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Abstract

Transparency in Al is crucial for fostering user trust and accep-
tance, yet achieving it through explanations presents significant
design challenges, particularly regarding how much detail to pro-
vide. For example, in-depth explanations can convey accurate
and comprehensive information, but they also risk overwhelm-
ing users. This paper considers this important design tradeoff in
the context of training dataset explanations, which describe the
data used to train Al systems and differ from most model-centric
explanations in terms of what and how much information they
communicate. Specifically, we investigate how information depth
in training dataset explanations and the use of Progressive Disclo-
sure impact users’ understanding of an Al system (assessed via
their critiques of the system), their system assessments, and their
cognitive load. Findings from a study with 32 participants show
advantages to providing users with comprehensive information on
training datasets. Detailed explanations not only enhanced per-
ceived trust, fairness, and understanding, but were also preferred
by participants despite the increased cognitive load. While Pro-
gressive Disclosure did not effectively mitigate cognitive load, it
improved users’ perception of learning. These findings suggest that
effective transparency does not come from minimizing detail, but
from embracing it, as participants consistently valued clarity and
completeness over brevity, even at the cost of higher cognitive load.
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1 Introduction

Transparency is essential for the responsible use of Artificial Intelli-
gence (Al) systems across different domains (e.g., healthcare [30, 50],
criminal justice [4, 19, 20], hiring [69, 82, 104]), as it enables users
to understand and evaluate how Al systems make decisions, which
in turn promotes trust, accountability, and effective human-AI col-
laboration [18, 48, 64, 70, 103, 127, 133]. Yet achieving transparency
is challenging because Al systems often function as black boxes
[67,77,98]. This opacity has driven the field of Explainable AI (XAI)
to develop techniques that make algorithmic decision-making more
interpretable and accessible to users [1, 3, 18, 39, 48, 56, 103, 111].

Despite major progress, a predominant focus in XAl research has
been on the technical aspects of model transparency [1, 16, 42, 44,
75, 76, 101], which can overlook other dimensions that are equally
important to understanding how Al systems operate [41, 88]. The
Human-Computer Interaction (HCI) community has therefore ar-
gued for a broader and more human-centric approach to XAI (i.e.,
HCXALI) that prioritizes users’ goals, needs, and understanding
[2, 41, 44, 47, 75]. For example, one critical dimension is training
data, as datasets used to train Al systems fundamentally shape their
behavior, biases, and limitations [10, 86]. Providing transparency
on training data [16, 60, 134] can provide critical context to help
users predict and interpret a system’s behavior. This recognition
has led to the development of training dataset explanations [5, 6],
which draw on dataset documentation [53] to describe data sources,
collection methods, demographics, and intended use. While stud-
ies show that such explanations promote transparency [5], they
also raise important design questions about how to present them
effectively to users [6, 16].

Within the broader human-centered perspective of HCXAI, the
appropriate level of detail to provide within an explanation is a key
design dilemma. Concise explanations are easier to process and
often preferred by receivers [78, 88, 105], but they risk oversimplify-
ing complex systems leading to incomplete understanding [111]. In
contrast, detailed explanations can enhance users’ comprehension
and contribute to more accurate impressions of the system [32, 68],
but at the cost of greater cognitive load [68]. In other words, the
level of detail has meaningful impacts on core aspects of human-Al
collaboration (e.g., system impressions and understanding), yet the
inconclusive findings leave the appropriate amount of detail an
open question. For training dataset explanations, this question
remains especially unclear for two primary reasons. First, these ex-
planations tend to be much longer than model-centric explanations
(e.g., LIME [106], SHAP [81]) because of the richness of data-related
information they convey. Second, their intended use case differs,
as they are typically presented during onboarding [6, 24, 25], when
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users are first introduced to a system rather than during repeated
interactions. This unique context makes it important to under-
stand the tradeoffs between the information depth and cognitive
load to identify what level of detail best supports meaningful and
comprehensible transparency.

