability to move (physical), calculate (computational),
or talk (social). However, this clear binning is more chal-
lenging at higher levels of abstraction; for example the
operational ability of giving a hug has physical and social
components, or a robot being ‘greedy’ may have more
vague social and computational components. We visu-
alize this transition in Figure 10 by having both clearly
divided regions at the outer layer, gradually blurring
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Figure 10. A visualization of our two-dimensional taxonomy of
expectations of robots, with capability domains on the angular
dimension and levels of abstraction on the radial dimension. Note
that the line between the capability domains blur as one moves
further away from rudimental capabilities, as the deeper, more
abstract expectations (e.g. that a robot is friendly) may involve
multiple modalities. A user’s set of expectations of a robot may
be plotted on this diagram in order to visualize them and identify
common areas of discrepancy, as in Section 5.

together toward the more abstract core. Using this visu-
alization we could imagine plotting specific expectations
within the space, which we will explore in the following
section.

We emphasize that the blurred, continuous depic-
tion of the domain dimension is not meant to imply a
precise scalar quantity, but rather an approximation to
represent the way that more abstract expectations can
straddle across dimensions. A polar diagram was cho-
sen to represent this taxonomic space because it high-
lights these increasingly blurred boundaries. While we
explored other arrangements that may be simpler at first
glance, including a rectangular matrix, we found that
the inability to coherently display all domain boundaries
made it difficult to highlight the proximity of the domains
on the edges of the diagram.

5. Sample applications: inspectionmethods

In this section we aim to bridge the gap between the the-
ory and practical application of our framework by pro-
viding analytical tools using our framework that support
researchers and designers in engaging with the problem
of expectation discrepancy. Drawing from HCI analyt-
ical evaluation methodologies [107], we designed two
analytical techniques for exploring expectations: system-
atic expectation dissection, to identify areas of expectation
discrepancy, and cognitive expectation walkthroughs, to
support explanation and understanding of identified dis-
crepancies. We present these methodologies below, with

full case-study applications provided in Appendices A
and B.

We note that these methods serve as a component
of our evaluation: the sample applications provide an
illustrative evaluation that highlights how our frame-
work can be used to focus a designer’s attention and
guide the exploratory process. This follows established
practice in human–computer interaction [108], particu-
larly with theoretical frameworks such as this [14,20,62],
where evaluation of a toolkit’s potential is provided
through concrete demonstration of the framework’s
application.

5.1. Systematic expectation dissection

We propose systematic expectation dissection as a novel
methodology for leveraging our framework to analyze
observed or predicted user expectations of a robot. This is
an exploratory process that guides a designer to system-
atically explore potential user expectations and discrep-
ancies within our full taxonomy space. Designers plot
results on a simple visualization to organize them, iden-
tify trends or blind spots, and to communicate results to
others.

5.1.1. Visual expectation plotting on the 2D
taxonomy
We can plot expectations within the two-dimensional
visualization of the taxonomy as presented in Figure 10.
As the taxonomy is not scalar, but rather nominal (capa-
bility domains) and ordinal (levels of abstraction), we
plot within general regions of the visualization only and
are not concerned with exact coordinates.

When plotting an expectation, we denote whether the
person expects the robot to have or not have an ability,
which we call polarity:we plot a+ to indicate that a robot
has a feature (e.g. it can talk) and a – to indicate that
the robot does not have a feature (e.g. it cannot walk).
Finally, we include the relationship of the expectation to
the robot’s capabilities, for example, an accurate expecta-
tion or a discrepancy. We represent this using color, with
blue representing accurate matching (e.g. +, −) and red
indicating a discrepancy (e.g. +,−). For example, a cor-
rect belief that a robot cannot walk is a matched, negative
expectation (−) while a mistaken belief that a robot can
speak is a positive but discrepant expectation (+) (shown
in Figure 11).

We illustrate these as binary for simplicity while
acknowledging that a given expectation may not be sim-
ply matched or mismatched, but rather more nuanced.
However, our coarse-grained classification supports
exploration and simple visualization.
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Figure 11. We can plot expectations into the taxonomy space
using the icons explained in Section5.1.1. Expectation1 (−) repre-
sents a correct belief that a robot cannot walk, 2 (+) is a mistaken
belief that a robot can speak, 3 (+) is a correct belief that a robot
can solve a givenmathproblem, and 4 (−) is amistakenbelief that
a robot won’t want to shake a user’s hand.

5.1.2. Systematic expectation dissection procedure
One starts a systematic expectation dissection by com-
piling a list of expectations one may hold about their
robot. This could result from exploratory user studies
on the robot, analogizing from studies of similar robots
or relevant literature, or critical analysis of the design.
Depending on the context of interest, this list may be
focused on expectations at a particular point in the inter-
action, such looking specifically at initial impressions, or
at expectations developed after extensive interaction. The
objective in this step is to collect sufficient data to support
a designer or researcher in engaging with the full range of
potential expectations.

