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An Analytical Framework to Examine and 

Describe People’s Expectations of Robots 

Abstract 

We engaged with the problem of expectation discrepancy in human-robot interaction: a 

known challenge in which the expectations people form when interacting with a social 

robot may not align with its actual capabilities. This misalignment, an expectation discrep-

ancy, can disappoint users and hinder interaction. While research has proposed ways to 

mitigate expectation discrepancy, designers lack a systematic approach to analyzing and 

describing expectations people form of their robot. A more rigorous theoretical framework 

is a necessary step towards designing robots to purposefully engineering desired expecta-

tions. We consulted theories and models from psychology and sociology on expectations 

between people, and conducted a survey of expectations in human-robot interactions. 

Through this we developed an analytical framework consisting of a novel model of the 

cognitive process of human-robot expectation formation, as well as a taxonomy for classi-

fying the types of expectations they form. We finally propose preliminary methods for de-

signers to use this framework as a tool to support systematic analysis of how and why 

people form expectations of a given robot and what those expectations may be. Such un-

derstanding can empower designers with greater control over people’s expectations, ena-

bling them to combat problems of expectation discrepancy.  
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Chapter 1 Introduction 

The field of human-robot interaction examines how people interact with robots of many 

different varieties and aims to support the design of robots that can achieve smoother and 

more successful interactions. Within this field, one area of particular focus is social robots. 

Social robots are designed to simplify collocated interaction with people by leveraging life-

like social features that people can readily understand (Breazeal, 2003). 

When a person interacts with a social robot, they may form a plethora of expectations of 

the robot based on its design and their initial expectations. For example, a person may rea-

sonably assume that if the robot has hands and fingers, then it can pick up items (Schramm 

et al., 2020; e.g., Figure 1). However, the robot may not have this capability, creating an 

expectation discrepancy (Schramm et al., 2020) where people may not only misunderstand 

 
Figure 1: The Softbank Pepper robot (SoftBank Robotics America, Inc., n.d.) has mobile, 
human-like hands, which give the incorrect impression that it can pick up items and ma-
nipulate objects in a human-like way. 
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how to interact with the robot, but may be surprised and disappointed by a lack of ability, 

impacting the quality and success of the interaction (Komatsu et al., 2012). These misun-

derstandings can have far-reaching implications including misplaced trust and a host of 

impacts on how robots integrate into society (Sharkey & Sharkey, 2021), placing the issue 

of expectation discrepancy – and managing it – at the center of successful human-robot 

interaction. While some work has investigated moderating user expectations (e.g., Kwon et 

al., 2018; Paepcke & Takayama, 2010), the field does not yet have a systematic approach to 

understanding and analyzing users’ expectations. 

We have developed an analytical framework that designers can use to support examination 

and explanation of potential or observed expectations of their robots. Our framework con-

sists of two key components that may serve as tools for designers and researchers: a model 

of the cognitive process by which people form expectations, and a taxonomy for organizing 

and describing these expectations. Further, we devised preliminary applied techniques for 

leveraging our framework to analyze expectations of robots in practice. We use case studies 

to demonstrate this framework and highlight its applicability to real robots, and conclude 

with a critical reflection on the framework to identify its strengths and limitations. 

1.1 Expectations of Social Robots 

The expectations people form of robots are complex, and require deeper consideration than 

simply referring to them vaguely under the heading of ‘expectations’.  They can emerge 

from a range of sources, including decades of fanciful media depictions (Bruckenberger et 

al., 2013; Sandoval et al., 2014), and are heavily influenced by the robot’s own design (Kwon 
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et al., 2016; Natarajan & Gombolay, 2020). Robot designs can align a robot with some known 

mental category (e.g., an animal) and thus can imply capabilities which are commonly as-

sociated with that category (e.g., can think, has an emotional system, etc.; Cross & Ramsey, 

2021). This allows people to leverage their existing knowledge when encountering a social 

robot for the first time. Outwardly human- or animal-like design features can also promote 

familiarity (Breazeal, 2003) and leverage empathy in users (Riek et al., 2009). This complex 

interaction, involving prior depictions of robots and similarities to familiar entities, moti-

vates more work on explaining how people form expectations of robots, and what types of 

expectations they form. 

1.1.1 Expectation Discrepancy 

Life-like design features may be effective for certain interaction goals, but they may simul-

taneously lead to inflated associated expectations of human- or animal-like capability. 

When a robot is, often inevitably, incapable of meeting these inflated expectations, this 

produces an expectation discrepancy (Kwon et al., 2016; Schramm et al., 2020). This discrep-

ancy disrupts the interaction as the user attempts to map their existing knowledge onto the 

robot but finds it ineffective, and can disappoint the user and hinder the interaction (Ko-

matsu et al., 2012). 

Expectations may emerge in part from robot design choices. As such, we may be able to 

mitigate or even avoid inflated expectations, and expectation discrepancy, by designing ro-

bots in ways that more accurately imply their capabilities (Kwon et al., 2018; Paepcke & 

Takayama, 2010) However, there is as of yet no systematic approach for doing so. A step 
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toward this goal that we take in this work is to understand how and why people form 

expectations of the robots they encounter, and what kinds of expectations they will form. 

1.1.2 Defining Expectations 

It is important to improve clarity of meaning and scope surrounding the term ‘expectations’ 

in the context of human-robot interaction. While some works on human-robot expectations 

are careful to employ a precise definition (e.g. Rosén et al., 2022 defines expectations as 

“believed probabilities of the future”), others use the term without any explicit definition, 

often using the term less formally to refer to impressions of a robot’s capabilities (e.g. Kwon 

et al., 2016; Schramm et al., 2020). In absence of any universally-adopted definition, we note 

that this looser application of the term  is commonly found in literature on expectation 

discrepancy, which concerns the difference between real and expected capability (Komatsu 

et al., 2012; Kwon et al., 2016; Schramm et al., 2020). As such, in this work, we use the term 

expectations to refer to a person’s beliefs, conscious or otherwise, about a robot’s capabili-

ties and behaviour. Similarly, we use the term expectation discrepancy to refer to any dis-

parities between a person’s expectations of a robot and the robot’s true capabilities and 

behaviour. 

1.2 Research Questions 

We formalize our investigation with four key research questions: 

RQ1: How is the research community engaging with the concept of human-robot expec-

tations? 
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We must first understand how the human-robot interaction research community is cur-

rently engaging with the concept of human-robot expectations, and especially with the 

problem of expectation discrepancy. In particular, we will look to determine whether the 

community has a consistent approach to these topics. This will allow us to highlight areas 

in need of unified approaches and vocabulary, as well as to work within the prevailing 

tradition where consistency is found. 

RQ2: What is the process by which people form expectations of robots they encounter? 

If we are to influence, in a systematic manner, a person’s expectations of a robot, we must 

first understand how these expectations are developed. We aim to describe this formation 

process. This includes identifying the inputs into the process (that is, the factors that deter-

mine resulting expectations, be they properties of the person, the robot, or the context of 

the interaction), as well as describing its composition. 

RQ3: What are the patterns in expectations that people form of robots, and can we distill 

them into a taxonomy? 

In order to engage with instances of expectation discrepancy, we require a structured and 

unified approach to describing expectations. It is necessary to identify common patterns in 

people’s expectations of robots in order to group and classify them, which will allow us to 

discuss them at a higher level, rather than focusing on individual, disparate expectations. 

RQ4: How can our improved knowledge of human-robot expectations be used by robot 

researchers and designers to examine and explain expectations of their robots? 
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Using our understanding of how expectations of robots are formed and of how they can be 

described and classified, we aim to design practical tools and techniques that allow robot 

designers to leverage this understanding toward combatting the problem of expectation 

discrepancy. We must demonstrate how the theoretical understanding developed in this 

work can be used to analyze and explain users’ expectations and ultimately support design-

ers in influencing those expectations to enable more successful interactions. 

1.3 Methodology 

To engage with our research questions, we conducted two major investigations: we re-

viewed research from psychology and sociology on expectations between humans to de-

velop a model of the process by which people develop expectations of robots, and we con-

ducted a broad informal survey of expectations in human-robot interaction literature to 

develop a taxonomy for classifying expectations. 

1.3.1 Synthesis of Theoretical Literature 

We developed our understanding of how people form expectations of robots by first con-

sulting how people form expectations of other people. We analyzed prominent theories 

from psychology and sociology that describe how people form and manage expectations of 

each other (human-human expectations), synthesizing them from the perspective of inter-

action with robots. This synthesis resulted in a novel model of the cognitive process of 

human-robot expectation. 
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1.3.2 Survey of Expectations 

To understand the patterns that exist across user expectations and inform how we can de-

scribe and classify them, we conducted a broad, informal survey of existing robots, proto-

types, behaviors, and literature on expectations of robots. We analyzed this collection for 

potential expectations to assemble an initial expectations corpus. We then conducted a the-

matic analysis on this corpus, identifying commonalities and salient patterns, resulting in 

a novel two-dimensional taxonomy of human expectations of robots. 

1.3.3 Evaluation 

Given the theoretical nature of our work, the background literature and theories, as well as 

the logic and validity of our synthesis, serve as the primary measure of the validity of the 

work. To further illustrate how our framework can be leveraged in practice to support de-

signers and researchers, we developed two preliminary methods of applying our tools to 

real designs, which we demonstrate using case studies. Finally, we conduct a critical eval-

uation of our work, looking both to our background literature as well as our experiences 

with applying the theoretical framework in our case studies, to identify the effectiveness 

and limitations of our framework and to highlight opportunities for future work. 

1.4 Contributions 

The process described in Section 1.3 resulted in two analytical tools: a model of the cogni-

tive process by which people form expectations of robots, and a two-dimensional taxonomy 

for classifying the expectations they form. Robot designers can use these tools for in-depth 

analysis and exploration of expectations. 
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Our model of the cognitive process of human-robot expectation formation consists of an 

enumeration of the influencing factors (e.g., robot design, personal experience, interaction 

context) and stages that a user goes through to develop, maintain, and update their expec-

tations. Grounded in literature on expectations between people, this model offers a theo-

retically-backed understanding to explain why a person may form a particular expectation. 

Our taxonomy of human expectations of robots consists of two dimensions: domain of ex-

pected capability and level of expectation abstraction, which together can be used to describe 

and organize expectations according to common patterns observed in our survey of human-

robot expectations literature. This includes a visualization of the classification space that 

can provide a graphical representation of a user expectations and discrepancies. 

We further developed two preliminary analytical techniques for applying these tools to real 

robots: systematic expectation dissection and cognitive expectation walkthroughs. These tech-

niques provide an initial guide toward employing our tools in the real world, though we 

envision they will need to be refined through practice in the field. 

Altogether, these tools compose an analytical framework, together with preliminary tech-

niques for practical application, to support designers in examining and explaining expec-

tations of their robots, providing a foundation for improving designer control over user 

expectations in order to mitigate expectation discrepancy and achieve more successful hu-

man-robot interactions. 
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1.5 Thesis Overview 

In this chapter, we outlined the problem of expectation discrepancy and our strategy to 

develop an analytical framework to engage with it. In the following chapters, we will ad-

dress each of our four research questions in order. 

In Chapter 2, we review prior work on expectations in human-robot interaction, as well as 

on frameworks and other analytical tools in human-robot interaction more broadly, to un-

derstand how the field is currently engaging with human-robot expectations and expecta-

tion discrepancy (RQ1) and further inform our approach. 

In Chapter 3, we explore literature from psychology and sociology on expectations between 

people and synthesize it from the perspective of human-robot interaction to develop a 

model of the cognitive process by which people form expectations of robots (RQ2). 

In Chapter 4, we conduct a broad, informal survey of expectations in human-robot interac-

tion literature to build a corpus of potential expectations, which we analyze to develop a 

taxonomy of human expectations of robots (RQ3). 

In Chapter 5, we present two preliminary analytical techniques that designers can use to 

apply our process model and taxonomy and examine and explain users’ expectations of 

their robots (RQ4). We further demonstrate these techniques using case studies. 

In Chapter 6, we conduct a critical reflection on our framework, evaluating its utility to 

designers and researchers, as well as its limitations both theoretically and in practical ap-

plication. 



Thesis Advisor Author 
James E. Young James M. Berzuk 

10 
 

Finally, in Chapter 7, we conclude with a summary of our work, recalling our research 

questions and highlighting how our analytical framework may be employed toward miti-

gating expectation discrepancy. Additionally, we recall our framework’s limitations and 

offer recommendations for its successful application to real robots, as well as opportunities 

for future research. 
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Chapter 2 Background and Related Work 

Before we develop a formal understanding of expectations in human-robot interaction, it 

is essential that we ground ourselves in how the field is currently engaging with this subject. 

In this chapter, we will answer RQ1: How is the research community engaging with the con-

cept of human-robot expectations? 

We begin this chapter by reviewing what social robots are and what makes interaction with 

them distinct from interaction with other entities, both technological and living. In doing 

so, we highlight the need to consider expectations of robots independently from expecta-

tions in other, more familiar interactions. 

Following, we review the wide body of research on how a robot’s design can influence a 

person’s impression of it, as well as on the interaction between them. These works highlight 

the many ways in which a robot can impact user expectations, and offer perspective on 

how the field is discussing those expectations. 

We will then look specifically at literature on expectation discrepancy in human-robot in-

teractions. This serves to address the core of our research question: we will examine how 

expectation discrepancy is being framed and what strategies have been employed to coun-

ter it. Through this, we will identify areas where our work can support a more systematic 

approach to understanding and mitigating expectation discrepancy. 

Finally, we inform our approach by examining the extensive use of frameworks in the field 

of human-robot interaction to support engagement with particular ideas and challenges. 
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2.1 Properties of Social Robots 

Note: Much of this section is drawn from the following research paper in preparation: 

Berzuk, J. M., Corcoran, L., Szilagyi, K., & Young, J. E. Knowledge Isn’t Power: The 

Ethics of Social Robots and the Difficulty of Informed Consent. To be submitted to 

the International Journal on Social Robotics. Manuscript in preparation. 

