
PaintBoard – Prototyping Interactive Character Behaviors
by Digitally Painting Storyboards

Daniel J. Rea

University of Manitoba

daniel.rea@cs.umanitoba.ca

Takeo Igarashi

The University of Tokyo

takeo@acm.org

James E. Young

University of Manitoba

young@cs.umanitoba.ca

ABSTRACT

The creation of interactive computer-controlled characters in

interactive media is a challenging and multi-faceted task re-

quiring the skills and effort of professionals from many

fields. This work addresses authoring the interactive aspect

of these characters’ behaviors – how characters act automat-

ically in response to a dynamic user-controlled character. We

present PaintBoard, a system that enables users to prototype

and test discrete, real-time, interactive movements in a 2D

grid environment simply by digitally painting a storyboard.

We designed and developed a novel authoring technique for

creating behaviors (painting storyboards) and a novel algo-

rithm based on machine-learning, that analyzes a storyboard

to create a behavior that works beyond situations provided in

the input storyboard. We conducted two exploratory studies

that grounded the prototype design, and present the results of

a proof-of-concept workshop with game developers. Finally,

we performed a comparison of machine learning algorithms’

performance on our storyboard data.

Author Keywords

End-user programming; interactive systems; sketch inter-

face; prototyping; interface design; machine learning

ACM Classification Keywords

H.5.2. User interfaces: Prototyping, User-centered design

General Terms

Design; Human Factors

INTRODUCTION

Computer controlled characters are an integral component of

modern video games and other interactive media. The crea-

tion of these characters is a difficult task that, at the profes-

sional level, can demand a broad range of specialized and

highly-skilled collaborating individuals, including artists for

creating 3D models and animations, writers and voice actors

for dialogue, and a range of programmers to implement arti-

ficial intelligence and system logic. This is particularly chal-

lenging when the computer-controlled characters are highly

interactive—when the characters must, in real-time, assess

and interact appropriately to dynamic input from users and

their environment. These highly-dynamic interactive behav-

iors can demand programming expertise and significant

amounts of time. For example, in a role playing game, a de-

signer may want a computer-controlled thief character to

“sneak”: avoid the user-controlled character when they are

nearby while simultaneously approaching a treasure box, all

without being seen. Such behaviors usually require the logi-

cal definition of multiple conditions based on user activity,

and all details of the behavior that occur in each condition.

Researchers have proposed various methods to reduce the

amount of expertise and time required for creating content

for interactive systems. This includes enabling people to cre-

ate 3D models simply by sketching in 2D [12], to author ad-

vanced animations through simple mouse gestures [13], or to

create complex interactive stories through point-and-click

visual logic programming [15]. Simplifying the creative pro-

cess further provides experts and non-experts alike with pro-

totyping tools for quickly testing, visualizing, and sharing

their ideas [18]. We extend this body of work with Paint-

Board: a simple and visual prototyping method that aims to

reduce the effort and skill required for the creation of inter-

active behaviors for computer controlled characters.

Paper sketching and other related low-fidelity techniques

(such as storyboarding) are low-cost, fast, easy-to-use tools

that support creativity and exploration [4,14] by assisting and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
HAI '14, October 29 - 31 2014, Tsukuba, Japan

Copyright is held by the owner/author(s). Publication rights licensed to

ACM.
ACM 978-1-4503-3035-0/14/10…$15.00.

http://dx.doi.org/10.1145/2658861.2658886

Figure 1: A participant sketches a storyboard to show that a

computer-controlled interactive character (CPU) should ap-

proach yellow squares (the treasure) while staying out of the

red squares (user controlled character’s sight). PaintBoard

extrapolates and generates the interactive behavior of sneak-

ing to the treasure when the user’s character is not looking.

CPU

User

enabling rapid iteration of ideas, and by providing immediate

visual feedback of those ideas [4,14,18]. They also enable

and inherently support communication with others, as well

as storytelling [11]. Because of this, low-fidelity techniques

are part of standard toolkits across a broad range of fields

including human-computer interaction [14], film [10], and

animation [13]. PaintBoard leverages the benefits of these

exploration techniques by enabling people to create behav-

iors by digitally painting rough ideas on virtual storyboards,

similar to sketching, and by generating results that people

can interact with, test, refine, and show to others.