Following, one classifies each expectation regarding
the polarity and matching (e.g. using +, −, +, −) plots,
and starts to map them onto the taxonomy space. Each
expectation is first classified into a level of abstraction,
and as appropriate, assigned to a capability domain. For
overlapping domains an expectation can be closer to or
on a boundary, or placed more into the blurred regions.
This process will produce an aggregate graphical sum-
mary of potential expectations that highlights both polar-
ity as well as discrepancies. Designers can examine this
summary to identify patterns, for example concentrated
areas ofmatched ormismatched expectations, whichmay
suggest strengths and weaknesses of the robot’s design.

To assist with applying this technique Appendix C
includes a printable visualization template (Figure 10)
and the expectation process model (Figure 6) for refer-
ence.We envision that a designermay print this sheet and
use it to manually plot user expectations of their robot.

Figure 12. Example expectations of the SoftBank Pepper [102]
visualized with our expectations taxonomy.

5.1.3. Systematic expectation dissection case studies
We performed four case studies, applying our system-
atic expectation dissection technique to four robots, for
demonstration and informal evaluation purposes. We
analyzed the SoftBank Pepper [102], Boston Dynamics’
Atlas [109], the Sony aibo [103], and SnuggleBot [110].
We selected these as representative of dominantmorpho-
logical categories of social robots: Pepper and Atlas are
humanoid, approximately human-sized robots; aibo is a
pet-inspired zoomorphic robot; and SnuggleBot is a ‘cud-
dly’ companion robot (similar to Paro [111] and LOVOT
[112]). This selection serves to illustrate how the tech-
nique can be applied across a diverse selection of robot
designs, with two robots of similar form (Pepper and
Atlas) included to show how it can be used to highlight
the effects of smaller changes in design.

To conduct these case studies, we generated dummy
expectation data rooted in our field review of expecta-
tions (Section 4) to serve as a sample input to the process
and to demonstrate the results of a systematic expectation
dissection and to support analysis.We present these visu-
alizations shown in Figures 12–15. We present the full
details of these case studies (including the enumeration
of the sample expectations) in Appendix A.

These visualizations highlight clusters of expectations
and support comparison. For example, perhaps Snuggle-
Botmay not generate asmuch computational expectation
as the other robots, and Pepper may be more ‘balanced’
across the taxonomy. Further, this highlights clusters of
expectation discrepancy (red plots); for example, Snug-
gleBot may have more social discrepancies while Pepper
may generate discrepancies across the whole taxonomy.
Despite their similar forms, Atlas may generate more
physical expectations than Pepper, while maintaining
similar but more discrepant social expectations, such as
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Figure 13. Example expectations of the Atlas [109] visualized
with our expectations taxonomy.

Figure 14. Example expectations of the Sony aibo [103] visual-
ized with our expectations taxonomy.

being expected to speak when it cannot. Such visualiza-
tions and comparisons across robots may aid designers
in developing an understanding of how robot designs
influence expectations (and in particular, what kinds of
expectations), and may also be employed between par-
ticular revisions of a single design to compare the effects
of smaller adjustments. Given sufficient empirical data
from users, this technique may be used to display and
summarize definitive differences in expected capability.
Although these observations are based on dummy data,
they demonstrate the utility of the systematic expectation
dissection technique. Thus this technique can support
researchers and designers to comprehensively explore the
full range of robot expectations and discrepancies.

5.2. Cognitive expectation walkthroughs

We propose cognitive expectation walkthroughs as a
scenario-based analytical technique for exploring the

Figure 15. Example expectations of the SnuggleBot [110] visual-
ized with our expectations taxonomy.

process of robot expectation formation. Following estab-
lished HCI methodology [107], a cognitive expectation
walkthrough centers around establishing personas and
tasks or scenarios, and step-wise following through the
scenario to analyze interaction. In this case, at each step
an evaluator (or group) would apply our expectation
formation process (Section 3, Figure 6) to explore how
expectations may form and evolve as interaction unfolds.
This method provides a cognitive framing for under-
standing how a person may develop andmaintain expec-
tations of a robot, providing insights on how designs may
be altered to mitigate expectation discrepancies.

5.2.1. Cognitive expectation walkthrough procedure
A cognitive expectation walkthrough requires three key
components: a robot platform and behavior descrip-
tion, user personas, and a scenario. The method requires
a clear and detailed robot design (including physical,
visual, behavioral, etc., features), as these are central to
expectations; robot and implementation-agnostic walk-
throughs would fail to account for the pivotal role of
a robot’s design on expectations. Further, at least one
detailed persona, including the individual’s background,
biases, and other details relevant to shaping expectations,
and a clear scenario or task involving the robot, are essen-
tial for providing the key context and goals that drive the
interaction.