Interaction with social robots is a unique social phenomenon, different from interacting 

with other technologies or living entities. This differentiation stems from the intersection 

of robots’ social and physical embodiment, which can resemble humans or other living 

things, with the superhuman capabilities of a computer. This positions social robots as a 

novel kind of interaction entity. Robots act like they are alive, while remaining a techno-

logical artifact. This deceptive pattern can distort expectations, encouraging people to map 

their expectations of more familiar entities, both living and technological, onto robots 

which may not cleanly reflect either. Understanding this unique positioning is critical to 

understanding how people’s expectations of robots may differ from their expectations of 

both living beings and machines. 

2.1.1 Designed Sociality 

Social robots are explicitly designed to engage with humans’ emotions and social instincts. 

For example, they can be designed with outwardly human- or animal-like features (e.g., 

humanoid shape, realistic voice, life-like gaze-following, etc.; Breazeal, 2003; Phillips et al., 

2018) and exhibit displays of emotion in order to facilitate interaction or achieve a related 

goal. This is much less common with more conventional technologies that people are 
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familiar with, which are typically designed for more mechanical or direct informational 

interaction. 

When a person encounters a social robot, the life-like features encourage anthropomor-

phism or zoomorphism (more generally, animorphism), where the person attributes the ro-

bot with life-like (e.g., human- or animal-like) characteristics to help them understand it 

and determine how to interact with it (Epley et al., 2007; Złotowski et al., 2018). This process 

can vary, from serving as a social expedient leveraging existing knowledge to facilitate in-

teraction, to regarding the robot as a social peer and using it to fulfill social needs (Epley et 

al., 2007). As this process may be grounded in an evolved human tendency (Złotowski et 

al., 2015), it may be quite difficult for individuals to overcome. 

Robots presenting life-like abilities and features can be viewed as a form of deception that 

may lead users to make incorrect assumptions about a robot’s abilities (Sharkey & Sharkey, 

2021). Despite the lack of genuine substance behind these social interactions, they can have 

real impacts on users. For example, one social robot pressured individuals into assisting it 

for nearly 30% longer by utilizing a script that leveraged the user’s cultural background in 

a socially intelligent manner (Sanoubari et al., 2019), while another social robot persuaded 

people to disclose intimate information by first divulging its own ‘secrets’ (Y. Moon, 2000). 

Robots have also been shown to be able to guide people toward poor decisions, such as 

pouring orange juice over a plant (Salem et al., 2015), or taking a wrong turn during an 

evacuation scenario (Robinette et al., 2016; Figure 2). These striking reactions highlight the 

power of deceptive, animorphic robot designs. 
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Relatedly, interaction with social robots over time can lead to the development of parasocial 

relationships (Noor et al., 2021): unilateral emotional connections that people can form with 

artificial entities, fictional characters, and media personalities (Brown, 2015). These inter-

actions create an illusion of reciprocity between the person and robot, in which the latter’s 

behaviour encourages the fiction of a mutual interpersonal connection. These connections, 

though illusory, can have real tangible effects on people. The effects of parasociality may 

be positive, such as improving a person’s perceived sense of well-being (Noor et al., 2021), 

or potentially hazardous, such as influencing a person’s spending habits, by promoting a 

particular purchase (Hwang & Zhang, 2018) or stimulating impulse buying behaviour 

(Zafar et al., 2020). While such effects may be expected when dealing with other people, 

this influx of sociality into traditionally non-social machines allows for social manipula-

tions which may defy a person’s expectations of the interaction. 

 
Figure 2: This robot was able to guide participants through a false exit in a mock evacua-
tion scenario despite the sign for the real exit being in direct view (Robinette et al., 2016). 
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2.1.2 Robot Physicality 

A defining trait of social robots is their physicality (Hegel et al., 2009), as social robots 

dynamically occupy space in the user’s environment. Often capable of moving autono-

mously, social robots garner a heightened sense of presence and attention, explained in part 

by human instincts toward detecting motion to identify others and assess threats (Simion 

et al., 2011); even from infancy, humans have been observed to view life-like patterns of 

movement as indicative of a social agent. For example, infants respond to robots as social 

agents, following their gaze as they would a person (Meltzoff et al., 2010). These anthropo-

morphizing reactions—to ascribe human motivations to non-human objects—also happen 

when observing moving objects with no otherwise-life-like characteristics. For example, 

people assign agency and emotional state to the motion of a collection of abstract shapes 

(Heider & Simmel, 1944; Figure 3), and even to a stick that simply moves in regular or 

irregular patterns (Harris & Sharlin, 2011). While the exact mechanisms behind this 

 
Figure 3: Simple abstract shapes, once animated, were sufficient for people to develop en-
tire narratives about their decisions and emotions to explain their movements (Heider & 
Simmel, 1944). 
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phenomenon are not well understood (Cross & Ramsey, 2021), this evidence suggests that 

the effect is a natural occurrence, grounded in biology. 

While virtual on-screen agents also garner strong reactions (e.g., as in popular media), there 

is a large body of research that highlights stark differences between how people respond to 

robots in comparison with more traditional media (Hegel et al., 2009). For example, studies 

have demonstrated that participants assign greater social presence to physically present 

robots (Jung & Lee, 2004) and provide them with more “personal space” (Bainbridge et al., 

2011) versus on-screen virtual agents on a monitor, and rate robots more amicably (Jung & 

Lee, 2004) in general. Further, people can be more compliant with the requests of physical 

robots in comparison to virtual agents (Bainbridge et al., 2011). Social robots have the po-

tential to elicit stronger emotional responses than virtual agents; participants express more 

sympathy for a robot than a virtual agent that was placed in a distressing situation (Seo et 

al., 2015; Figure 4). People even have heightened emotional responses to a co-present robot 

versus a live video feed of a remote robot (Li, 2015), an overall effect which may be linked 

to the greater perceived physical size of collocated robots in comparison to those displayed 

on a smaller screen, similar to how people respond to taller individuals versus shorter ones 

(Li, 2015).  
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2.1.3 Superhuman Abilities 

Although social robots’ design may present them as life-like entities, their computation and 

networking power gives them a wealth of superhuman capabilities not outwardly reflected 

in their designs. This includes the ability to collect incredible amounts of data from sensors 

or networked sources and process it at incredible speeds, using this to adjust social inter-

actions in real time. While a person might expect a salesperson to leverage surface obser-

vations about them to adjust their sales pitch in real time, a sales robot could leverage high-

speed cameras and advanced algorithms to monitor facial and body motions, inferring the 

human’s state, while simultaneously analyzing the person’s entire public social networking 

record, to tailor an efficient and personalized pitch. All of this is invisible to the user as 

there is no outward indication of the robots’ internal machinations. 

Robots are not bound by the limitations that may be suggested by their designs; for example, 

while a robot may close its eyes to signal that it is not watching, it can still observe from 

cameras not in the eyes (Kaminski et al., 2016). Concurrently, robots can be purposefully 

designed with constraints and operational inflexibilities to limit and steer user actions, as 

 
Figure 4: The physical robot (left) was able to elicit more empathy in participants than the 
virtual equivalent (right) (Seo et al., 2015). 
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a kind of “dark pattern” (Dula et al., 2023); for example, a robot may pass something to a 

person but not have the physical capacity to take it back, forcing the user to keep it. These 

limitations can force a user into making choices they would not otherwise make when in-

teracting with a person. 

In human-human interactions, there is an expectation that both parties will be similarly 

vulnerable, engaged in principles of reciprocity that contribute to a feeling of mutual trust 

(Y. Moon, 2000). Social robots seek to influence humans but are not limited by correspond-

ing human social features that would cause them to be influenced in return. This violates 

basic social expectations that are brought to interactions with other people. By allowing an 

illusion of reciprocity to persist, in which a person may believe that their actions are affect-

ing the robot similarly to how they would a human, social robots betray that trust and 

mislead users about the true nature of the interaction, compromising the users’ ability to 

make informed decisions. Social robots are not necessarily constrained by the rules and 

assumptions of human-human relationships (de Graaf, 2016).  

2.1.4 Social Robots Are Unique 

Taken together, the active design choices directed towards robots’ sociality leverage human 

biological instincts to demand attention and generate emotional response. These phenom-

ena are particularly pronounced with physical robots as compared against virtual agents. 

Because of their physical presence and mobility, social robots can manipulate users’ inter-

nal emotional states, establishing long-term feelings of connection and obligation. At the 

same time, robots are different from actual living social agents in their ability to draw on 
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computational power and massive quantities of data, and their inability to meet basic social 

expectations of reciprocal influence and mutual vulnerability. 

These properties together both relate social robots to other living and technological entities, 

and ultimately distinguish them. When interacting with a robot, people may apply their 

expectations of those more familiar entities, but this unique combination may influence the 

process in novel ways and become a source of expectation discrepancy. It is for this reason 

that specific consideration is necessary when seeking to understand human-robot expecta-

tions. Thus, in our work we combine theoretical understandings of expectation formation 

between people with the existing knowledge of expectations in human-robot interaction to 

develop a framework suited to this unique intersection. 

2.2 Robot Design and Expectations 

The impact of a robot’s design on expectations, and thus interaction, is well documented, 

with a large body of work exploring the impact of specific robot design factors. In this 

section we will first review works that consider the impact of robot form and aesthetics, 

and then those that consider the impact of robot behaviour. 

2.2.1 Robot Form 

Much of this work considers effects of a robot’s aesthetic form, following a common pattern 

where participants are shown a series of robot variants and asked to rate them on specific 

metrics. For example, Rosenthal-von der Pütten & Krämer (2014)  presented participants 

with pictures of 40 different robots and had them evaluate each according to 16 axes, such 

as likability and familiarity, in order to understand how life-like robot designs contribute 
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to feelings of uneasiness (known as the uncanny valley). Schaefer et al., 2012 employed a 

similar approach to explain how aesthetic form can impact perceived trustworthiness. 

One common focus is in linking features to anthropomorphism (Phillips et al., 2018) and to 

how this impacts user reactions. For example, Fortunati et al. (2023) examined how a re-

semblance to humans impacts perception of cognitive ability (Figure 5). Haring et al. (2013) 

found that trust in safety of a human-like robot increased after interacting with it, while 

Natarajan & Gombolay (2020) found that perceived anthropomorphism contributes to trust 

more generally. 

Another property of a robot that can impact expectations is the sounds that it produces: 

adding mechanical-sounding noises to an otherwise identical movement can make the 

movement appear less controlled and precise (Robinson et al., 2021), while emitting barely-

audible, low-frequency infrasound can make a robot’s communication appear happier 

(Thiessen et al., 2019). Comparisons have also been made between virtually-embodied 

agents and physically-embodied with robots, with people exhibiting greater empathy for 

physical robots (Seo et al., 2015), but perhaps similar (van Maris et al., 2017) or even reduced 

levels of trust (Reig et al., 2019). 
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More holistically, Dennler et al. (2023) explored using metaphors to explain and understand 

robots, where placing a robot into a known social category can support a person to under-

stand a robot, and shape expectations, in relation to a familiar entity (Figure 6). 

 
Figure 5: Fortunati et al. (2023) compared perceptions of cognitive ability across these four 
robots with differing degrees of resemblance to humans. 

 
Figure 6: Dennler et al. (2023) organized robot designs in terms of metaphors to more fa-
miliar entities in everyday life. 
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2.2.2 Robot Behaviour 

Similar to those on robot forms, many works have examined the impact of robot behaviors 

on user expectations. Within this category, there are numerous examples that focus on the 

use of social cues to build trust and social presence (K. Xu et al., 2023). Employing happy 

and fearful facial expressions has enhanced participant’s impressions of a robot (Eyssel et 

al., 2010). Combining facial expressions with expressive verbal communication has been 

shown to increase likability, even when the robot is less efficient at its tasks (Hamacher et 

al., 2016; Figure 7). Stanton & Stevens (2017) experimented with robots maintaining eye 

contact with participants, and found that perception of such staring was gender-mediated, 

with excessive staring degrading trust from female participants. The robot’s ‘gender’ has 

also been considered; Bryant et al. (2020) tested to see if a robot expressing its gender as 

male, female, or neither impacted participants’ perceptions of its competency, but found no 

significant difference. These works demonstrate the complex, often opaque relationship be-

tween a robot’s designed conduct and the way that people respond to it. 



Thesis Advisor Author 
James E. Young James M. Berzuk 

23 
 

Another focus of research on robot behaviour is to test the effects of robots making mis-

takes on perceptions and interaction. Mirnig et al. (2017), for example, found that a robot 

making mistakes while instructing participants on a task made it more likeable, and found 

no significant impact on the perceived intelligence of the robot. This positive effect of mis-

takes is well-attested: multiple studies have shown that robots cooperating with partici-

pants are regarded more positively when they make mistakes, even when those mistakes 

come at the expense of the participant’s performance in their shared task (Ragni et al., 2016; 

Salem et al., 2013). Mistakes are not an unambiguous positive however; speech errors can 

make a robot appear more familiar but less sincere (Gompei & Umemuro, 2015), while giv-

ing faulty instructions can degrade trust and perceived reliability (Salem et al., 2015). Once 

again, we find the impact of a robot’s design on expectations to be nuanced and complex. 

 
Figure 7: The BERT2 platform utilizing facial expressions for expressive communication to 
enhance likability with participants (Hamacher et al., 2016). 
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2.2.3 Providing a Holistic Perspective 

Our research complements this growing body of largely-empirical work that outlines pre-

cisely how specific robot designs can impact expectations, by providing encompassing the-

oretical tools for analyzing and exploring the observed effects. Through our grounding in 

literature on expectations between people, we offer a procedural, explanatory perspective 

on how metaphor and resemblance to known entities can contribute to a person’s expecta-

tions of a robot. 