In this paper we present an initial PaintBoard prototype that

provides a novel storyboarding interface for painting interac-

tive behaviors. We developed a feature set for representing

the behaviors, and employed machine-learning using these

features to generate real-time interactive behaviors from the

user-drawn storyboards. To inform both the PaintBoard in-

terface and algorithm design, we conducted interviews with

industry professionals and analyzed results from a behavior-

programming workshop with experienced programmers. We

present the results of a proof-of-concept, hands-on Paint-

Board workshop and an evaluation of our algorithm by com-

paring its performance in alternative configurations.

RELATED WORK

Existing research that simplifies the creation of interactive

characters and systems has aimed to reduce the programming

requirements typical to such tasks. One example uses acces-

sible drag-and-drop textual representations of game objects

combined with programming-like elements [15] to create

story-based interactive worlds (their focus was not on inter-

active behavior movement). Another powerful work allows

authors to explore complex interactive story narratives by

specifying details about the characters and the world they act

in [16]. Others enable users to build up an interactive behav-

ior with gesture grammars and state machine logic [17].

PaintBoard focuses on prototyping, and because linear, de-

tail-oriented thinking can hinder prototyping and exploration

[20], our work aims to avoid requiring users to explain their

behavior logically and enable them to describe it in a visual,

story-like, less detail-oriented way.

Programming by demonstration, where a designer can author

a behavior by simply providing a performance demonstration,

is a common technique for authoring interactive behaviors.

Although this is well established in animation [6,13] and ro-

botics [19], most of this work has been for the creation of

static behaviors without an interactive element. Interactive

work has focused on, for example, learning reactive body

language from motion-capture data with user-controlled pa-

rameters [7], or well-defined sequences of actions that fit into

a state-machine model [9,17]. PaintBoard extends this work

by targeting movement in response to unpredictable users in

continuous real-time interaction throughout a 2D environ-

ment. Further, programming by demonstration can often re-

quire large numbers of repetitive demonstrations (e.g. [8]),

real world data of many types of movement (e.g. [8]), or still

uses programming in the process (e.g. [21]). To enable its

use as a low cost rapid-prototyping tool, PaintBoard can

work with as little as one example.

Perhaps closest to our work is the Puppet Master program-

ing-by-demonstration project [22], which enables authors to

rapidly prototype interactive animation or robotic motion be-

haviors similar to the ones targeted by PaintBoard. While

Puppet Master emphasizes interactive movement “style” of

two interacting characters, PaintBoard builds upon their re-

sults to cover multi-part behaviors (e.g., hide when seen, get

some treasure when guards are not looking), and enable char-

acters to interact with the environment (e.g., walls, important

objects such as treasure chests). Further, Puppet Master’s

evaluations indicated that users had difficulty envisioning

the result from their performance demonstration due to the

mental load from Puppet Master requiring the user to suc-

cessfully author the whole behavior in real-time in one at-

tempt; To avoid such issues, we extend Puppet Master’s ap-

proach by enabling more complex interactive behavior au-

thoring in a visual way with frame-by-frame storyboards.

Low-fidelity prototyping techniques such as sketching have

been used to successfully simplify other forms of digital con-

tent design, for example, by using 2D sketches to create 3D

character models [12], or to design and implement user in-

terfaces [14]. These tools are accessible as design and proto-

typing tools to both professional and amateur designers. We

follow this approach by applying rough painting to simplify

the creation of interactive motion behaviors

EXPLORATORY INVESTIGATION

To inform our interface and algorithm design, we conducted

two exploratory studies. First, we performed semi-structured

interviews with video game designers and developers to un-

cover common problems faced and workflows used during

the creation process. To inform the design of our behavior

generation algorithm, we conducted a second investigation

(programmer study) with 26 undergraduate programmers,

where we explored the range of interactive behaviors people

may author, and analyzed implementations (computer code)

to extract strategies and techniques used to implement them.

Interviews with Industry

We conducted four, one-hour semi-structured interviews

with professional game designers and developers. Questions

we asked include “How are certain interactive behaviors dif-

ficult to create, specifically because of interactions with the

player?” and “How do you create these interactive behav-

iors?” We recorded the interviews and qualitatively analyzed

transcripts through open coding to identify key themes.

Participants reported spending significant time planning be-

havior implementations due to the even higher time cost of

actually implementing them with programming. In addition,

participants heavily relied on experimentation and iterative

prototyping (writing programs and observing results). This

grounds our initial rapid prototyping motivation in the needs

of real users. Further, participants reported having difficulty

communicating and understanding how an interactive behav-

ior should look. We saw this reported by both technical de-

velopers as well as artistic designers. As visual tools improve

communication [4,11], one aim of PaintBoard was leverag-

ing painting’s visual nature as the main interaction metaphor.