Determining the scenario and user personas is an inte-
gral part of a cognitive expectation walkthrough. These
choices inform the external signals, prior user experi-
ence, and initial expectations, which serve as essential
inputs to the expectation formation process. As there
will typically not be a single appropriate choice for this
background information, it is necessary to carefully con-
sider the contexts in which the robot may be deployed,
and may be helpful to conduct multiple walkthroughs
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with different scenarios and personas in order to cover a
broader range of potential interactions. Unfamiliar read-
ers can consult human–computer interaction texts for
details on persona and scenario development (e.g. [107]).

Given these components, an evaluator can conduct
the cognitive expectation walkthrough by considering,
step by step, how the interaction may unfold for the
given robot, personas, and scenario. At each step, an
evaluator applies the cognitive process model to explore
how expectations develop: this systematically considers
all signals received (including robot form and behavior,
environment, etc.), tracing them through the cognitive
process to evaluate how they impact iteratively evolv-
ing expectations. The result is a rich description of what
expectations may be anticipated, how they may emerge
and evolve, and how this relates to the robot’s design and
person’s background.

5.2.2. Cognitive expectation walkthrough case study
We executed an example cognitive expectation walk-
through for a scenariowhere a store customer approaches
a SoftBank Pepper robot [102] that is programmed and
presented as a shopping assistant. We developed detailed
hypothetical scenarios, a persona, and robot behavior,
and step-wise evaluated these using the cognitive process
model (Figure 6). We present our results here, and pro-
vide full details in Appendix B that interested readers can
examine for more detail.

The results of our analysis highlighted how the robot’s
visual humanoid design, its behavior design of using
friendly verbal greetings and human-like gestures, and
behavior of maintaining gaze with the person, are all
anticipated to promote expectations of advanced conver-
sational capability. This is further reinforced if the person
is a tech enthusiast with related media exposure (as may
be expected of a person approaching a robot). This high-
lights the inevitability of a person naturally expecting
that this robot could hold a smooth conversation. Thus,
unless such a robot has very sophisticated social conver-
sational ability we could anticipate expectation discrep-
ancy. Further, our exploration highlighted how initial
expectations may not change as a person observes fail-
ures, and we can expect repeated failures to be needed
for a person to finally understand the robot’s limitations.

Thus, our cognitive expectation walkthrough clearly
highlights the challenge with creating a retail or simi-
lar kiosk using the Pepper robot and common behav-
ior implementations, without resulting in over-inflated
expectations and ultimately expectation discrepancy and
user disappointment. In general, this method is a poten-
tial tool for supporting one to engage intricately with a
potential or real robot design. By leveraging our cogni-
tive process model, this method encourages evaluators to

consider a broad range of factors (robot design, person’s
background, and tendencies toward expectation develop-
ment) that may contribute to resulting expectations and
related behaviors.

5.3. Analytical techniques for expectations of
robots

We presented two techniques for systematically explor-
ing a person’s expectations of a robot design. System-
atic expectation dissection allows for comprehensive anal-
ysis of expectations across the expectation taxonomy
space, providing simple, bird’s-eye view visualizations
that support meta-analysis and comparison of expec-
tations between robot designs, and allowing designers
to explore how design variants and may lead to differ-
ent expectations and expectation discrepancies.Cognitive
expectation walkthroughs allow for systematic analysis of
how expectations may form and evolve, based on knowl-
edge of human expectation formation, given a robot
design and scenario. Together, these techniques illustrate
the potential utility of our framework (cognitive process
model of human-robot expectation formation and expec-
tation taxonomy) for describing and examining expecta-
tions of robots, toward empowering designers tomitigate
unwanted expectation discrepancies.

6. Evaluation and critical reflections

Given that there is as-of-yet no comparable encompass-
ing framework on robot expectations that we can com-
pare against (e.g. as a baseline in a study), direct quan-
titative evaluation is challenging. Further, studies with
potential robot designers (e.g. workshops in our lab)
would not have sufficient ecological validity given our
limited access to theHRI expert whowould use ourwork,
and therefore appropriately evaluating the pragmatic util-
ity to robot designers will require consideration of the
work’s use after publication.

Therefore, following established practice developing
frameworks in human-robot interaction (e.g. [13,14,18,
19]), the primary evaluation of our work is inherent in
our theory-driven integrative approach. That is, the syn-
thesis of literature and the model’s alignment and agree-
ment between diverse theoretical constructs, grounded
in well-developed theories and background work, pro-
vides a critical grounding for the resulting framework.

Additionally, in Section 5we presented analytical eval-
uation techniques [107] as illustrative examples of how
our framework may be employed in practice. Draw-
ing from descriptive evaluation methods, such as in
design research [113], this approach uses reasoned argu-
ments and scenarios to demonstrate the internal logical
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consistency and showcase the utility of the framework
for focusing attention and guiding exploration and rea-
soning through expectation formation in human-robot
interaction.