2.3 Expectation Discrepancy 

A range of work has outlined impacts of robot expectation discrepancies – where people 

construct expectations that do not match actual abilities (Kwon et al., 2016; Schramm et al., 

2020; Figure 8). This often highlights user disappointment, such as when a person attempts 

to talk with a robot that cannot converse (de Graaf et al., 2015). These discrepancies can 

detract from a user’s experience (Lohse, 2011) and create a sense of incompetence and lower 

trust (Salem et al., 2015). 

 
Figure 8: Schramm et al. (2020) depicts the disparity between the advanced, human-like 
conception of robots often portrayed in media and the technical challenges found in many 
robots today. 
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The effects of expectation discrepancy can be more nuanced, however. As discussed in Sec-

tion 2.2.2, robot failures are not always simply negative, and can enhance familiarity and 

likeability (Gompei & Umemuro, 2015; Mirnig et al., 2017; Ragni et al., 2016; Salem et al., 

2013). Alternatively, a robot exceeding expectations may cause a person to trust and rely 

on it more (Komatsu et al., 2012), though if a person does not notice a robot’s lack of real 

ability, expectation discrepancy can ultimately lead to misplaced overtrust with potentially 

dangerous results (Sharkey & Sharkey, 2021). 

2.3.1 Moderating Discrepancy 

Some work investigates ways to moderate user expectations (e.g., to be in line with robot 

abilities), such as using exposition about the robot’s capabilities (Paepcke & Takayama, 

2010), aesthetic forms more congruent to function (Collins et al., 2015; Goetz et al., 2003), 

or the robot itself using expressive gestures of incapability (Kwon et al., 2018). 

Our structured tools build on this work by providing a comprehensive basis for designers 

to systematically analyze designs for potential discrepancies between user expectations and 

their robots’ abilities, and to describe and explain the expectations observed. 

2.3.2 Social Robot Expectation Gap Evaluation Framework 

Rosén et al. (2022) offers a framework for evaluating expectation discrepancy in users in-

teracting with robots. They adapted a model of expectation formation between people (Ol-

son et al., 1996) to use with robots (Figure 9), and identified a set of factors and 
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corresponding metrics that can be used to measure a person’s expectations of a robot, thus 

enabling evaluation of the level of expectation discrepancy a user experiences with a par-

ticular robot. Specifically, the framework measures a user’s affect toward the robot, the 

cognitive load on the user during the interaction, and the degree to which the user expects 

an easy and pleasant interaction with the robot, and uses these factors as the basis for 

identifying expectation discrepancies. 

 
Figure 9: Rosén et al. (2022) modified Olson et al. (1996)'s model of the expectation process 
for application to human-robot interaction. 
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Complementary to this focus on interaction outcomes, our work extends this by supporting 

understanding of the causes of expectation discrepancies, with a particular focus on how 

expectations evolve through mental simulation and refinement. Further, our taxonomy pro-

vides a way to classify expectations and discrepancies according to their content (i.e., what 

the user expects), such that our cognitive process and taxonomy provide tools for analyzing 

and explaining discrepancies which may be revealed through the Social Robot Expectation 

Gap Evaluation Framework (Rosén et al., 2022). 

2.4 Frameworks in Human-Robot Interaction 

Within the field of human-robot interaction, many different conceptual frameworks have 

been developed to support researchers and designers in understanding and engaging with 

challenging topics. At a high level, such frameworks can be divided into those which ex-

amine human-robot interactions at a general level, and those which adopt the lens of a 

particular domain. 

There are many frameworks that describe interactions between humans and robots. Kahn 

et al. (2008) takes a component-focused view of human-robot interaction by compiling a 

list of frequently-observed patterns in interactions, such as the necessity to recover from 

mistakes, or to navigate turn-taking in a social activity. Yanco & Drury (2004) offers at 

taxonomy for classifying interactions according to, among other things, the structural re-

lationships of the participants and their roles in the interaction. Bartneck & Forlizzi (2004) 

employed a five-dimensional framework for concisely categorizing and contrasting social 

robots according to their form, interaction modalities, adherence to social norms, autonomy 
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and interactivity (Figure 10). These frameworks are all quite general, and applicable to most 

instances of human-robot interaction, but do not offer specific insights for regarding ex-

pectations. 

Other frameworks target specific domains in order to support engagement with a particular 

problem. One area of focus is on human-robot dialogue, with frameworks for example clas-

sifying dialogue instances as linear or branching in nature (Berzuk & Young, 2022; Figure 

11), or identifying technical patterns in dialogue interaction design such as checks for rep-

etition and randomized variation (Glas et al., 2016). Some frameworks relate to particular 

outcomes, such as considering factors that lead people to accept a robot into their homes 

(Young et al., 2009), and many consult peripheral areas to incorporate novel perspectives 

into the field (e.g., consulting literary analysis for human-robot dialogue systems; Berzuk 

& Young, 2022). Rosén et al. (2022) (discussed in detail in Section 2.3.2) applied this approach 

 
Figure 10: Bartneck & Forlizzi (2004)'s framework can be used to concisely classify different 
social robots and compare them at a glance. 
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to human-robot expectations, developing a framework that can be used to measure expec-

tation discrepancy. 

Our work builds on this rich methodological tradition, of synthesizing work from other 

fields into a framework to provide structure and support analysis of human-robot expecta-

tion formation and discrepancy. 

2.5 Chapter Summary 

At the beginning of this chapter, we asked how the research community is engaging with 

human-robot expectations (RQ1). We have now explored the existing literature on this sub-

ject and have found the community stands to benefit from more consistent perspectives 

and vocabulary on the subject. While substantial efforts have been made to draw attention 

to and in some cases identify and mitigate human-robot expectation discrepancy, these ef-

forts can be complemented by an overarching analytical framework for understanding the 

 
Figure 11: Berzuk & Young (2022)'s framework for describing human-robot dialogue de-
signs identifies key dimensions differentiating various human-robot dialogue interactions 
and offers a vocabulary for discussing and contrasting them. 
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issue, as has been developed for other problems in human-robot interaction. Our frame-

work can support designers with theoretically-backed analytical tools to examine and ex-

plain expectation discrepancy with their designs in a consistent and systematic manner. 
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Chapter 3 How People Form Expectations of Robots 

Our first step to developing a systematic understanding of people’s expectations of robots 

is to understand how they form those expectations. In this chapter we will engage RQ2: 

What is the process by which people form expectations of robots they encounter? 

To engage with this question, we begin by analyzing current knowledge of how people 

build expectations of their world and other people they encounter, linking these existing 

theories and ideas to interaction with social robots. We then synthesize these theories from 

the perspective of human-robot interaction to draw key points for understanding how peo-

ple form expectations of robots. Finally, we use these points to build a model of the cogni-

tive process of human-robot expectation formation. 

3.1 Expectations Between People Explain Expectations of Robots 

In this chapter, we will translate how people build expectations of other people to under-

stand how they may build expectations of robots, despite the fact that robots are not people. 

We rely on the assumption that people tend to treat physically embodied robots as if they 

were alive (Złotowski et al., 2018). As discussed in Section 2.1.1, this generally follows the 

concepts of anthropomorphism and zoomorphism (more generally, animorphism), the ob-

served tendency of humans to identify or imagine life-like or human traits in non-human 

entities (Epley et al., 2008; Löffler et al., 2020) they observe, including abstract shapes (Hei-

der & Simmel, 1944), inanimate objects (Burgess et al., 2018), animals (Epley et al., 2008), 

and robots (Złotowski et al., 2018). Some arguments posit that this tendency may be bio-

logically grounded and instinctual, as even infants react to social robots as if they were 



Thesis Advisor Author 
James E. Young James M. Berzuk 

32 
 

alive (Meltzoff et al., 2010), or may be based in psychological motivations, such as one’s 

need for socialization and potentially inventing social actors (in this case, the social robot) 

to interact with and rationalize their environment (Epley et al., 2008). Thus this animor-

phization process may include both automatic and more deliberate (conscious) components 

(Złotowski et al., 2018), and may involve multiple dimensions of life-likeness (Złotowski et 

al., 2014). 

Regardless of the underlying mechanism, evidence has mounted that people in practice do 

treat robots as life-like social entities (Złotowski et al., 2018), much more than with other 

interactive technologies such as personal computers (Nass & Moon, 2000; Seo et al., 2015), 

with a broad range of demonstrated effects including feeling socially obliged to assist robots 

(Sanoubari et al., 2019), engaging with rapport building behaviors with social robots (Seo 

et al., 2018), and many more. Thus, it follows that studying how people form expectations 

of other people they encounter can inform how we expect people to form expectations of 

social robots they interact with. 

3.2 Fundamentals of Forming Expectations Between People  

In this section, we review several major theories and models of human-human expectation 

formation, which we will in the following sections synthesize into a set of key points and 

a description of the cognitive process by which we anticipate that people will form expec-

tations of robots. Specifically we will look at message passing models (primarily the encod-

ing/decoding model; Hall et al., 1980), expectancy violations theory (Burgoon & Jones, 1976), 

simulation theory (Gordon, 1986), and embodied interaction (Dourish, 2001). We chose these 
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theories out of a larger, informal investigation into the topic of human-human expectations, 

selecting four which held particular salience for their application to human-robot interac-

tion. 

3.2.1 Message Passing 

A predominant paradigm for analyzing inter-personal interaction (and sometimes with an-

imals or robots) is message passing (Holthaus et al., 2023), where complex interaction is 

deconstructed into a serial set of discrete messages between the two (or more) interlo-

cuters.1 For example, the now-ubiquitous encoding/decoding model (Hall et al., 1980) breaks 

complex communication into a series of messages that are broadcasted by one party (e.g., 

spoken, facial expressions, gestures, etc., whether intentionally or not) and observed by a 

receiver (e.g., by listening or watching). Following, all messages go through multiple stages 

of abstraction before a receiver can interpret them: messages are encoded, sent (by the 

sender), transmitted through a medium (e.g., the physical world), received, and finally de-

coded (by the receiver), before one can make sense of them (illustrated in Figure 12). 

Each phase provides an opportunity for the information to be altered, lost, or misconstrued 

(i.e., corrupted; Hall et al., 1980). The observer thus must rely on their particular imperfect 

 
1 An interlocutor is someone who takes part in an interaction. 

 
Figure 12: A message is passed from Person A to Person B only after being encoded by the 
sender’s cognitive biases and physical form, filtered through the medium of the environ-
ment, and decoded by the recipient’s own modalities and biases. 
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decoding of messages, and not any necessarily true meaning or intent, to form expectations. 

For example, people may erroneously decode a scene and see faces in inanimate objects 

where none exist (pareidolia; Wodehouse et al., 2018), and develop inaccurate expectations 

of interaction. In this case, the receiver must resolve this expectation discrepancy using 

additional information. 

This framing highlights several important points pertaining to constructing expectations 

of robots. First, we can dissect complex human-robot interactions into discrete units (e.g., 

a smile, a particular response, that a robot has hands) for targeted analysis regarding ex-

pectation formation. Second, we must assume that all information received is heavily fil-

tered and modified from the transmission and receiving process; it is these imperfect mes-

sages, emitted by a robot, that shape expectations that people form. 

3.2.2 Expectancy Violations Theory 

More specific to our inquiry, expectancy violations theory (Burgoon & Jones, 1976) is a stand-

ard lens in communication studies for unpacking interaction between two people, that em-

phasizes how people hold and maintain expectations of an interlocutor as interaction un-

folds or changes. Pre-existing or initial expectations (at interaction start) draw from the 

person’s background and disposition, including social expectations and prior experience, 

whether in general, with the particular interlocutor, or with related entities. Following, as 

interaction unfolds new information often does not match existing expectations exactly, 

creating a violation, hence the name of the theory (Burgoon, 2015; Burgoon & Hale, 1988). 

Violations can be dramatic, such as an expected-to-be calm person becoming surprisingly 
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violent (Figure 13), but are typically more incremental, such as a person taking an unex-

pectedly informal and familiar tone given the professional relationship or situation, or even 

mundane and unremarkable, such as an unexpected switch in topic within a conversation. 

Violations feed into iteratively evolving expectations: new information leads to expecta-

tions being revised rather than replaced. This means that expectations are relatively persis-

tent, and for example may be based on pre-conceptions or individual prior experience (Bur-

goon & Hale, 1988). This highlights the importance of earlier expectations on interpreting 

violations. As an example, consider if a self-proclaimed topic expert (initial expectation) 

joins one’s team, only to demonstrate moderate performance (violation); the updated ex-

pectation may be that the person has poor self-assessment or is dishonest. In contrast, if 

the person instead introduced themselves as a complete beginner (initial expectation) but 

then demonstrated the same still-unexpected moderate behavior (violation), one may in-

stead lead to updated expectations of the person being modest or a fast learner. In this way, 

 
Figure 13: The observer (right) is startled when the subject (left), who they have previously 
known to be a calm, mild-mannered individual, suddenly behaves angrily and aggressively, 
violating their prior expectation. 
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expectation formation is reflexive: rather than being set according to most recent observa-

tions, expectations are the accumulation of incremental and continuous violations over a 

timespan. 

For human-robot interaction then, given that we expect people to have less experience with 

robots, their predisposition towards technology and existing ideas (e.g., from media) may 

serve an outsized role in initial expectations. Further, these initial expectations are likely to 

be persistent, even as one interacts with a real robot, with expectations evolving incremen-

tally over time as violations occur based on observations and interactions. 