Programmer Study: Analysis of Implementations

To investigate programming strategies that may be useful for

generating behaviors, we conducted a programming work-

shop to explore methods used by developers to implement

interactive behaviors. We asked 26 fourth-year undergradu-

ate Computer Science students in a Human-Computer Inter-

action class to program a set of behaviors; such participants

have the skills to work in the video game industry. We used

a medieval-theme (common within the role-playing video

game genre) as a representative scenario. Participants were

provided a simple graphical game board (that looked similar

to PaintBoard, e.g., Figure 1) and Java API, and were tasked

with creating three behaviors each. They were encouraged to

develop their own behaviors, and were described “follow,”

“protect treasure,” and “escape” as examples.

We received 78 unique behavior implementations that we

categorized into 19 distinct types. The three most common

of these were our suggested “follow the user” (24 partici-

pants), “protect treasure” (18), and “escape from the user”

(13) behaviors. The remaining behaviors had less overlap (16

types over 23 implementations). Common behavior types,

however had significant variation, for example, some “fol-

low the user” implementations would stay close behind the

user, others would walk side by side, and yet others would

follow from a distance. Thus behaviors are envisioned dif-

ferently by different authors; PaintBoard will need to accom-

modate not only a variety of behaviors, but allow for varia-

tions of those behaviors.

Our post-workshop analysis of the developers’ behavior im-

plementations illuminated strategies that participants used to

define their behaviors. Across behaviors, we found that par-

ticipants consistently leveraged a small set of commonly cal-

culated quantities, such as the characters’ visibility and rela-

tive positions, to decide on how the computer character

should interact with the user; we distilled these into a set of

features that our algorithm used to analyze painted story-

board input (detailed in Section 4.3). Additionally, program-

mers commonly specified points of interest, for example, a

treasure chest to “guard,” a “hideout” to run to, or even stay-

ing in “close proximity to the user.” Thus PaintBoard enables

users to define such goal areas with the interface.

PAINTBOARD PROTOTYPE

Our PaintBoard prototype provides a sandbox setting that en-

ables people to author a behavior by digitally painting on a

screen. Users paint a storyboard consisting of static snapshot

panels that each convey the behavior in a specific situation.

The storyboard represents a full behavior, and is used as in-

put to the PaintBoard algorithm to generate the interactive

1 http://www.processing.org/

result. The interface and logic was programmed in Java using

Processing1 and the ControlP5 library2 was used for the GUI.

User Interface

The sandbox area of the interface is a 20x20 2D character

movement grid where the user constructs snapshots from an

overhead view (Figure 2a). Users can drag objects (from Fig-

ure 2d), including both the computer and player characters

(maximum one of each), points of interest (treasure chest,

maximum one), and environment (walls, from Figure 2c),

onto the grid, and position them as desired.

Users can select a color from the palette (Figure 2c) and then

paint on the grid by clicking and dragging the mouse; cells

can only have one color at a time. Red paint denotes areas

where the computer character should not go, for example,

when painting a “sneak” behavior all grid cells that the user

character can see should be red because a sneaking character

does not want to be seen. Gold paint indicates goal areas:

where the computer character wants to go (Figure 3). This

differs from points of interest in that it is based on the user

and computer characters’ current configuration (e.g., “be-

hind the user”) and as such are more dynamic than stationary

points of interest. Unpainted (white) squares are neutral and

the character neither avoids nor tends toward them. In other

words, the computer character should try to go toward gold

areas, while passing through uncolored areas and avoiding

red ones. Thus the PaintBoard interface addresses the fea-

tures uncovered during our programmer study: visibility can

be defined simply by painting where a character can see

(Figure 3), relative position is defined by how the user and

computer characters are placed, and the gold paint and points

of interest enable the author to designate goals.

PaintBoard Interaction Flow

To facilitate rapid and iterative prototyping, PaintBoard en-

ables users to quickly create behaviors, and easily test and

modify them. While painting, users can test their behavior by

pressing a single button (“play”), and the system instantly

2 http://www.sojamo.de/libraries/controlP5/

Figure 2: The PaintBoard interface: (a) sandbox area, (b) sto-

ryboard snapshots, (c) paint palette, (d) point of interest

(chest) and characters, (e) play and pause, (f) save and load

behavior, (g) debug mode, (h) new snapshot.