To further strengthen this evaluation and support
designers in understanding how they may employ this
work, we conduct a critical reflection on our frame-
work and proposed inspection methods, based on our
experiences developing (Sections 3 and 4) and applying
(Section 5) them. We first situate our framework within
the context of prior approaches to engaging with expec-
tations in human-robot interaction, comparing it against
earlier frameworks and considering how it may comple-
ment them. Following, we detail the strengths and limi-
tations of our framework in supporting a more detailed
understanding of user expectations of robots.

6.1. Comparisonwith other frameworks

As part of our evaluation we explicitly compare and con-
trast our framework against existing work in the space,
which we use as a baseline for the current state of the
art in exploring expectations and expectation discrep-
ancy. No other framework provides direct overlap with
ours in terms of the objective of the tool and the ques-
tions answered by the output, which precludes us from
making direct comparisons of their effectiveness. Instead,
our evaluation below considers how our framework can
complement and fit within the broader context of tools
and approaches, and how it offers novel perspectives.
Specifically, we compare against the following literature
identified in Section 2: Rosen et al.’s [18] Social Robot
Expectation Gap Evaluation Framework, Dennler et al.’s
[43] Design Metaphors for Understanding User Expec-
tations, as well as scale instruments for measuring user
perceptions of robots (e.g. Godspeed [26], RoSAS [27],
NARS and RAS [28], etc.).

Rosén et al. [18]’s Social Robot Expectation Gap Eval-
uation Framework provides a set of metrics that can
be used to quantitatively evaluate a person’s degree of
expectation discrepancy toward a robot. This framework
requires a practitioner to collect significant data includ-
ing participant questionnaire and interview responses,
as well as quantitative data such as interaction duration
and reaction time. The goal in this framework is to mea-
sure peoples’ affect toward the robot, cognitive load, and
expectations of interaction ease. Rosén et al [18] then
proposes analysis of this data to quantitatively evaluate
expectation discrepancy severity and direction (i.e. the
robot exceeded or fell short of expectations), although
the work does not offer a detailed method to perform
this analysis. It also does not providemechanisms to sup-
port an evaluator to more broadly explore what kinds of

expectationsmay emerge, orwhatmay have caused them.
In contrast to this, our framework provides consistent
vocabulary and a structured approach for investigating
these discrepancies and analyzing the expectations at a
more granular level, without necessarily requiring large
quantities of empirical data. Thus, we envision that this
framework may be used as a starting point to identify
instances of discrepancy, which can then be analysed
more deeply using our own framework.

Dennler et al. [43]’s Design Metaphors for Under-
standing User Expectations presents an approach to
explaining expectations by considering how the usermay
understand a robot via application of a metaphor to a
more familiar category. For example, a highly anthro-
pomorphic robot like Pepper [102] may be understood
by metaphor to a person, encouraging expectations of
advanced human-like abilities, while a robot like Snug-
gleBot [114] may be understood by metaphor to a doll
or toy, suggesting limited interaction or intelligence. This
approach provides a simple-yet-powerful mechanism for
understanding what expectations people may have of
a robot for specific cases that fit into clear metaphors;
however, they do not provide a method for unpacking
these expectations, vocabulary for explaining them, or a
method to understand the process of developing them
as provided by our framework. As such, this approach
is complementary to our own, where these metaphors
could fit into the ‘prior experiences’ component of expec-
tation formation (Figure 6).

Several scale instruments exist for measuring percep-
tions and thus perhaps expectations of robots (e.g. God-
speed [26], RoSAS [27], NARS and RAS [28], etc.). These
tools generally summarize a person’s attitudes toward
a robot along several dimensions (commonly including
intelligence, warmth, animacy, and competence, among
others). When considering these tools in comparison to
our own taxonomy, we notice that they primarily focus
on characteristic expectations (e.g. that Pepper is warm
and competent), clustered within the innermost, abstract
layer of our taxonomy. Our taxonomy highlights the
potential for the extension of this scale approach to mea-
sure other forms of expectations (e.g. more rudimental
or operational). Further, the output of these scales may
be used as one source of expectation data to be analysed
through our systematic expectation dissection technique.

Table 1 presents a summary of our own framework
and the above approaches, highlighting the unique per-
spective our framework provides and how itmay comple-
ment these prior perspectives. Our framework is unique
in providing a visualization of user expectations which
captures a broad multidimensional view of expectations,
combined with an analytical approach for examining
and explaining discrepancies. It does not replace any
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existing approach, but rather serves to be employed in
concert with them. The new perspectives offered by our
framework thus support designers in developing a deeper
understanding of user expectations of their robots.

6.2. Reflections and limitations

By reflecting on the process of developing and apply-
ing our framework, we have identified key strengths and
limitations in its scope and perspective, which we detail
below.