3.2.3 Simulation Theory 

A complementary view on expectations is simulation theory, which postulates that people 

develop expectations of others through forms of mental state attribution (projecting mental 

states onto others; Shanton & Goldman, 2010), conducting internal cognitive simulations 

of how they themselves would behave given a similar situation (Gordon, 1986); mirror neu-

rons, those that activate when observing an action as if one were doing the action, may be 

biological evidence of this (Gallese & Goldman, 1998; Shanton & Goldman, 2010). Simula-

tion theory is in contrast to the idea that people more systematically apply logical rules and 

cognitive theories to develop their expectations of how others may behave (aptly called 

theory theory; Gordon, 1992). While both provide targeted lenses to consider, pragmatically 

we expect people to leverage a combination of simulations and internal theories to develop 

expectations to understand others’ behavior. 
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These simulations are necessarily conducted from the observer’s individual perspective, 

based on their own biases and leveraging known elements of the others’ circumstances 

(Tamir & Mitchell, 2013) to achieve a plausible understanding (Epley et al., 2004). This ex-

plains known problems with expectations we may hold of others, including naïve realism, 

where people apply their own experience as an objective reality from which to understand 

others (Ross & Ward, 1996), and realist bias (Mitchell et al., 1996) or the curse of knowledge 

(Birch & Bloom, 2007), where a person assumes that the knowledge they hold is shared by 

others. These theories have been extended to non-human entities (e.g., animals, mechanical 

devices; Ames, 2004; Krueger, 2007; Meltzoff, 2007) and includes the proposal that anthro-

pomorphism helps people fit observations into their existing knowledge to support simu-

lation (Epley et al., 2007). Simulation theory supports our position that, due to animorphism, 

we may expect people to build expectations of robots as they do for other people. However, 

given the key differences between robots and people, we need to carefully consider what 

other inputs (e.g., robot design, previous knowledge of robots, etc.) may modulate the sim-

ulations of a robot’s actions. 

As an example of simulation theory, consider noticing someone litter even though they 

were standing near a salient garbage can. The observer may consider (simulate) what would 

lead them to litter next to a bin (Mitchell et al., 1996), only to conclude that the litterer is of 

poor moral character (Ross & Ward, 1996), based on their worldview against littering (Fig-

ure 14). However, suppose the observer knows the litterer personally and would expect 

better behaviour. This alternate perspective shapes the simulation, irrespective of the ob-

servation, and may instead lead them to acknowledge that the litterer did not notice or 
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could not see the trash can, and update their expectation accordingly (Epley et al., 2004; 

Tamir & Mitchell, 2013). In either case, simulations are rooted in the perspectives of the 

observer (Gordon, 1992). 

3.2.4 Embodied Interaction 

Taking a step back, we highlight the importance of more broadly considering embodied 

interaction with respect to building expectations of robots (Dourish, 2001). From founda-

tions in Heideggerian philosophy, concepts surrounding embodiment are central to com-

munications studies (e.g., see Streeck et al., 2011), with embodied interaction (commonly 

discussed in human-computer interaction; Dourish, 2001) taking a phenomenological ap-

proach. Embodiment focuses on the role of a person’s body and existence within the world 

(tangible, social, etc.) as foundations of cognition and interaction. All interactions between 

a person and an other (whether human, animal, or robot) must be mediated through one’s 

 
Figure 14: The observer (right) notices the subject (left) littering while standing next to a 
trash bin. The observer simulates themselves performing the same action, and concludes 
that they would only do so if they were malicious and immoral. They then extend this 
understanding of themselves in order to judge the subject as similarly immoral. 

=
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embodiment in the world, their structural coupling with their environment (Ziemke, 2003) 

(Figure 15). In other words, a person’s experience (expectations, simulations, interpreta-

tions, etc.) cannot be decoupled from their body (size, shape, abilities, senses) and social 

reality (race, gender identity, nationality, background, etc.).  

Embodiment thus provides a foundation for understanding all the theories presented, high-

lighting the critical role of one’s own embodiment in message interpretation, expectation 

violations, and simulation theory. All interpretation and consideration is foundationally 

biased from an individual’s own perspective, regardless of any external reality (e.g., about 

the robot’s capabilities). Taking this to logical extremes, symbolic interactionism argues that 

people act according to an understanding of an object rather than the object as it truly is, 

embedded within the context in which the person and robot exist (Hoggenmueller et al., 

 
Figure 15: Embodied interaction between two people where each party is physically and 
socially embodied and structurally coupled to the world. Interaction between the two par-
ties can only occur at the intersection between their embodiments. 
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2020). We can even consider society itself to be constructed from embodied interpretations 

formed through interactions between people (Carter & Fuller, 2015). 

3.2.5 Summary 

In this section we introduced prevailing theories of how people develop expectations of 

other people, through a process of passing and interpreting messages and using the en-

coded information to build and iterate upon expectations of others. This may include iter-

atively updating expectations (through violations) and be driven by cognitive simulations 

of how one would act (simulation theory), but all expectations will be developed from an 

individual’s highly biased perspective. In the following sections, we synthesize these ideas 

into a cognitive process that explains how a person may form expectations of a robot they 

encounter. 

3.3 Synthesis of Expectation Formation for Robots 

We summarize the above discussion, synthesizing with specifics of human-robot interac-

tion, into a set of key points for understanding how we may expect people to form, update 

and maintain their expectations of a robot over time. In the following subsection, we will 

further synthesize this discussion into an overarching Cognitive Process of Human-Robot 

Expectation Formation that can be used to analyze interaction and providing insight into 

the root of expectations that are formed, and thus the cause and potential solutions for 

expectation discrepancies encountered. 
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3.3.1 Individual Perspectives Dominate Expectations 

First we highlight how embodied interaction means that people can only interact with ma-

chines from within a very narrow conceptual overlap between their personal complex 

physical and social contexts (Young et al., 2011), and, the robot’s own presence within the 

world (Ziemke, 2003). This means that observations, messages, and violations are heavily 

translated using one’s unique biases, world view, etc., and also that information the ob-

server can receive from the robot is limited to a narrow overlap of embodiments (Figure 

16); a person will develop expectation based on robot capabilities that they can both observe, 

and, make sense of within their embodiment. For example, it does not matter if a robot has 

cloud computing capabilities or the ability to recognize faces if the person cannot observe 

or understand this, even subtly (e.g., as in Thiessen et al., 2019). We cannot expect people 

to self-educate, necessarily ruminate on or try to untangle their observations, or consider 

what the robot can actually do more generally. Thus, our first key point in understanding 

expectation formation process is that 

individual perspectives dominate expectations 

more than any underlying reality. 
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3.3.2 Robot Designers Have Limited Direct Influence 

Regardless of what a designer may intend for people to expect of their robot, the encod-

ing/decoding model (Hall et al., 1980) highlights that any designed or intended signals (ro-

bot design, behaviours, etc.) must go through a complex transmission, translation, and in-

terpretation process before they are interpreted and understood (Figure 17). After all, we 

expect people to react to a robot based more on their understanding than any reality of the 

 
Figure 16: Embodied interaction between a person and a robot where each party is physi-
cally and socially embodied and structurally coupled to the world. Interaction between the 
two parties can only occur at the intersection between their embodiments. 
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Figure 17: Any objective robot reality is translated and filtered, with many opportunities 
for alteration and error, and highly biased by the user, before it feeds into building a per-
son’s understanding and expectation of the robot. 
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robot’s capabilities or intentions (Hoggenmueller et al., 2020). With robots, the prevalence 

of fantastical media depictions may lead to robots being seen predominantly as cultural 

concepts, with signals being interpreted in this light, more so than as technological objects 

(Hannibal, 2023; Richardson, 2015); we cannot expect clear distinctions between fact and 

fiction when people develop expectations of robots (Hannibal, 2023). For example, even if 

a robot designer tries to make a robot look like it cannot walk (e.g., by not having legs), a 

person may misinterpret and assume the robot has hidden wheels below it, based on ex-

pectations of robots being mobile. All of this emphasizes the fact that 

robot designers, and the features, visual designs, behaviours, etc. that they 

create, have limited direct influence on expectations. 

Instead, designers need to accept that their creations may not be received as intended and 

consider their robot’s designs and behaviors within the context of how people will interpret 

them. 

3.3.3 People Make Sense of Robots in Terms of Themselves 

Animorphism, embodied interaction, and simulation theory all suggest that people will un-

derstand social robots and build expectations as if the robot were alive; people have biolog-

ical and social tendencies toward animorphism, understand other agents by simulating ac-

tions for themselves (Gallese & Goldman, 1998; Shanton & Goldman, 2010), and have mirror 

neurons that may activate when observing a robot (Gazzola et al., 2007; Hoenen et al., 2016; 

Oberman et al., 2007). There is ample evidence of this both for robots with human-like de-

signs (Gazzola et al., 2007; Oberman et al., 2007), and in those with inanimate designs but 
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in sympathy-inducing situations (Hoenen et al., 2016). Regardless of objective facts about 

a robot’s workings we expect observers to apply naïve realism (Ross & Ward, 1996) and 

project (their own) human-like personal circumstances, reasoning, and motivations, onto 

robots to make sense of their observations and generate expectations and understanding 

(Figure 18). Thus, overall we expect that 

people make sense of robots in terms of their own likely behaviour, 

or at least, as a similar social entity (e.g., another person). 

3.3.4 Expectations Are Biased Toward Initial Impressions 

As emphasized by both simulation theory and embodied interaction, the processing of any 

information or signals one receives is influenced by their background and predisposition 

 
Figure 18: We expect people to make sense of observations using self-simulations based on 
what they see. Here, observing a robot with closed eyes, lowered head, and limp arms, a 
person simulates themselves and links to human sleep, concluding that the robot is in a 
sleep-like state. 
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toward that information. Notably, we expect people’s predispositions to resist change, even 

in the face of new information (Tamir & Mitchell, 2013). As a consequence, new information 

does not directly lead to entirely new expectations, but rather, is processed within one’s 

embodiment to update existing expectations. Any expectations we develop are generally 

resistant to change and iteratively reflexive, evolving with new information or violations 

instead of being replaced (Burgoon & Hale, 1988). It takes time and accumulated expectancy 

violations to shift existing expectations, even if they are quickly-adopted first impressions 

(Lemaignan et al., 2014). This is supported by evidence in HRI research, where first impres-

sions can have a lasting effect (J. Xu & Howard, 2018) and impressions of robot capabilities 

evolve with repeated interactions (Paetzel et al., 2020; Figure 19). Therefore, in order to 

understand how an observer will process signals from a robot, we must understand what 

existing or prior understanding the person holds. This is exemplified by the pratfall effect, 

 
Figure 19: Expectations evolve during interaction, starting from a-priori beliefs; new infor-
mation modifies existing expectations. For example, an observer (1) seeing a humanoid as-
sumes the intelligent interaction ability, (2) after poor conversation behavior lowers expec-
tations but still assumes it can talk, (3) after continued poor ability they no longer expect 
it can talk. Initial expectations thus change gradually, rather than simply being overwrit-
ten. 

1 2 3
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where a person may be seen as more likable when they make mistakes, if the person was 

previously seen as competent (Aronson et al., 1966). Conversely, a person who was previ-

ously seen as incompetent, upon making the same mistake, may now be seen as less likable; 

this has been observed in human-robot interactions (Mirnig et al., 2017). Thus 

expectations are biased toward initial impressions and are updated (not re-

placed) by new information, 

and are therefore relatively persistent and resistant to change. 

3.3.5 Summary 

The fundamental property highlighted by all of these key points is the extensive conceptual 

distance between the reality of a robot (its capabilities) and any expectations that people 

form about the robot, with many steps of indirection, translation, and interpretation from 

an individual’s perspective. These serve to inform our model of the cognitive process of 

human-robot expectation formation, which we present in the following section. 

3.4 A Cognitive Process of Human-Robot Expectation Formation 

We culminate our above discussion into a detailed process to describe and analyze how we 

expect a person to develop and maintain their expectations of a robot they encounter or 

interact with. This process is constructed as a composite of the four key points, connecting 

them together into a larger, more complete model of expectation formation. The process 

proceeds as follows: 
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A robot emits signals such as visual and behavioral design (which may not relate to actual 

capabilities) that the person observes. Simultaneously, there are additional external signals 

that provide exposition, e.g., any introduction to the robot or context (e.g., robot is in a 

factory). The observer receives these signals from within their physical and social embodi-

ment, applying biases that shape their information interpretation and processing. Follow-

ing, we expect the observer to simulate what observations of the robot would mean for 

them, promoting animorphic interpretation. All of this feeds into an evolving expectation 

of the robot, heavily influenced by earlier expectations and predisposition, to continuously 

update (likely persistent) expectations. These expectations feed back into shaping a per-

son’s long-term experiences, such that prior expectations, perhaps from previous interac-

tions, start to influence new ones. This entire process is cyclic, with the inputs and resulting 

expectations continually evolving, as outlined in Figure 20.  

 
Figure 20: Our proposed Cognitive Process of Human-Robot Expectation Formation illus-
trating how people form and maintain expectations of robots they interact with. 

R B  E       

  M  

 E      

embodied

person
(abstract)

senses:
- sight
- hearing
- etc.

emitted by:
- form
- behaviour

simulation
as self

Evolving
Expectation
of Robot

personal     
circumstances

and biases

violated
and affirmed
expectations

guides
perception

embodied
observation

robot
(abstract)

signal

E  ER          
- exposition before interaction
- interaction context
- etc.

embodied

feeds future
expectations

 EY       
Individual perspectives dominate expectations.

Robot design and behaviour has limited direct 
influence on expectations.

People make sense of robots in terms of their 
own likely behaviour.

Expectations are biased toward initial 
impressions and are relatively persistent. updates

simulation

 R  R E  ER E  E 
- media depictions
- past interactions
- culture
- etc.

        E  R  E      M  -R B  E  E         RM     



Thesis Advisor Author 
James E. Young James M. Berzuk 

48 
 

Therefore, given the distance between robot capabilities and expectation formation, and 

how little control designers directly have over this, our cognitive process opens up this 

black-box in an attempt to decrease how much designers may perhaps “design and hope 

for the best” and instead provide a tangible series of steps, inputs, and cognitive elements. 

This offers robot designers an analysis tool that can be used to both help understand ob-

served user expectations of past robots, as well as an exploratory guide to assist with pre-

dicting what expectations future users may form regarding the robot they are designing. 