CPU

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Painted

area

User

http://www.processing.org/
http://www.sojamo.de/libraries/controlP5/

compiles the behavior and generates a result that the users

can interact with using the keyboard controls (arrow keys).

At any time, the author can press “stop,” edit any of the snap-

shots in the storyboard, or create a new snapshot to modify

the behavior. While testing, if the computer character moves

in an unintended way, the user can capture the real-time sce-

nario as a new snapshot, and paint it.

PaintBoard has a debug mode that is identical to testing

(“play” mode) except that it provides real-time visual feed-

back regarding what the character is trying to do. Based on

the storyboard input, PaintBoard will display red and gold

squares to indicate where – in the given situation – it believes

the character should and should not go. For example, given

the snapshots in Figure 3 as the storyboard input, Figure 2 is

the debug-mode output, a visual representation of what

PaintBoard has learned.

Enabling rapid and iterative prototyping of ideas was a major

interface priority, as it has been shown to aid creativity and

exploration [14,18,20]; PaintBoard enables users to quickly

create, modify, and delete snapshots, as well as test the inter-

active results without requiring any programming or logic

definition. With PaintBoard, authors create behaviors in-situ

(e.g., [12,17]): they create in the same environment where

the behavior will be used. This enables authors to bypass

conceptual translations required when moving from an au-

thoring to a testing medium (such as moving from visual pro-

gramming to a game), helping visualize the final result [2].

Algorithm

The PaintBoard algorithm must analyze a painted storyboard

and generate an interactive character that matches the quali-

ties given in the storyboard.

Given an input storyboard and a new, live situation, Paint-

Board first generates a new synthetic snapshot to have simi-

lar characteristics to the input examples (e.g. red paint in

user’s line-of-sight). For example, given the two snapshots

as input from Figure 3, PaintBoard generated the painting in

Figure 2a to have similar characteristics. Then, PaintBoard

uses this synthetic snapshot to determine the interactive char-

acter’s next move. After moving, the process is repeated,

generating a new synthetic snapshot for each new situation.

Generating Synthetic Snapshots

We employ a Support Vector Machine (SVM) [5] classifier

to iterate over all cells of the unpainted snapshot and label

them as red, gold, or unpainted, creating the synthetic snap-

shot. We selected an SVM as a standard, fast classifier and

used the LibSVM library [5] with its default settings.

To train the SVM, we calculate a feature vector for every cell

in every snapshot, and label it with the color painted by the

author (red, gold, unpainted). Thus, the SVM would ideally

label cells of the synthetic snapshot to match characteristics

(the features) of the training data (as show in Figure 2).

A challenge of using machine learning is to select representa-

tive features that capture the appropriate characteristics of

the scene. This is non-trivial, and we developed our own do-

main-specific features given the lack of prior work; this

problem and challenge is common in machine learning (e.g.,

[7,22]). PaintBoard uses the features identified in our pro-

grammer study, with the final set selected informally through

experimentation. We call these state features, detailed below

(Figure 4):

Cell Position Relative to the User in the Screen’s Coordinate

System. For example, in Figure 4 the bold cell is two to the

left and three above the user. This captures absolute relation

to the user (e.g., stay to the left side of the environment).

Cell Position Relative to the User’s Orientation. For exam-

ple, in Figure 4 the bold cell is two cells in front of and 3

cells to the right of the user character. This captures position

from the user’s point of view (e.g., stay behind them).

Cell Position in a Coordinate System Rooted at the User and

Oriented to the Point of Interest. For example, in Figure 4

the bold cell is 2.6 cells behind and 2.5 to the left of the user

and chest. This captures the context of the point of interest

(e.g., do not go between the user and the chest). This is not

used when there is no point of interest.

Visibility: we cast rays from the user to the cell and its neigh-

bors to calculate visibility, with those blocked by walls not

counted. For example, the bold square in Figure 4 has visi-

bility 0.6 (6/9). This captures line of sight information (e.g.,

Figure 3: A sample two-part behavior storyboard of a charac-

ter that sneaks up on the user. In this case, the computer char-

acter should not enter the sight of the user character, (red

squares) and should stay close to and behind the user (gold).