6.2.1. Taxonomy scope and granularity
Our taxonomy was able to easily cover the full range of
expectations compiled through our review of prior work
and ideation process; while we cannot say whether this
taxonomy exhaustively covers all possible expectations,
this shows that its scope encompasses the full range of
common expectations we encountered in our review. As
an initial framework, our objective was not to propose
a singular, definitive classification scheme that captures
some underlying structure of all expectations, but to offer
a tool for describing, organizing, and exploring different
types of expectations in ways that are useful in designing
robots.

Some expectations were difficult to classify, particu-
larly at higher levels of abstraction; for example believ-
ing that a robot is ‘brave’ does not neatly fit into a
particular capability domain, though it can be weakly
related to all three (physical, social, and computational).
Many expectations spanned categories within the tax-
onomy, for example, expecting that a robot ‘wants to
shake hands’ involves both physical and social domains.
These challenges were perhaps a direct result of our
aim for full coverage, resulting in encompassing defi-
nitions with some overlap, thus indicating potential for
improved, more focused categories. In our current work,
we represented this in our visualizations using increas-
ingly blurred boundaries between the domains as the
level of abstraction rises.

While our taxonomy provides full scope, we found
limitations with expectation granularity. For example,
expecting that a robot can walk across a room, or can
see an item on a shelf, both fall into the physical and
operational taxonomy bin despite being completely dif-
ferent expectations. Thus while our taxonomy provides
a general lens for considering the range of possibilities,
expectations specific to individual robots and interaction
need more nuanced consideration. Within our frame-
work, we intend for this to be addressed through the
more intricate treatment offered by our cognitive process
model.

Finally, while our framework focuses on classifying
and explaining expectations, it does not directly address
identifying which robot features may lead to what out-
comes (e.g. if you add hands, how will people respond?).
Thus important future work is to develop toolkits of
robot features and designs that can bemapped (e.g. using
experimental results) to desired expectation outcomes.

6.2.2. Theoretical foundations
The rigor and reliability of our work is primarily rooted
in the robustness of the theoretical works upon which
it is constructed. Thus, the strength of the theoretical
assumptions found in these works, and the empirical
evidence that supports those assumptions, serve to bol-
ster our own framework. Nonetheless, our contribution
is merely an initial framework within a growing area of
study, and moving forward we will need to continue to
assess the theoretical assumptions to provide opportuni-
ties for future development.

A founding assumption of our framework is that
people will respond to robots as if they were in some
sense alive (animorphism, Section 3). Although a well-
established stance in human-robot interaction, the reality
is that robots are not alive, and we can reasonably expect
limitations to the animorphism [115] that impact how
people interact with robots. We found this in our expec-
tation walkthrough example, where the fictional user was
assumed to treat the robot in rigidly human terms (e.g.
‘friendly but [having] poor social etiquette’). In reality,
a person may treat a robot as a new ontological cate-
gory [115], applying animorphism while still treating it
as a machine, which would impact application of our
cognitive process. It remains to future work to better
understand where this line lays.

One of the major theoretical anchors of our work
is simulation theory. This is highlighted in our process
model (Figure 6) by the fact that all signals from the
robot pass through the ‘simulation as self’ step. While
considerable evidence exists to support this theory, sim-
ulation theory and its rival theory theory [sic] remain
debated in human psychology [68], and thus this uncer-
tainty extends to this part of our framework.Nonetheless,
research supports the notion that cognitive simulations
are at least a component of expectation formation [68].

Finally, we developed our taxonomy through qualita-
tive analysis of a curated corpus. This could be strength-
ened through empirical work that specifically investigates
how people understand expectations in relation to our
categories. Further, our proposed inspection methods
may be applied to a formally-developed corpus of user-
elicited expectations to evaluate its analytical power in
empirical applications.
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Table 1. A summary of the approach and usage of our own framework in comparison to prior perspectives for engaging with human-robot expectations. We summarize the overall function
of each tool, the typical inputs it takes and outputs it produces, an example of what that output may look like if applied to our case study scenario in Section 5.2, and how it may be employed
in concert with our framework.

Our Framework Prior Approaches

Taxonomy, with systematic expectation
dissection (Sections 4, 5.1)

Process model, with cognitive expectation
walkthrough (Sections 3, 5.2)

Social Robot Expectation Gap
Evaluation Framework [18]

DesignMetaphors for Understanding
User Expectations [43]

Perceptionmeasuring instruments
(e.g. Godspeed [26], etc.)