Thus, while emphasizing their limited direct influence, we nonetheless offer designers a 

greater degree of control over and predictability over expectations of their robots, and 

through this support efforts to mitigate expectation discrepancy. 

3.5 Chapter Summary 

In this chapter, we aimed to explain how people form expectations of robots they encounter 

(RQ2). We began by reviewing prominent theories on expectation formation between peo-

ple, which we used as a foundation for understanding people’s expectations of robots (jus-

tified by the considerable evidence that people treat robot as if they were alive). We syn-

thesized these theories from the perspective of human-robot interaction in order to develop 

a set of key points, which we used to model the overall cognitive process of human-robot 

expectation formation. This process model can be used by designers to help explain why 

users may be forming a particular expectation of their robot, and to highlight what factors 

may influence those expectations. In Chapter 5, we will demonstrate a technique for apply-

ing this process model in analyzing real robots, and in Chapter 6 we will reflect on that 

demonstration and critically evaluate the model’s strengths and limitations. 
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Chapter 4 Classifying Expectations – Toward a Taxonomy 

We have explained how expectations are formed, but up to this point, we have only spoken 

about the expectations themselves in broad terms. We have not yet examined what consti-

tutes an expectation, or what ‘expectation’ even truly means. In this chapter, we will ad-

dress RQ3: What are the patterns in expectations that people form of robots, and can we distill 

them into a taxonomy? 

As noted in the introduction we use the term ‘expectations’ to refer generally to the beliefs 

a person holds about a robot’s capabilities and behaviour. Our usage of the term contrasts 

with some other works in the field, which employ a stricter, more statistical definition re-

garding beliefs in the probabilities of future events (e.g. Rosén et al., 2022). We take this 

approach because it more accurately captures the discrepancies we target: prior literature 

on expectation discrepancy has focused on the presence of absence of qualities and capa-

bilities rather than beliefs in the probability of a particular outcome (e.g., Kwon et al., 2016; 

Lohse, 2011; Schramm et al., 2020). 

However, this broad (and thus not very specific) definition does not necessarily provide 

clarity regarding what one means when they say “expectations” of a robot. For example, if 

one expects that a robot has physical capabilities, does this mean they believe it can move 

around a room, or manipulate fine objects, or just change its shape? Similarly, if one expects 

that a robot has social capabilities, does this mean they believe that it can hold a conversa-

tion, or sense their emotional state, or has its own emotional state? 
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We develop a simple yet encompassing taxonomy to describe the various kinds of expecta-

tions that a person may form or hold of a robot or of their interaction with that robot. To 

achieve this, we take an inductive approach, surveying the field and available robots for 

both how the term expectations has been used, and, what expectations people may have of 

robots, analyzing these to develop key representative groupings. This results in an initial 

taxonomy, derived from the field, that provides vocabulary for more specifically discussing 

expectations of robots. 

4.1 Process 

The primary goal of developing our taxonomy was to create an initial vocabulary to explain 

the variety and depth of expectations that we were observing. As such, our process was 

less formal and did not include a full systematic review and instead was focused on reaching 

an initial taxonomy that provided a full coverage of the phenomenon that we observed or 

was noted in the literature. 

We engaged with this process by consulting theoretical human-robot interaction literature 

on expectations, surveying pertinent studies of human-robot interaction (e.g., those dealing 

with expectations), and by collecting a breadth of representative robot platforms, proto-

types, or behavior designs, designed for interaction with people. We further included prom-

inent robots from science fiction. For this stage we conducted searches of academic sources 

using Google Scholar, and the ACM Digital Library. For our non-academic search we fur-

ther used Google. In all cases we used keywords including ‘robot’, ‘expectation’, 
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‘impression’, and ‘evaluation’2. This resulted in a corpus of images, videos, and behavior 

descriptions representing a range of robots and interactions. 

We analyzed this corpus to extract expectations that people form or we suspect they may 

form, and to enumerate the robot or interaction characteristics that may contribute to the 

expectations (e.g., robot has eyes, or legs). This included directly drawing from literature, 

as well as informal brainstorming by our team (e.g., following analogs to our cognitive 

process) to uncover the range of potential factors and expectation outcomes. This resulted 

in a significant list of plausible expectations and robot design characteristics. 

Finally, we thematically analyzed this collection using iterative, inductive processes, aiming 

to simultaneously cover works found while using as simple of a categorization scheme as 

possible, resulting in our taxonomy. Specifically, following an initial review of our expec-

tations list, we constructed broad initial categories and began to organize them according 

to common patterns. We took inspiration from common qualitative analysis methods such 

as affinity diagramming (e.g. Harboe & Huang, 2015) to support our thematic analysis. As 

we classified the expectations, we iteratively adjusted these categories and reclassified ex-

pectations until we settled on a set of categories that described the collected examples as 

succinctly as we could find. We present this set in the following section. 

 
2 This was meant to capture users’ and participants’ evaluations of robots. 
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4.2 An Initial Expectations Taxonomy 

Our process resulted in a two-dimensional taxonomy of expectations, which describes and 

categorizes the full range of expectations we uncovered through our exploration. One di-

mension is expectation capability domains, which includes only three nominal categories: 

physical, social, and computational expectations. The other dimension is expectation ab-

straction, which includes four ordinal categories from simple to more complex abstractions: 

rudimental, operational, purposive, and characteristic. To assist in introducing the dimen-

sions of this framework, we will use the SoftBank Pepper (Aldebaran, n.d.) and Sony aibo 

(Aibo, n.d.) as example robots (Figure 21). 

4.2.1 Domains of Expected Capability 

The first dimension emerging from our thematic analysis classifies expectations into broad 

domains of capability. We identified three primary groupings of expectations of robot ca-

pabilities: 

 
Figure 21: The SoftBank Pepper (Aldebaran, n.d.) and Sony aibo (Aibo, n.d.) used as exam-
ples throughout this section. 
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Physical Capabilities – People form expectations about how a robot may interact with and 

move within its physical environment. This can include expectations of the robot’s move-

ment abilities, such as expecting that Pepper can wave its arms (Figure 22), or that aibo can 

walk across the room. This also includes other outputs such as the ability to emit light or 

sound, as well as sensory capacities such as expecting that a robot can or cannot see, feel, 

touch, or receive radio waves. 

Social Capabilities – In treating robots as social actors, people form expectations about a 

robot’s abilities to communicate socially, as well as to integrate with and participate in 

society. For example, people may expect that Pepper can speak, hold a conversation, do 

social gestures (such as a wave or high five), or pay attention to a person (Figure 23). They 

may believe aibo can interpret facial expressions and infer emotional states, and possess its 

own internal emotional state as well. People may further expect that the robot can parse 

interpersonal relationships, understand the social dynamics in a group, or participate in 

social conventions such as yielding access to an elevator when socially appropriate (Aj. 

Moon et al., 2016). 

 
Figure 22: Pepper’s (Aldebaran, n.d.) humanoid form can imply (correctly) that it can move 
its arms around to gesture, although its hands may imply more manual dexterity than it 
truly possesses. 
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Computational Capabilities – People form expectations about a robot’s ability to think, in a 

computational sense. This generally encompasses a similar range of expectations to those 

people can form of a traditional computer. For example, they may expect that Pepper can 

perform mathematical or logical calculation, or that aibo can remember their face (Figure 

24). Computational expectations can also include a robot’s access to information sources 

(e.g., databases, encyclopedias, etc.), or whether it is capable of learning. 

Figure 25 provides a visual summary of these domains. Note how the boundaries are 

blurred; this indicates how expectations can sometimes hit multiple categories or be highly 

linked. For example, the expectation that aibo can learn to perform dog tricks relates both 

to its physical abilities (to perform the movement) as well as its computational abilities (to 

learn and remember the tricks), while the belief that Pepper will shake a person’s hand is 

both physical and social. 

 
Figure 23: Pepper’s (SoftBank Robotics America, Inc., n.d.) face tracking behaviour may 
give the impression that the robot is paying attention to a person, regardless of whether it 
can really hear or understand anything being said to it.  
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4.2.2 Levels of Expectation Abstraction 

Orthogonal to the expectation capability domains discussed above, expectations of robot 

capabilities tended to range from purely mechanical capabilities (e.g., a motor can move; 

Cha et al., 2015) to more abstract, complex behaviors, and even robot intentions and per-

sonalities (e.g., Kuzminykh et al., 2020). We place these expectations on an ordinal dimen-

sion with four levels of abstraction, where at each level we could anticipate expectations 

on any of the three domains (physical, social, computational). 

Rudimental Expectation – People form expectations of the basic mechanical capabilities of 

a robot such as the belief that Pepper can speak, and perform calculations, or that aibo’s 

 
Figure 25: Examples of expectations falling into each of the three expectation capability 
domains. Note that the boundaries between domains are blurred, and it is possible for some 
expectations to lie across them. 

 
Figure 24: The intimacy aibo (Aibo, n.d.) displays toward users may encourage the impres-
sion that it recognizes their face and remembers them. 
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legs have motors that are strong enough to move it. This is the expectancy of raw capability, 

not how a robot may be able to use it to perform operations. 

Operational Expectation – People form expectations that a robot can use its rudimental ca-

pabilities to perform specific operations in its real-world environment. For example, a per-

son may expect that Pepper can use its speech ability to engage in a conversation about a 

person’s day, or that aibo’s motors will enable it to climb over a box that is in its way. 

Purposive Expectation – People will form expectations of a robot’s goals and what actions it 

may take to meet those goals; this is in contrast to capabilities which they may believe a 

robot has but may not necessarily perform. For example, a person may expect that while 

Pepper could chat with them about their day, it is in a professional setting and will choose 

not to. On the other hand, if they expect that aibo wants to navigate across the room, they 

may expect it to climb over any obstacles it is capable of traversing. Whether based on an 

animorphic view of desires or plain expectations of an algorithm, this adds a layer of inten-

tionality to otherwise mechanical robotic behaviors. 

Characteristic Expectation – Just as with animals or other people, observers may attribute 

to a robot general traits or qualities, analogous to a personality. This includes general, high-

level assessments of the robot’s ‘character’ or personality, including mechanical impres-

sions such as aibo being strong and capable, as well as human-flike impressions such as 

Pepper being friendly but professional. 
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Figure 26 provides a visual summary of these levels of abstraction. Note that unlike the 

blurred boundaries in Figure 25, the boundaries between abstraction levels are clearly de-

fined, as we did not find in our corpus expectations that could not be cleanly organized into 

a singular category. We expect considerable interaction and interplay between the layers 

of abstraction, particularly adjacent ones. For example, if a person expects that a robot has 

eyes and can see (rudimental), this may lead them to assume that it can also recognize 

people (operational) and is trying to monitor them (purposive). Inversely, if a person holds 

a more abstract expectation, such as a robot being chatty (characteristic), this may infer 

expectations at lower levels, such as that the robot wants to talk to them (purposive), is able 

to hold a conversation (operational), and has the mechanisms to emit noise (rudimental). 

Further, there are negative cases where holding one expectation (e.g., that a robot is greedy) 

creates a negative expectation as a consequence (e.g., the robot will not give a cookie). We 

note that these trains of logic may not be supported by the reality of robot capability, re-

sulting in an expectation discrepancy. 

4.2.3 A Two-Dimensional Taxonomy of Expectations 

Taken together, our capability domains and levels of abstraction form a two-dimensional 

taxonomy of what expectations people may develop for social robots. This framing enables 

 
Figure 26: Examples of expectations representing each of the four levels of expectation ab-
straction. 
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us to both categorize expectations and position how they relate to one another. At any point 

in the classification space, one could imagine an expectation that has both a capability do-

main (physical, social, computational) as well as a level of abstraction (mechanical, personal, 

etc.). 

To visualize this space, we use a polar diagram, plotting the domains of expected capability 

as colours along the angular axis and the levels of expectation abstraction along the radial 

axis (Figure 27). A key interaction we found between the dimensions is that the domain 

becomes more difficult to classify at higher levels of abstraction. For example, rudimental 

expectations such as the ability to move, calculate, or speak are easily classified into the 

physical, computational, and social domains respectively. More complicated actions at the 

operational level, such as giving a hug, become somewhat harder to classify, blurring the 

line between the physical and social domains. At the most abstract layer (characteristic), 

classifying capability domain becomes particularly frustrated: while a characteristic like 

‘strong’ is clearly physical, ‘greedy’ could be said to be both computational and social, and 

‘youthful’ does not clearly align with any domain of capability3. This interaction is visual-

ized by the starkly divided colour regions at the core of the diagram (the rudimental layer) 

gradually blurring together and eventually to white at the outer region (the characteristic 

layer). 

 
3 Indeed, expectations at the characteristic level can sometimes stray from the concept of a 
capability entirely. 
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4.3 Chapter Summary 

In this chapter, we aimed to provide a vocabulary for describing and classifying expecta-

tions of robots (RQ3), which we developed in the form of a taxonomy of human-robot ex-

pectations. To develop this taxonomy, we collected a large corpus of expectations from lit-

erature in the field and conducted a thematic analysis to identify commonalities, ultimately 

organizing them into two dimensions. We then combined those dimensions into a two-

dimensional classification space that can be used to visualize expectations and discrepan-

cies. In Chapter 5, we will demonstrate a technique for applying this taxonomy in analyzing 

real robots, and in Chapter 6 we will reflect on that demonstration and critically evaluate 

the model’s strengths and limitations. 