In this paper, we investigate how different levels of information
depth (i.e., the level of detail and complexity included within an
explanation) impact the utility and impact of training dataset ex-
planations. We explore this through a user study where we ask
participants to critique two automated systems (i.e., assess their
potential advantages and disadvantages [6]) using training dataset
explanations that varied in information depth (summary vs. de-
tailed). We examine how information depth impacts users’ per-
ceptions, understanding, cognitive load, and system critiques. We
also examine whether Progressive Disclosure, a design technique
that reveals explanation components on-demand, while keeping
track of what has already been explained [115], can help manage
the complexity of explanations across different depths.

Our study with 32 participants revealed that in-depth training
dataset explanations resulted in higher perceived trust, fairness,
understanding of the data, learning, and cognitive load in compari-
son to summarized explanations. Progressive Disclosure, however,
had a statistically significant effect only on participants’ perception
of learning but showed no significant reduction in cognitive load.
Regarding participants’ critiques, both explanations supported pro-
ductive evaluation of the systems, but the focus of their critiques
varied depending on information depth. Our interviews revealed a
clear preference for in-depth explanations despite the additional
cognitive load, indicating that participants valued understanding
the system clearly even with the increased effort.

Our work provides the following contributions. We provide
empirical evidence on how information depth in training dataset
explanations shapes users’ comprehension, system assessments,
and cognitive load. We also highlight trade-offs between infor-
mation depth and cognitive load during onboarding and offers
preliminary insights into how Progressive Disclosure can enhance
the perception of learning. Together, these contributions advance
the broader agenda of human-centered XAI by highlighting design
considerations for designing explanations that are both detailed
and accessible in onboarding contexts.

2 Related Work

2.1 Overview of Different XAI Approaches

The field of XAI has made notable progress in producing a growing
collection of explanations of Al systems. Common explanation
approaches include local explanations that explain individual AI
system decisions (e.g. counterfactual [106, 109], case-based explana-
tions [24, 95]) and global explanations that help users to understand
the overall system (e.g., feature importance [18, 38], feature contri-
bution [9, 32, 128, 133]). However, majority of these explanations
are algorithm-centered [41, 42, 75]. Recognizing the limitations of
a solely algorithm-centered focus [34, 45, 101], researchers have
called for a shift to broader contexts [88, 89]. These calls gave rise
to socio-technical approaches, where the focus of explanations in-
cludes factors outside of the algorithmic black-box [40, 44, 46, 88],
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and data-centric approaches, where the focus of the explanations
is on the training dataset of the system [5, 13, 16, 17, 60, 84, 134].

Data-centric approaches present properties of the training data
to shed light on data that is influencing model predictions and
to allow receivers to detect biases and inconsistencies [16, 17].
Training dataset explanations [5] are a data-centric approach that
communicate important information about datasets, such as the
motivation, creation, composition, intended uses, distribution, and
maintenance of a dataset. As they build upon the dataset docu-
mentation literature [53], they share common ground with artifacts
such as Data Cards [102] and Model cards [36, 90]. However, unlike
documentation artifacts, which primarily target dataset creators
and direct dataset consumers (e.g., machine learning developers)
[53, 84], training dataset explanations are explicitly designed to
be understandable by end users [5]. Training dataset explanations
are also in line with calls for broader views of explanations that
include socio-technical factors beyond the model [5, 41, 53]. Prior
work has shown potential for such explanations to improve system
transparency in an onboarding scenario [5, 6], by helping users
reflect on the system before interacting with it directly [6, 24, 25].
Our work further explores the feasibility of training dataset expla-
nations as an onboarding tool, with particular emphasis on how
varying the information depth affects their utility.

2.2 Impact of Al Explanations on Users

Numerous studies have shown that explanations can promote trans-
parency [5, 35, 103], inform people’s trust in [64, 77, 111] and accep-
tance of the systems [35, 66, 131], and influence fairness perceptions
[5, 15, 39, 73, 111]. However, the impact of Al explanations is not
universally positive. Some studies reported no impact of explana-
tions on trust [32, 35, 101], suggesting gaps between the focus of
explanations and users’ needs.