User
CPU

User

CPU

User

relative to user

relation to point

of interest

CPU

visibility

raycasts

relative to user

orientation

Figure 4: How state features are calculated for the bolded cell.

how visible cells are to the user), and the non-binary classi-

fication enables the computer character to capture the differ-

ence between being partially and fully seen.

Euclidean Distances from the Cell to the User and Point of

Interest. For example, in Figure 4 the bold square is 3.6 and

7.3 from the user and point of interest respectively. This

helps emphasize proximity (e.g., how close to be to the user).

These features form a multi-dimensional vector for each cell

which is labeled with the color painted by the author. We use

all vectors from all snapshots in a storyboard to train the

SVM. During interaction, the features are calculated for each

cell in real time and the SVM is used to classify (paint) them

to generate the synthetic snapshot.

Using a Synthetic Snapshot to Generate the Behavior

After generating the synthetic snapshot, the computer char-

acter moves toward the closest goal space (gold paint), while

not walking through walls, and avoiding red spaces if possi-

ble. The algorithm does a breadth-first search spiraling out

from the computer character (we saw this in our programmer

study), where walls are considered impassable. Red cells

may not be completely avoidable, for example if all other

paths are blocked. We address this by giving them a penalty

distance of four. For the case when the character is stuck with

large red areas between it and the goal, we added a path-

length threshold of 20 so the character simply would wait in

safety rather than traversing large red areas. Both of these

quantities were selected through experimentation.

PAINTBOARD WORKSHOP

We conducted a proof-of-concept workshop to explore reac-

tions to our PaintBoard approach and interaction design by

potential end-users. Formal, targeted evaluations (e.g., inves-

tigating how PaintBoard can integrate into a designer’s

workflow) remain important future work.

We recruited five professional and hobbyist game developers

for the 1.5 hour workshop, where they received a 15 minute

tutorial on how to use PaintBoard to prototype interactive be-

haviors. Afterwards, they were given one hour to freely cre-

ate any behaviors they wished (using the same medieval

theme as above), and were given a 15 minute questionnaire

at the end. Although each person worked independently, the

atmosphere was friendly and collaborative, and people were

having spontaneous discussions about their experiences. Re-

searchers took notes throughout the workshop

Participants were asked to save their storyboards (through

the PaintBoard functionality) for later inspection. In addition,

we performed broad qualitative analysis on the notes and

questionnaire answers in order to identify themes and in-

sights of our participants’ experiences on topics such as via-

bility of painting as a behavior authoring technique, or ways

that PaintBoard could be leveraged in real-world situations.

Results

Overall, participants were able to use PaintBoard to quickly

and successfully prototype a range of interactive behaviors

such as “follow the user,” “hide,” “obstruct the user,” “guard

an area,” and “sneak to treasure.” This was achieved in spite

of minimal training, lending support to our painting and sto-

ryboarding approach and implementation.

Participants reported feeling that PaintBoard would be useful

for planning and prototyping ideas:

In its current state, could be handy for prototyping and

visualizing scenarios. - P3

I would use this as a prototyping tool to make quick be-

haviors that I would then implement with code - P2

and for communicating with others:

Easy to visually show others simple behavior that can be

expanded to more complex situations. - P5

Some noted that it may be useful for team members with less

technical expertise:

I'm not sure if it'll be useful in my workflow (yet), but I

think it'll be great for designers - P1

Although this is far from rigorous proof, the previous two

quotes highlight our motivation of making a tool that facili-

tates communication between designers and developers: the

visual and interactive nature is important as the resulting be-

havior prototypes can be shared and discussed with cowork-

ers. As PaintBoard requires no coding knowledge, it enables

two-way communication as both designers and developers

can modify behavior prototypes to enhance discussions.

Participants praised the benefits of PaintBoard’s iterative na-

ture, noting that it matches their existing workflows:

I like the iterative design process. Games tend to follow

on iterative design, so this fits nicely. - P1

Even though our participants were experienced programmers,

they were very receptive to the use of painting in the behav-

ior design process:

The abstraction of the concepts is very easy to under-

stand … as well as the ability to alter states during play,

and ability to watch the goal and avoid state change - P4

All participants also felt the performance of the test mode

was reasonable. However, some did show concern over

PaintBoard’s ability to scale up to more complex behaviors:

It's a bit hard to convey a behavior sometimes, but maybe

that doesn't need to be a goal. It seems to work with sim-

pler behaviors and I think it can be used as such usefully

- P1

There were several examples where the painted storyboard

was very clear and descriptive from a person’s perspective,

but the resulting behaviors were not generated successfully.