General function Explore and visualize the range of
expectations a user may hold

Support structured analysis of how and
why a person may form expectations
of a robot

Evaluate the level of expectation
discrepancy a user experiences
when interacting with a robot

Emphasizes how expectations of
robots can be influenced by robot’s
design similarity to a more familiar
category

Quantitatively summarize a user’s
attitude toward a robot

Inputs Data on user expectations Specified robot, user, and interaction
scenario

Questionnaire and interaction data Robot design Questionnaire data

Outputs Detailed, visual summary of
expectations to support comparison
and analysis of trends

Insights into what inputs and formation
steps may be leading to the
development of particular
expectations

Evaluation of expectation
discrepancy, broken down into
severity and direction

Relevant design metaphors that hint
at potential expectations of
capability and behavior

Quantitative ratings of robots along
various dimensions

Example: Potential output
with Pepper case study
scenario (Section 5.2)

Visualization showing Pepper creates
varied expectation discrepancies
across domain and abstraction
(Section 5.1.3)

Walkthrough of an interaction with
Pepper highlighting how certain
features may lead to discrepancy
(Section 5.2)

User experienced severe
disconfirmation of their initially
high expectations of Pepper.

Pepper’s human-like appearances
lead to expectations of advanced,
human-like capabilities.

Pepper is warm and competent.

Relationship with our
framework

This framework may be used to
detect expectation discrepancy
which can be further analysed
with our framework.

This work expands on familiar
categories as a major input into
our expectation formation process
(within the ‘prior experiences’
component).

Our framework highlights potential
to extend scale concept to less
abstract expectations. Output from
these scales may work as input for
systematic expectation dissection.
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6.2.3. Passive role of the human
Our cognitive process model is predominantly centered
on how a person receives signals from a robot and the
resulting internal cognitive processes. This treats the per-
son primarily as a passive participant, as in our cognitive
expectation walkthrough where the fictional user, con-
fused by the robot’s actions, struggles through interac-
tion focused on internal cognitive processes.However, we
may expect a person to additionally seek knowledge or
prod the robot to explore abilities. Future work should
more closely consider a person’s active involvement in
resolving expectation discrepancies.

6.2.4. Utility to designers
We have demonstrated through case studies how our
framework may be employed to support designers in
managing user expectations of their robots (Section 5),
as the only broad framework to date for expectations of
robots. This framework provides new vocabulary, fram-
ing, and the first exploratory tools for designers to use to
support exploration and understanding of robot expec-
tations. Looking forward, we will need to work together
with designers to study how they may employ our frame-
work in practice, and identify opportunities to expand
and refine the application of our framework through
our proposed inspection methods. This will provide a
more nuanced understanding of where and when our
framework can support the process of robot design and
evaluation.

7. Conclusion

Managing expectation discrepancy – where a person
forms an inaccurate expectation of a robot, potentially
leading to disappointment and interaction challenges
– remains an open problem in human-robot interac-
tion. In this paper we presented a comprehensive frame-
work of expectation discrepancies, including a two-
dimensional taxonomy for classifying expectations and
a cognitive process of expectations that describes how
people may form expectations of robots. We further
developed and presented two novel analytical inspec-
tionmethods for applying our framework in practice and
exploring expectations in human-robot interaction. We
use these inspection methods to demonstrate possible
avenues by which the framework we developed can sup-
port designers to compare expectations across different
robot designs, highlight areas of expectation discrepancy
which may hinder interaction, and analyze and explain
how those expectations emerge, although studying how
designersmay employ our framework in practice remains
an important step for future work. In sum, our work pro-
vides some of the first frameworks and concrete tools for

supporting robot creators in making informed choices to
influence users’ expectations of their robots.

As the field continues to improve our understanding
of how to create robots that garner appropriate expec-
tations, our work serves as an important step in engag-
ing these problems. Ultimately, by enabling designers
to more precisely influence user expectations, they may
design robots that can represent their capabilities, miti-
gating expectation discrepancy and leading to more suc-
cessful human-robot interaction.

Note

1. This is the proper name used in the field to refer to the
theory that people use cognitive theories to develop expla-
nations.
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Appendix A. Systematic Expectation Dissection Case Studies 

We demonstrate systematic expectation dissection with four real example robots as case 

studies: the SoftBank Pepper [102], Boston Dynamics’ Atlas [109], the Sony aibo [103], 

and SnuggleBot [110]. To help demonstrate the technique, we informally generated ex-

ample expectations that a hypothetical user may have of these robots (Table 2).