 
Figure 27: A two-dimensional taxonomy of expectations of robots, with capability domains 
on the angular dimension and levels of abstraction on the radial dimension. Note that the 
line between the capability domains blur as one moves further away from rudimental ca-
pabilities, as the higher-level expectations (e.g., that a robot is friendly) may involve mul-
tiple modalities. A user’s set of expectations of a robot may be plotted on this diagram in 
order to visualize them and identify common areas of discrepancy, as demonstrated in 
Chapter 5. 
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Chapter 5 Demonstration with Analytical Techniques 

In Chapters 3 and 4 we developed tools to support researchers and designers in engaging 

with the problem of expectation discrepancy, but there remains a gap between the theoret-

ical tools and how to apply them in practice. Drawing from existing standard methodolo-

gies, we designed two potential analytics techniques to serve as examples for employing 

our framework: systematic expectation dissection and cognitive expectation walkthroughs. In 

this chapter, we present these methodologies and conduct case studies with each method 

to demonstrate their application. This demonstration further provides an opportunity to 

reflect more broadly on how our taxonomy and process model can be integrated into a 

design process. In doing so, we will address RQ4: How can our improved knowledge of hu-

man-robot expectations be used by robot researchers and designers to examine and explain 

expectations of their robots? 

5.1 Systematic Expectation Dissection 

We propose a novel methodology for analyzing observed or predicted user expectations of 

a robot. We call this new technique systematic expectation dissection: a guided exploratory 

process in which a designer organizes and identifies trends in user expectations by plotting 

them within our taxonomy of human-robot expectations. This technique produces a visual 

summary of user expectations and expectation discrepancies, and further prompts the de-

signer to consider what types of expectations users are forming and how they may fit into 

a larger picture of how the robot is perceived. In this section, we will explain how to con-

duct an expectation dissection and demonstrate the process and outcome using case studies. 
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5.1.1 Visualizing Expectations 

Our taxonomy can be used to visualize a user’s expectations of a robot by identifying indi-

vidual expectations and plotting them within the two-dimensional space. For example, the 

expectation that a robot can remember the user’s face may be represented by a symbol in 

the operational layer, at a point between the social and computational capability domain 

(Figure 28). 

To visualize expectation discrepancy, we need to further denote how expectations relate to 

a robot’s true capabilities. Thus, we can mark an expectation plot point according to two 

additional properties, which we call polarity and matching. Polarity refers to whether an 

expectation is positive or negative: whether the user expects that the robot has a particular 

property or that it does not. Matching refers to whether an expectation aligns with a robot’s 

underlying reality. For example, a mistaken belief that a robot can speak is a positive, 

 
Figure 28: An expectation that a robot can remember a user’s face is operational, and both 
computational and social, and so is plotted (with a dot) on the graph in the operational 
layer, along the blurred boundary between the computational and social regions. 
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mismatched expectation, while a correct belief that a robot cannot speak is a negative, 

matched expectation. 

For illustrative simplicity, we treat each of these properties as binary. We mark the plot 

symbol for these properties, with the shape of the icon designating polarity (positive + vs. 

negative –) and the colour designating matching (blue for matched vs. red for mis-

matched). We note that in reality these properties are not binary, and in particular it may 

be difficult to classify a given expectation as simply matched or mismatched, especially 

with more abstract characteristic expectations; it may in practice be helpful to employ a 

more nuanced means of evaluating expectation matching. However, given our goal of fa-

cilitating a broad high-level overview of the expectations a person may hold of a robot, we 

believe that even a coarse-grained binary approach produces an effective visualization, and 

may allow for quicker evaluation of iterative designs. 

For example, consider that a user believes a particular robot… 

1. cannot speak (rudimental, social, positive, mismatched) 

2. can remember a user’s face (operational, social/computational, positive, matched) 

3. is not well-informed (characteristic, computational, negative, mismatched) 

4. does not want to move around (purposive, physical, negative, mismatched) 

Using our taxonomy visualization, we can plot these expectations as in Figure 29. This pro-

duces a visual summary of user expectations. A designer or researcher can then look at the 



Thesis Advisor Author 
James E. Young James M. Berzuk 

63 
 

graphic they have produced and see at a glance where user expectations are focused, and 

where there may be areas of strong expectation matching or discrepancy. 

5.1.2 Procedure 

To conduct a systematic expectation dissection using this taxonomy, one starts by assembling 

a list of expectations people may hold about their robot. How this list is compiled is outside 

the scope of this technique; the objective is simply to collect a wide range of plausible ex-

pectations of the robot. For example, they may compile this list by showing study partici-

pants a picture of the robot and simply asking them what they expect of it. There plenty of 

other possible methods, including analogizing from observations and study results of sim-

ilar robots, or perhaps even by critically examining the design themselves and informally 

predicting what a person may expect when interacting with the robot. 

 
Figure 29: Example expectations visualized with our taxonomy of expectations using the 
plotting scheme explained in Section 5.1.1. The numbers on the symbols correspond to 
their position in the list at the end of the section. 
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While many methods may be employed, the overall goal of the exercise is to support a 

designer or researcher in engaging with the full range of potential expectations. The out-

come of this process is a listing of expectations similar to the examples listed at the end of 

the previous section (Section 5.1.1). 

Once a list of expectations is compiled, the method proceeds by plotting each of expecta-

tions onto the taxonomy space. This plotting procedure will require designers to think 

closely about each expectation, with consideration on how to classify them. While catego-

rization of expectations within the taxonomy is somewhat subjective and will doubtlessly 

vary from designer to designer, the results in aggregate will nonetheless present a graphical 

summary of potential user expectations of the robot, as seen in Figure 29 above. 

Designers can then examine this summary to identify patterns, in particular by searching 

for concentrated areas of matched or mismatched expectations, which may suggest key 

strengths and weaknesses of the robot’s design with respect to user expectations. 
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5.1.3 Case Studies: Systematic Expectation Dissection 

We demonstrate this approach with three real example robots as case studies: the SoftBank 

Pepper (Aldebaran, n.d.) , the Sony aibo (Aibo, n.d.), and SnuggleBot (Passler Bates & Young, 

2020). To help demonstrate the technique, we informally generated example expectations 

that a hypothetical user may have of these robots (Table 1). Rather than a replacement for 

other experimental inquiry, this technique is intended as a form of heuristic exercise, with 

the goal of supporting researchers and designers in engaging with the full range of potential 

expectations which may emerge from their robot. 

Our first example robot is the SoftBank Pepper (Aldebaran, n.d.). We took our hypothetical 

user expectations (Table 1) and plotted them onto our taxonomy space (Figure 30); the vis-

ual overview provides quick insight into common expectation patterns in the form of 
 o.  oftBank  epper   ony aibo  nuggleBot 

1 can do addition affectionate can communicate with lights 
2 can gesture can bark cannot do math 
3 can give a hug can do simple dog tricks cannot have a conversation 
4 can have a conversation can jump cannot move body 
5 can move from place to place can know if a person is in front of it cannot move from place to place 
6 can notice gestures can learn cannot understand speech 
7 can speak can remember my face comforting 
8 can speak French can understand dog commands cuddly 
9 cannot compute an integral can walk does not have a camera 

10 does not have specific knowledge cannot speak English does not have a microphone  
11 empathetic friendly does not want to move 
12 friendly has camera durable 
13 has camera has microphone has buttons to press 
14 has microphone has speakers has lights 
15 intelligent loyal makes sounds 
16 not well-informed robust not intelligent 
17 not very strong wants to approach people soft 
18 wants to answer questions wants to move around the room wants to comfort 
19 wants to approach people wants to seek attention warm 
20 wants to avoid collisions young  
21 wants to help   
22 wants to invite interactions   
23 wants to shake hands   
24 won't bump into me   

Table 1: A set of hypothetical expectations for three different robots generated by the re-
searchers. This list is not provided as empirical data about the robots, but rather as example 
data to be used to demonstrate how our taxonomy can visualize a user’s expectations. The 
number in each row corresponds to the labeled plot symbols in the example visualizations 
(Figures 30-32). 
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clusters of plot points, as well as conspicuously empty regions. As Pepper is a highly con-

figurable robot, we consider a typical, largely ‘default’ configuration for the purpose of 

determining whether a particular expectation is matched or mismatched. One standout fea-

ture of Pepper’s expectation visualization is that mismatched expectations are scattered 

fairly evenly across the domains and levels, with the notable exception that there were no 

mismatched rudimental expectations. While the user has a seemingly accurate understand-

ing of Pepper’s rudimental capabilities (e.g., they understand that it possesses a camera and 

that it has the ability to move around), they have mismatched expectations of how it will 

behave in practice (e.g., they mistakenly believe its ability to see means it will not bump 

into them as it moves about the area). This implies that Pepper encourages a wide range of 

expectation discrepancies, rather than being localized to any particular function or feature. 

 
Figure 30: Example expectations (Table 1) of the SoftBank Pepper (Aldebaran, n.d.) visual-
ized with our expectations taxonomy. 
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Our next example robot is the Sony aibo a robotic dog designed to fulfill the role of a pet in 

a user’s home (Aibo, n.d.). We again plotted the expectations in Table 1 onto our taxonomy 

space (Figure 31). When comparing the expectation visualization for aibo to that of Pepper, 

it is immediately clear that the expectation discrepancies are more localized in nature. In 

particular, most of the mismatched expectations are abstract and either physical or social 

in nature. This includes assuming dog-like physical and social capacities that aibo does not 

really possess nor imitate (e.g., seeking out people, loyalty to one’s owner). 

Our final example robot is SnuggleBot (Figure 32), a stuffed narwhal with lights, mobile 

limbs, and sensors, which is designed to provide companionship to users (Passler Bates & 

 
Figure 31: Example expectations (Table 1) of the Sony aibo (Aibo, n.d.) visualized with our 
expectations taxonomy. 
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Young, 2020). One immediate difference with this visualization is that, compared to the 

other two robots, the user possessed many more negative expectations (expectations that 

the robot did not possess various capacities), perhaps because of the robot’s simpler ap-

pearance resembling a stuffed animal. Further, many of the user’s mismatched expectations 

are at the rudimental level, suggesting that the robot’s appearance may be misaligned with 

its basic mechanical capabilities (e.g., the user does not expect that the limbs can move, but 

does expect that it will make sounds). 

5.1.4 Summary 

Systematic expectation dissection is a potential technique to support researchers and de-

signers in comprehensively exploring the full range of potential expectations and expecta-

tion discrepancies with their robots. By classifying and plotting the expectations onto our 

taxonomy space, they produce a visual summary of what kinds of expectations users may 

 
Figure 32: Example expectations (Table 1) of the SnuggleBot (Passler Bates & Young, 2020) 
visualized with our expectations taxonomy. 
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hold, and how those expectations compare, at a high level, to the robot’s real abilities. Such 

a visualization can offer an initial guide toward necessary areas of focus for mitigating 

expectation discrepancy. 

5.2 Cognitive Expectation Walkthroughs 

Our expectation dissection allows designers and researchers to identify areas of expectation 

discrepancy, but does little to help explain or understand those discrepancies. This is where 

designers can employ our cognitive process for human-robot expectation formation, using 

an adaptation of standard Human-Computer Interaction analytical evaluation methods to 

conduct a cognitive expectation walkthrough: a scenario-based walkthrough of a specific 

human-robot interaction4. 

Continuing from one of our case studies in the previous section, we present an example of 

an expectation walkthrough with the SoftBank Pepper. We envision that after performing 

a systematic expectation dissection on their robot and uncovering major expectation dis-

crepancies, a researcher or designer may next perform a cognitive expectation walkthrough 

to better explain those discrepancies and gain insights on how they may then alter the 

design to mitigate the issue. 

5.2.1 Procedure 

Our expectation formation process provides a cognitive framing for understanding how a 

person may develop and maintain expectations of a robot they encounter. Given a persona 

 
4 Although similar in terminology, we note that this is a distinct adaptation of the standard 
“cognitive walkthrough” methodology. 
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and a scenario (e.g., following standard human-computer interaction methodology; Rogers 

et al., 2023), a designer could conduct a cognitive expectations walkthrough using our ex-

pectation formation process to focus on elements of the interaction, context, and robot de-

sign (i.e., visual design, behavior, etc.) that impact expectations, how a person may interpret 

these to form and update their expectations, and how expectations evolve over time as the 

interaction unfolds. 

Central to cognitive expectation walkthroughs is the development of a persona to represent 

a user, in addition to the interaction scenario and context, given the importance of an indi-

vidual’s background, biases, etc., in shaping expectations. We suggest unfamiliar readers to 

consult human-computer interaction texts for more details on persona development (e.g., 

such as Rogers et al., 2023). A cognitive expectation walkthrough also requires an estab-

lished or proposed clear robot design and behavior; given the importance of robot features, 

it is challenging to do more generic robot-agnostic, walkthroughs. Thus, to conduct a 

walkthrough, there are three key components: the robot platform and behaviour we are 

examining, a potential user persona whose perspective we will adopt, and a scenario that 

gives context to and drives the interaction. 

Following, we conduct the walkthrough by simulating, step by step, how the interaction 

may unfold. We analyze the encounter by consulting our model of the cognitive process 

for how we expect the person to maintain and build their expectations (Chapter 3). We 

systematically consider all the signals the person receives, including those from the robot’s 

form and behaviour, as well as from the context of the interaction, and trace them through 
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the cognitive process in order to evaluate how this may impact their evolving expectations. 

This offers a grounded, thorough perspective to examine why the person may form certain 

expectations and not others. 

5.2.2 Case Study: Scenario Parameters 

Robot — For this demonstration we continue with the SoftBank Pepper (Aldebaran, n.d.) 

robot, as a widely used representative social-robot humanoid. It will be running industry-

typical kiosk-style software that does basic conversation and information delivery. 

Persona — Our fictional user is Sam, a mid-20s Canadian student who identifies as female, 

is generally friendly, and has an interest in novel technologies (is a self-described “nerd”). 

Sam has never interacted with a robot before, but has often seen them on the news and 

pays particular attention in media.  

Scenario — Sam has just encountered Pepper as a retail assistant in a department store, and 

has approached Pepper for assistance in finding the shoe department. In this case, Pepper 

is located near the front of a store next to a sign saying “I can help!”, and is programmed 

with a standard kiosk-style information application, using speech and hand gestures to de-

liver information; it receives input via a few pre-selected buttons on the tablet (Figure 21). 