While this is a difficulty with the current learning algorithm,

we believe that this is a success for the painting interface: it

illustrates the ability to represent and communicate a desired

result through our storyboards. See Figure 5, a storyboard

produced by a participant in our workshop: it has easy-to-

understand snapshots of specific behavior aspects and the

overall storyboard clearly describes a complete behavior, but

the generated behavior usually predicted only unpainted cells.

In addition to reflecting on the potential benefits of Paint-

Board, participants described specific functionality that they

believed could improve PaintBoard. For example, partici-

pants requested the addition of story branches, where a con-

dition indicated in a snapshot may lead to a new set of snap-

shots. This could fit within the storyboard interaction, but

would require new algorithmic solutions. Participants also

suggested adding the ability to weigh painted cells, where

some are more important than others (e.g. prefer not being

seen over reaching the treasure), or the ability to make hard

rules about the environment, for example, to mark specific

squares in the environment which should always be avoided.

While these would give more creative power and control to

a PaintBoard user, such features should be added with careful

consideration of the speed and simplicity of PaintBoard’s in-

teraction flow, else they may slow down PaintBoard’s rapid

and iterative nature.

COMPARISON OF CLASSIFIERS AND FEATURE SETS
ON STORYBOARD DATA

To understand how our choice of learning algorithm and

training features were linked to some of our users’ behavior

generation problems observed in our workshop, we analyzed

the performance of different variations of our algorithm. We

modified our algorithm on two dimensions: classifier, and

feature set used to train the classifier. This analysis has three

components: we developed a dataset and accuracy metric

that could be used to test a given configuration, we tested the

accuracy of each classification algorithm, and using the best

performing classifier we greedily selected state features to

form a possible variant feature set for training.

To build a dataset for training and testing classifiers, we re-

cruited developers and had them use PaintBoard to paint be-

haviors. Participants were 4th year and graduate computer

science students. They were given an explanation of how

PaintBoard worked, including a demonstration of painting a

“follow” behavior. Each participant was asked to paint three

behaviors: escape from the user character, sneak up to the

user character, and protect a treasure from the user character.

For each behavior, the participant was instructed to create 10

different storyboard examples with each example fully de-

fining a behavior and containing one or more snapshots.

Thus, there were 30 example storyboards per user.

Comparison of Classifiers

We compared the performance of five different machine-

learning classifiers for our behavior generation algorithm:

SVM with a radial basis kernel (which we used in our initial

PaintBoard implementation), SVM with a polynomial kernel,

Figure 5: A storyboard authored by a participant during our workshop, showing how a computer character should sneak around a

user to get treasure. (a) hide by the only entrance to the room (b) when the user is not looking, sneak into the room and stay out of

sight (c) when the user is not looking at the inner hallway, run to the treasure (d) if the user is in the hallway, sneak around the

other way (e) get as close to the treasure as possible without being seen, and (f) if spotted by the user, run out of the room.

User User

CPU

CPU

CPU

CPU CPU

User

User User

(a) (b) (c)

(f) (e) (d)

User

CPU

K-Nearest Neighbors, Random Forest, and Naïve Bayes

classifier. We used the implementations of these algorithms

provided by the Java Machine Learning Library [1]. The two

SVMs used the LibSVM default parameters; k was chosen

as 5 for K-Nearest Neighbors as it had similar performance

to higher values (e.g. k=10) with faster run-time; the tree

count for the random forest was set to 100, based on the evi-

dence suggesting random forests do not often overfit [3].

For each algorithm, we performed cross-validation to better

understand its predictive accuracy with PaintBoard. For one

participant’s behavior, we trained PaintBoard with only one

of the provided 10 storyboard examples: our target use case

is rapid prototyping and, ideally, a user will paint minimal

data and test in many situations. For each of the remaining

examples, we generate a synthetic snapshot for the same sit-

uation and calculate accuracy as the percent of true positives

(direct cell matches) between the two. This is done for each

example, training a new classifier each storyboard and aver-

aging the accuracies together. The accuracy of an algorithm

is the mean accuracy over all participants and behaviors.