No. SoftBank Pepper  Atlas Sony aibo SnuggleBot 

1 can do addition aloof affectionate can communicate with lights 

2 can gesture can gesture can bark cannot do math 

3 can give a hug can give a hug can do simple dog tricks cannot have a conversation 

4 can have a conversation can have a conversation can jump cannot move body 

5 can move from place to place can move from place to place knows if a person is in front of it cannot move from place to place 

6 can notice gestures can pick things up can learn cannot understand speech 

7 can speak can speak can remember my face comforting 

8 can speak French can stack boxes can understand dog commands cuddly 

9 cannot compute an integral can walk can walk does not have a camera 

10 does not have specific knowledge cannot do math cannot speak English does not have a microphone  

11 empathetic does not want to approach people friendly does not want to move 

12 friendly friendly has camera durable 

13 has camera good listener has microphone has buttons to press 

14 has microphone has camera has speakers has lights 

15 intelligent has microphone loyal makes sounds 

16 not well-informed mobile robust not intelligent 

17 not very strong not stable wants to approach people soft 

18 wants to answer questions not well-informed wants to move around the room wants to comfort 

19 wants to approach people wants to avoid collisions wants to seek attention warm 

20 wants to avoid collisions wants to help young  

21 wants to help wants to shake hands   

22 wants to invite interactions    

23 wants to shake hands    

24 won't bump into me    

Table 2. A dummy set of hypothetical expectations for three different robots generated by the researchers. This list is not provided as empirical 

data about the robots, but rather as example data to be used to demonstrate how our taxonomy can visualize a user’s expectations. The number in 

each row corresponds to the labelled plot symbols in the example visualizations (Figures 12-15). 



Our first example robot is the SoftBank Pepper [102]. As Pepper is a highly con-

figurable robot, we consider a typical, largely ‘default’ configuration for the purpose of 

determining whether a particular expectation is matched or mismatched. We took our 

hypothetical user expectations (Table 2) and plotted them onto our taxonomy space (Fig-

ure 12); the visual overview provides quick insight into common expectation patterns in 

the form of clusters of plot points, as well as conspicuously empty regions. One standout 

feature of Pepper’s expectation visualization is that mismatched expectations are scat-

tered fairly evenly across the domains and levels, with the notable exception that there 

were no mismatched rudimental expectations. While the hypothetical user has a seem-

ingly accurate understanding of Pepper’s rudimental capabilities (e.g., they understand 

that it possesses a camera and that it has the ability to move around), they have mis-

matched expectations of how it will behave in practice (e.g., they mistakenly believe its 

ability to see means it will not bump into them as it moves about the area). This implies 

that Pepper encourages a wide range of expectation discrepancies, rather than being lo-

calized to any particular function or feature. 

 
Figure 12. Example expectations of the SoftBank Pepper [102] visualized with our ex-

pectations taxonomy. 



Our next example robot is Boston Dynamics’ Atlas [109], a humanoid robot 

which walks on two legs and is capable of picking up and manipulating objects. The 

Atlas, as another humanoid robot, is of a similar form factor to Pepper, but with key 

design differences such as its legs and its lack of a human-like face. The visualization 

(Figure 13) highlights that, in comparison with Pepper, the user had more expansive phys-

ical expectations of Atlas, which were largely matched with its capabilities, but had sim-

ilar social expectations (which were largely mismatched). This may suggest that the 

unique aspects of Atlas’ design were effective at increasing expectations (perhaps its legs 

encouraged greater physical expectations), but not as effective at encouraging more real-

istic social expectations (its lack of ‘face’ did not discourage the user from thinking it 

could speak). In this way, comparing the visualizations generated through systematic ex-

pectation dissection of similar designs may highlight the impacts of the smaller design 

differences on user expectations. 

 
Figure 13. Example expectations of the Atlas [109] visualized with our expectations 

taxonomy. 

Our next example robot is the Sony aibo robotic dog designed to fulfill the role of 

a pet in a user’s home [103]. We again plotted the expectations in Table 2 onto our 



taxonomy space (Figure 14). When comparing the expectation visualization for aibo to 

that of Pepper, it is immediately clear that the expectation discrepancies are more local-

ized in nature. In particular, most of the mismatched expectations are abstract and either 

physical or social in nature. This includes assuming dog-like physical and social capaci-

ties that aibo does not really possess nor imitate (e.g., seeking out people, loyalty to one’s 

owner). 

 

Figure 14. Example expectations of the Sony aibo [103] visualized with our expecta-

tions taxonomy. 

Our final example robot is SnuggleBot [110] (Figure 15), a stuffed narwhal with 

lights, mobile limbs, and sensors, which is designed to provide companionship to users 

[110]. One immediate difference with this visualization is that, compared to the other 

three robots, the user possessed many more negative expectations (expectations that the 

robot did not possess various capacities), perhaps because of the robot’s simpler appear-

ance resembling a stuffed animal. Further, many of the user’s mismatched expectations 

are at the rudimental level, suggesting that the robot’s appearance may be misaligned with 

its basic mechanical capabilities (e.g., the user does not expect that the limbs can move, 

but does expect that it will make sounds). 



 
Figure 15. Example expectations of the SnuggleBot [110] visualized with our expecta-

tions taxonomy. 

  



Appendix B. Cognitive Expectation Walkthrough Case Study 

Robot — For this demonstration we continue with the SoftBank Pepper robot, as a widely 

used representative social-robot humanoid. It will be running industry-typical kiosk-style 

software that does basic conversation and information delivery. 