There is a small sign next to the tablet instructing people to touch it to start. 

5.2.3 Case Study: Cognitive Expectation Walkthrough 

Here we present the results of a cognitive expectation walkthrough as performed by the 

author, using our key parameters from the previous section. 
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When Sam first notices the robot, Pepper is looking around the room and moving its arms 

casually. The form and behavior signal a modern-looking physical design with a humanoid 

form made of shiny white plastic and a tablet computer, with eyes (with cheery lights), ears, 

a mouth, and articulated arms with movable hands. The robot is making a soft whirring 

noise (a fan) and the joints emit mechanical noises when moving. Simultaneously, external 

signals influencing the interaction include Sam noticing the “I can help!” sign (exposition 

signal), and immediately recognizing the robot from the news (media depiction signal). 

From an embodied observation point of view, Sam notices the visuals more than the audio 

given the noisy scenario. Sam applies her existing experience of seeing the robot on the 

news to interpret these signals, and combined with her existing expectations of robots (an-

imorphic) she did not notice the tablet computer as an interaction modality. Her interest in 

technology amplified her interest and attention, helping her focus on the robot’s attempts 

at gesturing and communication. Given these observations, Sam’s mental simulation as if 

she were the robot results in expectations suggesting, that due to the combination of hu-

man-like facial features, humanoid form, and moving parts, the robot likely has a range of 

familiar, human-like social capabilities. 

Sam approaches the robot and waves, saying hello. The robot does not respond. Observing 

this signal with her existing expectations, Sam is surprised. Simulating this reaction, Sam 

initially wonders if the robot is simply unfriendly, violating her expectations, but then re-

alizes the robot maybe did not hear her. Sam still expects that the robot can hear and con-

verse with her. Several seconds later, the robot looks at Sam, and its eyes blink. Sam notices 
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this, and still expecting the robot to converse, this signal feeds into Sam’s simulation to 

indicate that the robot is now paying attention. Sam quickly says hello again, but while 

talking, the robot interrupts Sam to say “Hello! How can I help you?” in a loud voice. This 

startles Sam, and violates her assumption that the robot was paying attention. This again 

feeds into her simulation, initially indicating that the robot may be friendly but perhaps 

has poor social etiquette. This further violates Sam’s expectation of conversation ability, 

and Sam reduces her expectation of the conversation ability. Sam responds by saying that 

she is doing well, but Pepper again ignores Sam. Sam is starting to feel frustrated at the 

rudeness, and this violation further reduces her expectations of behavioural conversation 

ability. Sam repeats herself, but is ignored again. Finally, Sam feels that the robot is not 

friendly and may be ignoring her. At this point Sam notices the instructions telling her to 

touch the screen to start (external exposition signal), which is a strong signal that updates 

Sam’s simulation to suggest that, after all, the robot may not have conversation ability. Sam 

is disappointed by this expectation discrepancy and starts to wonder if the robot can hear, 

and begins to doubt other robot capabilities. 

Sam touches the screen and a menu appears with a selection of store departments. Simul-

taneously Pepper cheerfully says “I am happy to help you!” while gesturing exuberantly. 

The social signals are highly salient, drawing Sam’s attention away from the tablet. These 

behaviors again feed into Sam’s simulation, and violates her expectations that the robot 

cannot converse. Sam ignores this, but finds it difficult to resist trying to talk to the robot 

again. This pattern continues as Sam navigates the menus, Pepper talks and gestures cheer-

fully, and Sam tries not to respond to the social gestures. Sam’s friendly personality feeds 
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into her embodied observation of this behavior, and she starts to feel as if she is being rude 

to the robot. Sam finds the information she was looking for. 

Sam touches a visible “I’m done” button on the kiosk to finish her session. Pepper cheerfully 

says “Thank you, come again!” Sam interprets this signal, and her updated simulation 

makes her wonder if her expectations are incorrect: perhaps Pepper can converse? Sam 

says, “Thanks Pepper, I’ll come again!” and waits, but Pepper never responds. This signal 

pushes Sam to solidify her low expectations of the robot, and to feel that social robots can 

be quite rude and inconsiderate. This entire interaction feeds back into Sam’s overall ex-

pectations about robots, and will shape her future interactions with them. 

5.2.4 Summary 

Cognitive expectation walkthroughs are potential tool for supporting designers and re-

searchers in engaging at a deeper level with users’ expectations of their robots. They can 

take the expectations identified and summarized through a systematic expectation dissec-

tion and, using our model of the cognitive process of human-robot expectations, trace how 

these expectations may be formed and understand what factors may be contributing to 

them. By encouraging a researcher or designer to systematically look at each step of the 

interaction, following through the elements of our process model and using the vocabulary 

of our framework, they can develop a deeper understanding of how an expectation evolves, 

which can offer direction for how the robot’s design may be altered to mitigate unwanted 

expectations and expectation discrepancies. 
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5.3 Chapter Summary 

In this chapter, we presented and demonstrated two novel techniques which show how the 

tools we developed can be applied to understand user expectations and discrepancies with 

real robots, using case studies as examples. In doing so, we showed that we have developed 

an analytical framework (Chapters 3, 4) that can be used to examine and explain expecta-

tions that people form of robots (RQ4). Thus, we have demonstrated through these exam-

ples the potential that our framework has for supporting understanding of what people 

expect of their robots, and of the factors that contribute to those expectations, enabling 

designers and researchers to engage with and mitigate challenges related to expectation 

discrepancies. In Chapter 6, we will critically reflect on these techniques, as well as their 

respective tools, in order to evaluate our analytical framework, identifying strengths and 

limitations of these approaches and highlighting opportunities for future work. 
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Chapter 6 Critical Reflection 

In the preceding chapters, we presented the framework we developed to support designers 

and researchers in examining people’s expectations of robots. In this chapter, we perform 

a critical analysis of our framework to consider its merits and limitations, both with respect 

to its theoretical foundations and its practical use. Our demonstration applying our frame-

work to case studies in Chapter 5 serves as a focal point for reflection on the framework 

more broadly. 

We reflect critically on the components of our framework, based on our experiences devel-

oping it and applying it to case studies. Overall, while we made progress toward our re-

search questions, in this chapter we take a critical view toward to the limitations of the 

work, including both the boundaries of the theoretical perspectives that inform it as well 

as challenges to applying it in practice. We organize these limitations according to salient 

themes that emerged from this analysis. 

These limitations further inform key recommendations we make in Chapter 7, both for how 

our framework may be applied currently, as well as to highlight opportunities for future 

work to complement and build upon our tools. 

6.1 Scope and Granularity 

Our two-dimensional taxonomy offers a scheme for quickly classifying a wide range of 

expectations. In this section we discuss its wide scope and consequent loss of granularity, 

as well as how that scope relates to prior systems for measuring user expectations. 
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6.1.1 Broad Coverage of Expectations 

In developing our taxonomy, we attempted to classify the full range of expectations found 

within the corpus we developed (see Section 4.1). We did not find any expectations in our 

survey or case studies which could not be placed within the bounds of the scheme. 

While all expectation instances fit within the framework, some were more difficult to clas-

sify in that they fit into multiple regions of the space. The broad definitions of the categories 

within the taxonomy, designed as such to accommodate the immense variety in user ex-

pectations, resulted in a substantial degree of overlap between them. This was most prom-

inent with the domains of capability, where expectations could frequently fall into multiple 

categories, particularly at higher levels of abstraction. For example, the expectation ‘wants 

to shake hands’ involves both a physical and social component. We represented this in the 

taxonomy visualization with increasingly blurred boundaries between the domains at the 

higher levels (see Section 4.2.3 for more details). 

To a lesser extent, this overlap was also found across some levels of abstraction. For exam-

ple, in one of our case studies, the expectations ‘can speak’ is treated as a rudimental ex-

pectation while ‘can speak French’ is treated as operational. The reasoning for this is that 

speech itself is regarded as a basic mechanical function whereas speaking a particular lan-

guage is regarded as a specific operation. This classification is not obvious; there is a degree 

of subjectivity in how a designer using of the framework interprets the different levels. 

While we did not find this ambiguity to be a major obstacle to the overall goal of concisely 

summarizing expectations, it nonetheless raises the cognitive load of the task. 
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6.1.2 Taxonomic Space Collapses Differences 

The broad scope of our taxonomy came at the cost of granularity in how it represents ex-

pectations. When using our taxonomy to compare and relate expectations, we note that it 

adopts a very generalized view of expectations, which results in a loss of nuance. For ex-

ample, consider two expectations for a pair of robots: that Robot A can walk across a room 

and that Robot B can see an item on a shelf. Both of these expectations fall squarely into 

the same location in our taxonomy (physical, operational), yet they are very distinct and 

not directly related to one another. Thus, when conducting a systematic expectation dis-

section, the visualizations for the two robots will appear similar in that area of the space, 

despite not necessarily having anything in common. 

The dimensions of our taxonomy have the potential to collapse important distinctions be-

tween expectations. When employing our framework, it is thus important to remember 

that it is but one generalized lens, and that despite shared patterns, expectations are ulti-

mately particular to every individual robot and interaction. 

6.1.3 Taxonomy Compared to Prior Frameworks 

When comparing our taxonomy to prior works which map out dimensions of impressions 

of robots, we find a noteworthy distinction. The RoSAS scale (Carpinella et al., 2017) iden-

tified the dimensions of warmth, competence, and discomfort, the Godspeed scale (Bart-

neck et al., 2009) identified anthropomorphism, animacy, likeability, perceived intelligence, 

and perceived safety, and several others present similar sets of dimensions (Dupree & Fiske, 

2017; Kuzminykh et al., 2020; Nomura et al., 2008). Positioning these works within our 
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taxonomy highlights that they all broadly deal with our outermost layer of expectation 

abstraction, characteristic expectations. 

Our taxonomy thus expands on these existing works by integrating the layer of abstraction 

to help relate these characteristic expectations to underlying mechanical and behavioral 

elements. At the same time, these other works offer a more granular approach to measuring 

user impressions of robots at the characteristic level. 

Overall, our framework serves to help designers in identifying patterns across the broad 

range of expectations and explaining why they form. This contrasts with and complements 

the above scales, which serve to measure particular impressions and expectations, as well 

as with the previously-discussed (see Section 2.3.2) Social Robot Expectation Gap Evalua-

tion Framework (Rosén et al., 2022), which offers a mechanism to detect expectation dis-

crepancy. Thus, we can imagine using all of these tools in concert in order to detect and 

explain user expectations of robots and understand how they relate to one another. 

6.2 Foundations in Theory 

Our framework was developed primarily through the consultation of prior literature. Our 

model of the cognitive process of human-robot expectation formation was synthesized 

from theories of expectations between humans, combined with existing literature on ex-

pectations of robots, while our taxonomy was mainly developed through thematic analysis 

on expectations of robots found in prior works. Neither of these components have been 

tested empirically with real data, which means they rest on some assumptions. 
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6.2.1 Cognitive Process Model 

We developed our model of the cognitive process of human-robot expectation formation 

by collecting and synthesizing prominent theories on how expectations are formed and 

maintained between people, together with prior human-robot expectations literature. 

This foundation in human-human interaction rests on the assumption that people will re-

spond to robots in ways that resemble how they respond to people. As we discussed in 

Section 3.1, there is considerable evidence to support this idea: animorphism, the tendency 

to attribute life-like traits to non-living entities, is well-established in human-robot inter-

action. At the same time, this assumption somewhat contradicts the conclusion we came to 

in Section 2.1, where we identified the properties of a social robot that make interaction 

with them both similar and ultimately distinct from interaction with people. 

While we attempted to address this contradiction through our combination of human-hu-

man and human-robot expectations literature, the model is nonetheless based on this as-

sumption of animorphism. In our cognitive expectation walkthrough case study, for exam-

ple, we found ourselves wondering whether the fictional user in the scenario would really 

treat the robot in such human terms, including regarding the robot as “friendly but [having] 

poor social etiquette”. While such human-like attributions are well-attested in literature 

(see Section 2.1 for examples), it remains a leap to simply assume them when analyzing an 

interaction. 
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6.2.2 Expectations Taxonomy 

Our taxonomy was developed through thematic analysis on our corpus of surveyed and 

hypothetical interactions. This provided a broad coverage of expectations in the field, but 

is nonetheless a limited qualitative analysis. One avenue for future work may be to conduct 

experiments measuring the expectations people form of robots to test whether they align 

with the dimensions and categories of our taxonomy, and ultimately develop a quantitative 

scale to measure user expectations along these dimensions. 

6.3 Reliance on Designer Expertise 

Our demonstration of preliminary application techniques on case studies (Chapter 5) high-

lighted how our framework can be applied effectively in order to examine user expectations 

of robots, but it also highlighted obstacles in the process. A key weakness of our framework 

is that applying it to evaluate real robots heavily relies on the expertise of the evaluators. 

Without hard data to draw from, our proposed application techniques rely on evaluators to 

use their own knowledge and judgement. In this section, we consider how our framework 

leans upon a designer or researcher’s expertise, but also how it supports them in applying 

that expertise. 

6.3.1 Systematic Expectation Dissection 

In generating the informal example expectations to demonstrate systematic expectation 

dissection with our taxonomy (see Section 5.1), we note that it required substantial effort 

in order to generate expectations that approximately spanned the full space of the taxon-

omy. While there were plausible expectations spanning the full space, it was far easier to 
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think of certain types of expectations (especially rudimental) over others. This may suggest 

that, when applying the framework to analyze real user expectations, similar difficulties 

may be faced when interviewing a participant to collect their expectations. Thus, work 

remains to determine how best to interview people in order to extract the full range of their 

expectations. 

Despite this difficulty, it is noteworthy that our taxonomy offers a guide on what types of 

expectations to specifically inquire about. This does not replace the need for a designer’s 

expertise in order to describe and classify expectations, but it demonstrates the utility of 

our taxonomy in supporting them in that process. 