Results

We present accuracy of each algorithm in Figure 6.There was

a main effect of the algorithm on the accuracy of the syn-

thetic snapshot (F(4, 120) = 11.9, p < .001, η2 = .284). Post-

hoc tests (with Bonferroni correction) revealed that the radial

basis function SVM performed better than Naïve Bayes

(p<.001), and polynomial SVM (p<.05). All other compari-

sons were not significant.

The behavior type impacted the accuracy of the synthetic

snapshot (F(2, 120) = 8.0, p=.001, η2 = .117). Post-hoc tests

(with Bonferroni correction) revealed that “sneak” was more

accurate than “escape” or “protect” (10% more) p<.005.

There was no interaction effect between algorithm and be-

havior type on accuracy.

One problem with interpreting the above accuracy results is

that, in our data, a cell is much more likely to be unpainted

(clear) than painted (red or gold); this biases classifiers to

give us high accuracy for unpainted cells while possibly low-

ering the accuracy for the other colors. To provide insight we

present a confusion matrix for the radial basis SVM (Figure

7), showing the average accuracy across all participants and

behaviors as a percentage. Each entry can be read as “[entry

value] percent of all author-painted [column] cells in the test

data were predicted to be [row] by PaintBoard.” For example,

we can see that, across all participants and behaviors, 76% of

gold painted cells were predicted to be unpainted in the syn-

thetic snapshots. In our case, a possible solution is to care-

fully balance the data fed into the SVM by clustering the dis-

proportionately large number of uncolored squares to a rep-

resentative subset is similar in size to the other colors. De-

spite this limitation we highlight that labelling a square as

unpainted is as equally important as painting it, and the re-

sults were robust enough for our workshop.

 SVM-RBF red unpainted gold

 red 0.25 0.09 0.09

unpainted 0.70 0.85 0.76

gold 0.05 0.06 0.15

Although our current implementation is sufficiently fast for

interactive results, we analyzed execution time as a signifi-

cantly faster algorithm could be important for future work.

There was a main effect of the algorithm execution time per

participant per behavior (F(4, 42) = 19.4, p<.001, η2 =.649).

Post-hoc tests (with Bonferroni correction) revealed that all

algorithms ran at least 650% faster than polynomial SVM,

p<.001. No other effects were found.

Evaluation of State Features

We explored variations of our feature set in order to explore

if any of our features were poorly chosen. Using a naïve

greedy selection approach using the radial basis kernel SVM,

we first measured the accuracy (as above) with each state

feature on its own, picked the single feature with the highest

accuracy, and iteratively added features in the same fashion.

We found no significant improvement of accuracy over our

existing feature set as described earlier.

LIMITATIONS & FUTURE WORK

To expand the behavior vocabulary, PaintBoard should be

extended to incorporate other state features such as the

movement speed of the character. In addition, we should ex-

plore if PaintBoard should consider the order of the snap-

shots in the storyboard, as storyboards are inherently chron-

ological. Along similar lines, it may be useful to explore how

PaintBoard could use layers (e.g., as used in Adobe Pho-

toshop). This may enable users to separate varying aspects of

what they are authoring, and may be useful for representing

speed, or other features such as character orientation, without

cluttering the snapshots.

Our current studies served as a proof-of-concept of painting

storyboards as a behavior generation tool, but targeted follow

up studies with more rigorous evaluations need to be con-

ducted. For example, we will conduct a follow-up study

where developers and non-technical designers work together

Figure 7: The confusion matrix for the radial basis function

SVM. Columns are input labels, and rows are output labels.

0% 20% 40% 60% 80%

KNN

NaiveBayes

RandomForest

SVM-RBF

SVM-POLY

Figure 6: Accuracy of each algorithm for our dataset. Error

bars are standard error. SVM polynomial kernel, SVM radial

basis function kernel, Random Forest, Naïve Bayes, and K-

Nearest Neighbors.

to create a behavior, and use PaintBoard as the prototyping

and communication medium. For future algorithmic work,

investigating new state features may greatly improve accu-

racy. For evaluating behaviors, we relied on user self-report-

ing and naïve accuracy metrics; improving the behavior val-

idation method is important future work.

CONCLUSION

This paper detailed PaintBoard: a novel interaction and algo-

rithmic technique for prototyping interactive character be-

haviors by painting and storyboarding. We presented results

from exploratory interviews and a programmer study, which

informed our interface design and algorithm development.