In some cases, explanations can even prompt users to act against
their own interests, leading to unanticipated and unintended nega-
tive consequences. Ehsan and Riedl defined these negative effects
as “explainability pitfalls” [45]. Our synthesis of existing literature
suggests two primary circumstances under which explanations
could inadvertently result in such pitfalls. The first arises from the
unintended impact of explanations on users, including uncalibrated
trust [45, 63, 75], overreliance [9, 21, 75, 101], high cognitive load
[68, 115, 122], misinterpretation [6], and frustration [45, 75, 76]. For
example, users may develop uncalibrated trust [63, 75], accepting
AT outputs without sufficient critical evaluation if the explana-
tion appears clear or convincing, leading to overreliance [22, 99].
Overly detailed or complex explanations can contribute to high
cognitive load [68, 111], overwhelming users and leading to frus-
tration [45], misinterpretation [6], and even overreliance [23]. The
second circumstance is directly related to explanation design, in-
cluding distracting interfaces [76], designs that promote passive
consumption of information [76], lack of actionability [45, 75, 76],
excessive information volume and complexity [68, 76], and am-
biguity [76]. For example, if explanations are not designed with
the users’ information or visual literacy in mind [8, 112], they can
lead to misinterpretation and improper trust in the system. Simi-
larly, a lack of actionability can leave users unsure of how to apply
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the information to improve outcomes [41, 74], which can cause
frustration [45].

The existence of these negative consequences suggests that fur-
ther systematic study of a range of explanation types and design
parameters is required to build a comprehensive understanding of
how AI explanations can better support users. We contribute to
this body of work by investigating the design of training dataset
explanations, with a particular focus on the role of information
depth.

2.3 Information Depth as a Factor of Al
Explanation Design

Several factors influence users’ interactions with and perceptions
of Al explanations, including the type [39, 111], depth [32, 68, 111],
modality [122], presentation style of information [6, 15], and user
characteristics [43, 122]. Information depth, which refers to the
level of detail and complexity included in the content of an explana-
tion, stands out as a critical design factor. Prior work has produced
mixed results concerning the impact of information depth on user
understanding [32, 68, 111, 115], explanation preference [88], sys-
tem reliance [23, 99], and cognitive load [31, 64, 68].

These mixed results can be interpreted through Cognitive Load
Theory [120], which distinguishes intrinsic, extraneous, and ger-
mane load [119, 121]. Increasing explanation depth can raise in-
trinsic load by introducing more concepts, dependencies, and rela-
tionships that users must process [121]. At the same time, when
detailed explanations are well-structured and clearly articulated,
they may reduce extraneous load by clarifying system behavior
and minimizing ambiguity. Depth can also support germane load
by encouraging users to reflect on system behavior and construct
more coherent mental models. Since intrinsic, extraneous and
germane load are considered to be additive [97], reducing extra-
neous load while increasing germane load is only effective if the
overall cognitive demands remain within users’ processing limits
[116, 121]. When explanation depth exceeds available cognitive
resources, increases in intrinsic load may not be offset by reduc-
tions in extraneous load or gains in germane processing. In such
cases, information depth can overwhelm users, increasing the risk
of shallow understanding, misinterpretation, or reliance on cogni-
tive shortcuts [97, 100, 124]. This perspective helps explain why
information depth can both improve understanding and increase
cognitive effort, and why its effects depend on the amount of infor-
mation provided and the way it is structured for users.

The above theoretical tension is reflected in empirical findings
and recommendations in the literature. For example, some re-
searchers argue that Al explanations should be selective, drawing
on properties of human explanation [79], because complete reason-
ing can overwhelm users [71, 88]. Simple explanations are often
preferred by receivers [78, 88, 105], but can lead to incomplete
understanding [111]. Other researchers argue for prioritizing com-
prehensibility of explanations over their compactness (i.e., limiting
information to avoid overwhelming users) [76]. In-depth informa-
tion in explanations can help users to develop the most accurate
mental models [68, 111], but can also lead to higher cognitive load
[31, 64, 68]. Moreover, detailed explanations can lead users resort
to cognitive shortcuts [123], such as accepting explanation material

Ul °26, March 23-26, 2026, Paphos, Cyprus

without critical reflection or selectively focusing on details that
confirm their pre-existing beliefs (i.e., confirmation bias [65]), con-
tributing to overreliance [23, 99]. Excessive detail can also lead to
false beliefs about the system’s accuracy [115]. These mixed results
indicate a lack of clear guidelines on how much detail to include in
explanations.