Persona — Our fictional user is Sam, a mid-20s Canadian student who identifies as fe-

male, is generally friendly, and has an interest in novel technologies (is a self-described 

‘nerd’). Sam has never interacted with a robot before, but has often seen them on the news 

and pays particular attention in media.  

Scenario — Sam has just encountered Pepper as a retail assistant in a department store, 

and has approached Pepper for assistance in finding the shoe department. In this case, 

Pepper is located near the front of a store next to a sign saying ‘I can help!’, and is pro-

grammed with a standard kiosk-style information application, using speech and hand ges-

tures to deliver information; it receives input via a few pre-selected buttons on the tablet 

(Figure 7). There is a small sign next to the tablet instructing people to touch it to start. 

Walkthrough 

When Sam first notices the robot, Pepper is looking around the room and moving its arms 

casually. The form and behavior signal a modern-looking physical design with a human-

oid form made of shiny white plastic and a tablet computer, with eyes (with cheery lights), 

ears, a mouth, and articulated arms with movable hands. The robot is making a soft whir-

ring noise (a fan) and the joints emit mechanical noises when moving. Simultaneously, 

external signals influencing the interaction include Sam noticing the ‘I can help!’ sign 

(exposition signal), and immediately recognizing the robot from the news (media depic-

tion signal). 



From an embodied observation point of view, Sam notices the visuals more than 

the audio given the noisy scenario. Sam applies her existing experience of seeing the robot 

on the news to interpret these signals, and combined with her existing expectations of 

robots (animorphic) she did not notice the tablet computer as an interaction modality. Her 

interest in technology amplified her interest and attention, helping her focus on the robot’s 

attempts at gesturing and communication. Given these observations, Sam’s mental simu-

lation as if she were the robot results in expectations suggesting, that due to the combina-

tion of human-like facial features, humanoid form, and moving parts, the robot likely has 

a range of familiar, human-like social capabilities. 

Sam approaches the robot and waves, saying hello. The robot does not respond. 

Observing this response signal with her existing expectations, Sam is surprised. Simulat-

ing this reaction, Sam initially wonders if the robot is simply unfriendly, violating her 

expectations, but then realizes the robot maybe did not hear her. Sam still expects that the 

robot can hear and converse with her. Several seconds later, the robot looks at Sam, and 

its eyes blink. Sam notices this, and still expecting the robot to converse, this signal feeds 

into Sam’s simulation to indicate that the robot is now paying attention. Sam quickly says 

hello again, but while talking, the robot interrupts Sam to say ‘Hello! How can I help 

you?’ in a loud voice. This startles Sam, and violates her assumption that the robot was 

paying attention. This again feeds into her simulation, initially indicating that the robot 

may be friendly but perhaps has poor social etiquette. This further violates Sam’s expec-

tation of conversation ability, and Sam reduces her expectation of the conversation abil-

ity. Sam responds by saying that she is doing well, but Pepper again ignores Sam. Sam is 

starting to feel frustrated at the rudeness, and this violation further reduces her expecta-

tions of behavioural conversation ability. Sam repeats herself, but is ignored again. Fi-

nally, Sam feels that the robot is not friendly and may be ignoring her. At this point Sam 



notices the instructions telling her to touch the screen to start (external exposition signal), 

which is a strong signal that updates Sam’s expectation to suggest that, after all, the robot 

may not have conversation ability. Sam is disappointed by this expectation discrepancy 

and starts to wonder if the robot can hear, and begins to doubt other robot capabilities. 

Sam touches the screen and a menu appears with a selection of store departments. 

Simultaneously Pepper cheerfully says ‘I am happy to help you!’ while gesturing exuber-

antly. The social signals are highly salient, drawing Sam’s attention away from the tablet. 

These behaviors again feed into Sam’s simulation, and violates her expectations that the 

robot cannot converse. Sam ignores this, but finds it difficult to resist trying to talk to the 

robot again. This pattern continues as Sam navigates the menus, Pepper talks and gestures 

cheerfully, and Sam tries not to respond to the social gestures. Sam’s friendly personality 

feeds into her embodied observation of this behavior, and she starts to feel as if she is 

being rude to the robot. Sam finds the information she was looking for. 

Sam touches a visible ‘I’m done’ button on the kiosk to finish her session. Pepper cheer-

fully says ‘Thank you, come again!’ Sam interprets this signal, and her updated simula-

tion makes her wonder if her expectations are incorrect: perhaps Pepper can converse? 

Sam says, ‘Thanks Pepper, I’ll come again!’ and waits, but Pepper never responds. This 

signal pushes Sam to solidify her low expectations of the robot, and to feel that social 

robots can be quite rude and inconsiderate. This entire interaction feeds back into Sam’s 

overall expectations about robots, and will shape her future interactions with them. 

  



Appendix C. Systematic Expectation Dissection Printout 
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