PaintBoard’s algorithm was based on machine learning, and

can generate real-time interactive behaviors based solely on

a few painted examples. We presented a feature set (state fea-

tures) that can represent important characteristics of paired

interactive behaviors. Our proof-of-concept workshop high-

lighted the usability of PaintBoard’s storyboard painting ap-

proach, showing how developers, with minimal training, can

successfully and quickly prototype behaviors. Finally, we

gave insight into the PaintBoard’s algorithm with a compar-

ative study. Overall, we believe that PaintBoard is a clear

proof-of-concept for the approach of authoring interactive

behaviors through visual painting and storyboarding.

ACKNOWLEDGMENTS

We would like to thank NSERC and JSPS for providing

funding for this research.

REFERENCES

1. Abeel, T., de Peer, Y. V., and Saeys, Y. Java-ML: A

Machine Learning Library. Journal of Machine

Learning Research 10, (2009), 931–934.

2. Beyer, H. and Holtzblatt, K. Contextual design:

defining customer-centered systems. Elsevier, 1997.

3. Breiman, L. Random Forests. Machine learning 45, 1

(2001), 5–32.

4. Buxton, B. Sketching User Experiences: Getting the

Design Right and the Right Design. Morgan Kaufmann

Publishers Inc. 2007.

5. Chang, C.-C. and Lin, C.-J. LIBSVM. ACM

Transactions on Intelligent Systems and Technology 2,

3 (2011), 1–27.

6. Dontcheva, M., Yngve, G., and Popović, Z. Layered

acting for character animation. ACM SIGGRAPH 2003

Papers on - SIGGRAPH ’03, (2003), 409.

7. Förger, K., Takala, T., and Pugliese, R. Authoring

Rules for Bodily Interaction: From Example Clips to

Continuous Motions. Intelligent Virtual Agents, (2012),

341–354.

8. Forte, D., Gams, A., Morimoto, J., and Ude, A. On-line

motion synthesis and adaptation using a trajectory

database. Robotics and Autonomous Systems 60, 10

(2012), 1327–1339.

9. Gebhard, P., Kipp, M., Klesen, M., and Rist, T.

Authoring scenes for adaptive, interactive

performances. Autonomous agents and multiagent

systems, (2003), 725.

10. Goldman, D.B., Curless, B., Salesin, D., and Seitz,

S.M. Schematic storyboarding for video visualization

and editing. ACM Transactions on Graphics 25, 3

(2006), 862.

11. Greenberg, S., Carpendale, S., Marquardt, N., and

Buxton, B. The narrative storyboard: telling a story

about use and context over time. interactions 19, 1

(2012), 64–69.

12. Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: a

sketching interface for 3D freeform design.

SIGGRAPH, ACM Press (1999), 409–416.

13. Igarashi, T., Moscovich, T., and Hughes, J.F. Spatial

keyframing for performance-driven animation. ACM

SIGGRAPH/SCA ’05, ACM Press (2005), 107.

14. Landay, J.A. and Myers, B.A. Interactive sketching for

the early stages of user interface design. SIGCHI,

ACM Press (1995), 43–50.

15. McNaughton, M; Cutumisu, M; Szafron, D; Schaeffer,

J; Redford, J; Parker, D. ScriptEase : Generative

Design Patterns for Computer Role-Playing Games.

Automated software engineering, (2004), 386–387.

16. Pizzi, D. and Cavazza, M. From Debugging to

Authoring : Adapting Productivity Tools to Narrative

Content Description. Lecture Notes in Computer

Science 5334, (2008), 285–296.

17. Shen, E.Y. and Chen, B. Toward gesture-based

behavior authoring. International 2005 Computer

Graphics, (2005), 59–65.

18. Shneiderman, B. Creativity support tools: accelerating

discovery and innovation. Communications of the ACM

50, 12 (2007), 20–32.

19. Suay, H.B., Toris, R., and Chernova, S. A Practical

Comparison of Three Robot Learning from

Demonstration Algorithm. International Journal of

Social Robotics 4, 4 (2012), 319–330.

20. Terry, M. and Mynatt, E.D. Recognizing creative needs

in user interface design. Creativity & cognition - C&C

’02, (2002), 38–44.

21. Wolber, D. Pavlov: Programming by stimulus-response

demonstration. SIGCHI, (1996), 252–259.

22. Young, J.E., Sharlin, E., and Igarashi, T. Teaching

Robots Style: Designing and Evaluating Style-by-

Demonstration for Interactive Robotic Locomotion.

Human–Computer Interaction 28, 5 (2013), 379–416.