This gap is especially relevant for Training dataset explanations
[5, 6], which are typically longer than other types of Al expla-
nations studied to date. For example, prior work explored four
different types of explanations [18, 39] (input-influence, sensitiv-
ity, case-based, demographic), all of which contained fewer than
100 words. Schoeffer et al. explored different combinations of
common explanation types (relevant factors, factor importance,
and counterfactual scenarios) [111], with the most comprehensive
explanation consisting of 172 words. In contrast, in prior work
on training dataset explanations [6], the shortest explanation was
over three times the length at 613 words, reflecting the breadth of
information they communicate on dataset properties. This raises
open questions regarding how established findings on information
depth generalize to long-form training dataset explanations. There
remains limited guidance on how much information is beneficial in
training dataset explanations, particularly for onboarding contexts
where users are forming an initial mental model of the AI system.
We contribute to this gap by exploring the impact of two levels of
information depth on users’ comprehension and usage of training
dataset explanations.

2.4 Explanation Presentation Paradigms and
Progressive Disclosure

Beyond what information is presented, how explanations are
presented to users plays a critical role in shaping their impact
[15, 107, 122]. Prior work distinguishes between different expla-
nation presentation paradigms [7], including static explanations,
where users are presented with all available explanatory informa-
tion at once [7, 18, 33], and on-demand, interactive explanations,
where users actively choose when and what explanatory content
to reveal [16, 33, 67, 129]. Static explanations can support rapid
formation of initial mental models [68, 77], but may also increase
cognitive load and overreliance [9, 68]. In contrast, on-demand
explanations can support intentional engagement and critical re-
flection [22], while risking underuse by users who lack motivation
[122].

One interface mechanism for enabling on-demand access is Pro-
gressive Disclosure, a concept from UI design that involves hid-
ing advanced interface controls, limiting initial user errors while
they are learning the system [29, 92]. In the context of Al explana-
tions, Progressive Disclosure has been proposed as a mechanism for
providing effective transparency by balancing transparency with
cognitive manageability [115]. Effective Progressive Disclosure
typically requires that (1) information is revealed on demand, (2)
explanation content is organized hierarchically, and (3) the system
keeps track of the context and information already given to users
[115]. In practice, there is limited empirical evidence showing that
Progressive Disclosure reliably reduces cognitive load or improves
system perceptions. Moreover, presenting explanations on demand
may shift cognitive effort from processing content to deciding when
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additional information is needed, which may introduce new forms
of cognitive cost [93, 100].

In this study, we contrast a static presentation of the full training
dataset explanation with an on-demand presentation of content
implemented through Progressive Disclosure. This allows us to
examine not only how information depth affects users’ comprehen-
sion and critique, but also how the mode of explanation delivery
shapes perceived learning and cognitive effort in training dataset
explanations.

3 Study on Information Depth and Progressive
Disclosure

We conducted a study to gain insights into how varying the amount
of information in training dataset explanations influence partici-
pants’ subjective impression of the system, their understanding of
both the system and the explanation, and their cognitive load. We
further investigated whether Progressive Disclosure helps manage
participants’ cognitive load.