6.3.2 Cognitive Expectation Walkthroughs 

Our framework provides leads and perspectives for designers and researchers to explore 

and examine expectations of their robots. Our cognitive process model offers key insights 

for explaining why a user may be forming a particular expectation. For example, it empha-

sizes that expectations are evolving expectations and are resistant to change, which forces 

us to consider how previous expectations, both from earlier in the interaction and from a 

person’s past experience, shape ongoing interactions. It also places heavy emphasis on 

mental simulation, which keeps us grounded in how a person engages in sensemaking of 

their observations, in contrast to our own technologist viewpoint. 

Conducting cognitive expectation walkthroughs using our process model further empha-

sized these factors, making it easier to explain and how and when violations happen. Note 

how in our walkthrough case study (see Section 5.2), Sam did not readily form new 
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expectations given new information, but we would expect them to cling to earlier expecta-

tions. This illustrates the potential of our process model, using walkthroughs to explore and 

probe problem cases (“Why are people expecting this from my robot?”), or in the design 

process for a new robot (“What may people expect, and why?”, “What if I change this?”). 

While, in the above ways, cognitive expectation walkthroughs using our process model 

support an evaluator in examining a design and explaining potential user expectations, the 

evaluator must nonetheless rely on their own expertise and judgement. That a user may 

form their expectations through mental simulation does not on its own tell an evaluator 

why a particular expectation is formed. It remains incumbent on the evaluator to explain 

these things themselves, but our framework serves as a guide to support them in doing so. 

6.3.3 Framework is Not Predictive 

It is essential to note that our framework does not predict expectations given some design. 

It does not directly explain what features of a robot contribute to which particular expec-

tations, but instead serves as a probing tool to support designers in finding those causal 

connections. This serves as a foundation for designers to assert greater control over expec-

tations and mitigate expectation discrepancies. 

While an applicable predictive tool would be a great asset for designers and researchers in 

engineering desired expectations in users, we do not consider it to be within the scope of 

this work. Instead, our framework may offer a basis for the development of such a tool, 

providing necessary theoretical grounding and vocabulary. 
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6.4 User as Passive Observer 

Our model of the cognitive process of human-robot expectation formation provides a high-

level summary of how signals from a robot and interaction context combine with a person’s 

internal state to result in expectations. In constructing this model, we necessarily empha-

sized certain aspects and deemphasized others. In particular, the process model treats the 

user as a passive participant, receiving signals and processing them in a predictable manner. 

While this perspective is grounded in the human-human expectation literature we re-

viewed, it is nonetheless just one perspective. 

Furthermore, our model places a heavy emphasis on mental simulations: all inputs to ex-

pectations must go through the simulation step. As we discussed in Chapter 3, there is 

considerable debate regarding the degree to which mental simulations determine expecta-

tions, as opposed to a more rational, rules-based approach. For example, mental simulation 

may be an imperfect model for how people understand observations that are truly alien to 

their internal experience, but which they are nonetheless familiar with (e.g., computational 

capabilities). 

The limitations of these theoretical perspectives are exemplified in our cognitive expecta-

tion walkthrough case study, where the focus of our analysis is on the internal cognitive 

processing of the fictional user. Our fictional user struggles through the interaction, con-

fused by the robot’s actions, but seldom takes action to rectify her confusion, instead rely-

ing only on iterative mental simulations and adjusting her conduct accordingly. In reality, 

we might expect that the user more actively seeks knowledge about the situation, prodding 
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the robot to explore its abilities or asking another person for help. Our cognitive process 

model provided a helpful guide for understanding the interaction, but it is not a definitive 

perspective and must be combined with others for a more holistic understanding. 

6.5 Framework Generalizability 

An additional limitation of cognitive expectation walkthroughs as an analytical technique 

is that they consider expectations somewhat specific to the given scenario and interaction, 

which makes it difficult to compare expectations (and thus expectation discrepancy) more 

generally between scenarios, interaction instances, and robots. This represents a tension 

between the importance of context, background and embodiment when understanding an 

interaction (see Section 3.2.4), and the ideal of developing a systematic understanding of 

expectations of robots across interactions. 

We aim to address this tension by complementing the finer-grained understanding of ex-

pectations offered by a cognitive expectation walkthrough with the higher-level summary 

visualization produced through systematic expectation dissection, using our taxonomy of 

expectations to describe the general forms and types that we may expect people to form. 

Our taxonomy provides a unified vocabulary and broad scope for designers to describe and 

compare a person’s expectations of a robot. Using case studies on three real robots, we 

demonstrated the power of this taxonomy to utilize a spatial presentation to highlight no-

table tendencies in user expectations and expectation discrepancies and compare them 

across the robots. It is important to note however, that such direct comparisons must be 

made with care for the nuances between similarly classified expectations (Section 6.1.2). 
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6.6 Chapter Summary 

In this chapter we conducted a critical reflection on our framework in order to evaluate its 

utility to designers and researchers and to identify its limitations. We examined its scope 

and granularity, its foundations in theory rather than real data, its reliance on designer 

expertise for proper application, its treatment of the user as a passive observer in the inter-

action, and the challenges when using it to generalize about expectations across different 

interactions and robots. While we find our framework effective in addressing our research 

questions, it is critical to understand the limits of its application and perspectives. In the 

following chapter, we will use these limitations as the basis to develop recommendations 

for the successful application of our framework to analyze real robots, and to identify op-

portunities for future work to expand our knowledge of human-robot expectations. 
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Chapter 7 Conclusions 

In this research, we developed an analytical framework to examine and describe people’s 

expectations of robots. We demonstrated our framework using preliminary application 

techniques and reflected on it critically to identify its utility and limitations. In this chapter, 

we summarize our work and its implications. We begin by outlining our contributions and 

reflecting on how they relate to our research questions. We then review the limitations 

highlighted through our critical reflection. Considering these limitations, we provide some 

final recommendations for applying our framework in practice, and identify opportunities 

for future work. We conclude with a brief summary of our work and its role in addressing 

the problem of human-robot expectation discrepancy. 

7.1 Contributions 

In this work, we engaged with the problem of unpacking concepts surrounding people’s 

expectations of robots they encounter and interact with. We then approached the problem 

from two major perspectives: explaining how people form expectations of robots through 

our model of the cognitive process of human-robot expectation formation, and enumerat-

ing what types of expectations they form through our two-dimensional taxonomy of expec-

tations, together constituting an overall framework. We proposed preliminary techniques 

for how to employ these tools, and applied them to case studies as a demonstration of our 

framework. In this section, we reflect on our original research questions and consider how 

this work addresses them. 
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RQ1: How is the research community engaging with the concept of human-robot expec-

tations? 

Through our exploration of prior literature on the subject, we found that while substantial 

efforts have been made, there is a need for consistency in perspectives and vocabulary. This 

process highlighted areas of opportunity which we targeted with our framework. 

RQ2: What is the process by which people form expectations of robots they encounter? 

We conducted a background analysis and synthesis of prominent theories on expectation 

formation between people, resulting in a novel model of the cognitive process by which 

people form expectations of robots. This provides a breakdown of many of the important 

elements and inputs into this process. Grounded in a long history of human psychology 

and sociology, our process model offers a perspective rooted in a reality of how people 

think and engage in the world. 

RQ3: What are the patterns in expectations that people form of robots, and can we distill 

them into a taxonomy? 

We collected a large corpus of expectations and used thematic analysis to identify patterns, 

resulting in a two-dimensional taxonomy that classifies human-robot expectations accord-

ing to domain of capability and level of abstraction. This taxonomy provides a concise 

means of describing and comparing human-robot expectations. 

RQ4: How can our improved knowledge of human-robot expectations be used by robot 

researchers and designers to examine and explain expectations of their robots? 
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We developed two techniques: systematic expectation dissections and cognitive expecta-

tion walkthroughs, and applied them to case studies to demonstrate how our framework 

may be applied to understanding user expectations of real robots. This process of develop-

ing and testing these techniques further supported our evaluation, highlighting key ad-

vantages and challenges in applying our framework which we expand upon later in this 

chapter. 

Altogether, we addressed each of the research questions we proposed at the beginning of 

this work, resulting in a framework that has advanced our understanding of human expec-

tations of robots. In the following section, we discuss the key limitations of this work. 

7.2 Limitations 

Though we have made progress toward our research questions, our critical analysis of our 

framework in Chapter 6 identified several key limitations that must be considered. We sum-

marize them here: 

1. The broad scope of our taxonomy necessitated a coarse-grained representation of 

expectations that can obscure important nuances and distinctions. 

2. Our framework is grounded predominantly in theoretical literature and relies on 

assumptions with limited empirical evidence. 

3. Employing our framework relies heavily expertise, offering probing tools and 

guides but ultimately relying on the evaluator to make judgements. 

4. Our model of the cognitive process of expectation formation does not sufficiently 

account for a user’s active role in developing their understanding of a robot. 
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5. Information gained through cognitive expectation walkthroughs can be difficult to 

generalize beyond a particular interaction or robot. 

These limitations do not prevent a designer or researcher from applying our framework in 

practice. Indeed, we found in our critical reflection considerable utility for them to employ 

our framework as a supportive probing tool. Rather, they must understand these limitations 

in order to employ the framework effectively. In the following sections, we draw from these 

limitations some recommendations for successful employment of our framework, and high-

light opportunities for future work to fill in the gaps. 

7.3 Recommendations 

In light of the limitations of our framework, we have identified some key recommendations 

to guide designers and researchers in applying our framework to real robots in concert with 

other tools for understanding human-robot expectations. 

7.3.1 Use as a Probing Tool 

Our framework can be used as a probing tool to guide a designer or researcher in exploring 

a user’s expectations of a robot, but cannot by itself provide direct, definitive answers on a 

how a user will respond to a particular design feature. Such answers may be approximated 

through an evaluator’s expertise, but may require experimental methods in order to deter-

mine precisely. 
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7.3.2 Complement with Other Expectation Tools 

Our framework can be used to complement other tools which detect and measure user 

expectations of robots. A designer or researcher may use such tools (discussed in Section 

6.1.3) to identify expectations that users may hold, and then employ our framework to an-

alyze and explain those expectations and understand how they relate to one another. 

7.3.3 Remember Key Perspective Limitations 

It must be remembered when employing our framework that it is limited by certain theo-

retical perspectives. The two most prominent of these are that our taxonomy offers limited 

granularity and can obscure nuanced differences between expectations, and that our model 

of expectation formation treats the user as largely passive in the process. These limited 

theoretical lenses, if not properly considered, may distort one’s analysis of expectations. 

7.4 Future Works 

We note three major opportunities for future work to build upon and extend our framework. 

Future work in these areas may enable the development of practical, quantitative tools that 

designers and researchers could use to determine what features of their robot are leading 

to expectation discrepancies in users. Such tools would further empower them with control 

over user expectations, allowing them to mitigate discrepancy and achieve smoother hu-

man-robot interactions. 

7.4.1 Amending Process Model with an Active, Rationalizing User 

In Section 6.4 we emphasized that our model of the cognitive process of human-robot ex-

pectation formation is limited by its treatment of the user as a passive observer in the 
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process. This presents an opportunity to amend this model with a greater accounting for 

their active role in seeking out and understanding new information. This may include in-

corporating elements of theory theory, the rival to simulation theory, acknowledging the 

role that both may play in expectation development (more details in Section 3.2.3). 

7.4.2 Empirical Validation of Taxonomy 

In Section 6.2.2 we noted that our taxonomy of expectations was developed through the-

matic analysis on observed and hypothesized interactions and has not been experimentally 

tested. Moving forward, we believe it will be important for ongoing research to move be-

yond the theoretical and into more experimental work. This may take the form of experi-

ments to measure the expectations people form of robots and determine whether the di-

mensions and categories of our taxonomy match the patterns of people’s real expectations 

in practice, as well as whether our taxonomy space indeed covers all important cases. Such 

work may culminate in the development of a quantitative scale for measuring user expec-

tations along the dimensions of our taxonomy. 

7.4.3 Standardized Expectation Interview Methodology 

In Section 6.3.1 we discussed the difficulties we encountered when generating hypothetical 

expectation data for our systematic expectation dissection case study (Section 5.1). This 

may imply that when interviewing a participant about their expectations, they may require 

coaching to elicit certain types of expectations that they not immediately think of. Thus, 

there is potential for a formal, standardized methodology for expectation interviews in or-

der to extract a thorough listing of expectations from a participant. More research is 
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required to understand what types of expectations participants hold but may not readily 

express, and what questions may encourage them to express them. 

7.5 Conclusion 

The field continues to struggle with creating robot designs that lead users to expect unre-

alistically advanced, perhaps human-like capabilities in robots that are well beyond its ca-

pabilities, leading to disappointed and confused users, and perhaps failed robots. While 

designers continue to explore robots that are more transparent regarding their abilities, the 

field still lacks the knowledge necessary to support robot creators in making informed 

choices to influence users’ expectations of their robots. 

In this paper, we addressed four key research questions. We reviewed how human-robot 

expectations and expectation discrepancy are being discussed in research today, and iden-

tified a need for a consistent, systematic framework (RQ1). We presented a novel cognitive 

process we developed for how users form and maintain expectations of social robots (RQ2).  

We further developed and presented a taxonomy for describing and classifying expecta-

tions users may form according to key patterns (RQ3). Finally, we demonstrated prelimi-

nary analytical techniques for applying our framework to real robots, which illustrated the 

analytical power of our tools as probes that we envision designers can use in their own 

research and robot design processes as a basis to better anticipate and influence the expec-

tations that their robots establish in users (RQ4). 

As the field continues to improve our understanding of how to create robots that garner 

appropriate expectations, our work serves as an important step in providing concrete tools 
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to engage these problems. Ultimately, by enabling designers to more precisely influence 

user expectations, they may design robots that can better imply their true capabilities, mit-

igating expectation discrepancy and leading to more successful human-robot interaction. 
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