3.1 Participants

We recruited participants through various channels, including ad-
vertisements across a university campus, on different online plat-
forms such as X (formerly Twitter) and LinkedIn, and through
snowball sampling. To ensure diversity in participants in terms
of Al knowledge and background, we used a questionnaire to pre-
screen participants. The questionnaire included questions on par-
ticipants’ academic background (computer science/ engineering/
non-engineering) and formal Al training (formal courses taken on
AI/ML). We also included the Al literacy scale [126], which consists
of twelve 7-point Likert items that cover four core constructs of Al
literacy: awareness, usage, evaluation, and ethics. We recruited 34
participants but excluded two who did not follow the study proce-
dure or complete the full study. Therefore, our final sample included
32 participants (14 men, 17 women, 1 non-binary). Our sample size
is consistent with other human-centered XAI studies where the pri-
mary data is qualitative [17, 35, 41, 42, 122]. With qualitative data
requiring manual coding, having a manageable data volume is an
important consideration [26]. Moreover, human-centered XAI stud-
ies involving larger participant pools (e.g., [9, 22, 32, 73, 133]) typi-
cally feature shorter participant engagement (e.g., 10-30 minutes),
whereas our study sessions averaged two hours per participant.
Regarding participants’ experience with ML and Al, 24 participants
had no formal training (i.e., academic or professional experience)
with ML and AI, while 8 did. In terms of academic background,
17 had a CS background, 6 had an Engineering background, and 9
came from non-CS / Engineering fields. The mean Al literacy score
for our participant pool was 5.6 (SD = 0.73) out of a maximum of 7.
The demographics and background questions can be found in the
auxiliary materials.

3.2 Study Design

We included two main factors in our study.

e Information Depth: Summary vs. Detailed
e Progressive Disclosure: Present vs. Absent
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Information Depth refers to the level of detail and complexity
provided in the explanation. We defined two levels for this factor.
In the summary version, the explanation offers high-level, concise
information about the training data, while in the detailed version,
the information is presented in a more elaborate and precise manner.
Section 3.3 describes the information present in the two levels of this
factor. The second factor is the Progressive Disclosure of information
[115], which is a mechanism that enables transparency “on demand”.
We also defined two levels for this factor: the presence or absence
of Progressive Disclosure.

Our study had a mixed 2 x 2 design with Information Depth
(summary, detailed) as the within-subjects factor and Progressive
Disclosure (absent, present) as the between-subjects factor. In other
words, each participant interacted with explanations with both
levels of Information Depth and one level of Progressive Disclosure.
The order of Information Depth was counterbalanced across par-
ticipants. We chose Information Depth as a within-subjects factor
to enable participants to directly compare summary and detailed
explanations. We prioritized eliciting contrastive comments for
this factor given the trade-offs identified prior work [78, 88, 105].
We were also concerned about mitigating the impact of individual
differences (e.g., Al Literacy [126], prior Al training) with this factor.
While Progressive Disclosure could also be interesting as a within-
subject factor, a fully within-subjects design was not practical with
the length of the study sessions (averaging two hours).

3.3 Explanation Interfaces and Content

Our training dataset explanation, following prior work [6], pre-
sented four categories of information. These categories include: i)
Collection (the collection process, data sources, and pre-processing
of the data); ii) Demographics (the demographic distribution of the
data instances); iii) Recommended Usage (list of recommended use
cases); and iv) General Information (overview information about
the dataset, including release date, history of usage, and updates).

For the detailed explanations, we used the same Q&A design
and content as prior work [6] (see Figure 1 (A) and Figure 1 (B)).
The questions and answers include information on sample size,
attributes, data collection process, data pre-processing process,
demographic information in multiple dimensions (e.g., age, gender),
recommended use, release dates, history of usage, and updates.
The summary versions contained four concise summaries (one for
each category), which presented only a subset of the information
with the aim of conveying the core message (see Figure 1 (C) and
Figure 1 (D)). For example, regarding the data collection process,
the detailed explanation included how an automated extraction tool
was initially used to gather and pre-process the data, followed by
manual evaluation of a subset to verify the accuracy. In contrast,
the summary explanation simply stated that the data collection
process combined automated and manual approaches.

Regarding Progressive Disclosure, when it was present, we applied
the principles of Progressive Disclosure (as described in Springer
and Whittaker [115]) within the interface. This was achieved by
adding interactivity, such as keeping only one category open at a
time and requiring users to click on questions to view the answers,
with the viewed answers remaining open. In the absence of Pro-
gressive Disclosure, all information was initially visible, without the
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The dataset contains application data for 11837 students who applied to the University of X for graduate programs in prior
years. For each applicant, the dataset contains primary information like - Prior Education, GPA, Institutions, Experience, Extra:
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| General Information ‘

Information about the amount of data, the source of the data, the
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How many instances are in the dataset?

‘The dataset contains application data for 11837 students who applied to the University of X for graduate programs in prior
years. For each applicant, the dataset contains primary information like - Prior Education, GPA, Institutions, Experience, Extra-
curricular skills, References.

Who collected the data?

The data was gathered by internal committee at the University of X, with the permission provided by the Graduate Admissions
Committee of the University of the X. The internal committee consisted 5 memebers who brought different expertise to oversee

the collection process.
What was the data collection process?

ission portal in the last

llection based on the applications that were submitted to ¢
levant atiributes of the applicants. These attributes were then

The committee conducted the data
8 years. They used an automated process to extract all the
stored in the dataset and all the personally identifying in
filtering was done. The accuracy of the provided information in the resumes was not verified.

mation was discarded. Some additional unspecified automatic

‘What tools were used in data collection?

An automated text extraction tool was used to extract the data from the applications.
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General Information

‘The dataset contains data from over 11 thousands applicants' resumes, covering important
attributes like prior education, GPA, experiences, skills, and references. It was collected by an
internal committee using a combination of manual and automated processes. The data was labeled

D

Collection

based on previous decisions.

‘The dataset provides the gender, age, and country distribution of the applicants. Gender
distribution is provided in 3 categories, age s grouped into four categories, and eountry
distributions is also provided.

Demographics

‘The dataset is recommended for graduate admission decision recommendation purposes only, and
Recommended e [

@ caution is advised against using it for other purposes like housing applications or loan
sage

applications.

The dataset was released in 2021 and contains data from resumes received between 2015 and
2020, It was further updated in 2023 to include data from 2021 and 2022, It has not been used
elsewhere, and individual consents were not obtained. The dataset is not publicly available, but
access can be requested from the owners.

Figure 1: Snippets from the different versions of training dataset explanations. (A) demonstrates a detailed explanation with
progressive disclosure present whereas (B) demonstrates a snippet from a detailed explanation with progressive disclosure absent.
(C) demonstrates a summary explanation with progressive disclosure present and (D) demonstrates a summary explanation
with progressive disclosure absent. All explanations can be found in full in the auxiliary materials.

additional interactivity required to view content. Our approach is
consistent with existing literature on how to achieve progressive
disclosure [114, 136], prioritizing a design that allows users to se-
lectively explore information aligned with their interests. Figure 1
(A) and Figure 1 (C) depict the two explanations where Progressive
Disclosure was present, whereas Figure 1 (B) and Figure 1 (D) demon-
strate versions where Progressive Disclosure was absent. Complete
versions of the explanations can be found in the auxiliary materials.

3.4 Scenario and Task

We used a scenario-based approach [108] where we asked partici-
pants to critique two Al systems based on training dataset explana-
tions with each level of Information Depth. We used two scenarios
from prior studies on training dataset explanations [5, 6] with the
aim of having scenarios of similar significance and familiarity to
a diverse audience: an automated hiring system scenario and an
automated admission system scenario.

Participants were asked to imagine that they work in the HR
department of a company (for the automated hiring scenario) or are
part of the recruitment committee at a university (for the admission
system scenario) and they were tasked with utilizing the training
dataset explanation to recommend whether to purchase the system.

As part of this recommendation, participants were asked to use
the information in the explanation to critique the training data
and the system. To guide participants in the critique, we used a
simplified version of the SWOT analysis technique [14, 59] where
we asked participants to identify strengths and weaknesses of the
data and the system [6]. To encourage in-depth critiques, we asked
participants to provide around eight comments with a minimum of
one strength and one weakness, however, we did not impose a strict
limit and told them to critique as they saw fit. We counterbalanced
the scenario order across participants. The detailed scenarios can
be found in the auxiliary materials.

3.5 Study Procedure

We conducted our study sessions remotely over Zoom, with one
researcher present to conduct the study. Following the introduction
of the study, we asked participants to complete a brief demograph-
ics questionnaire. Subsequently, we provided them with the task
description and demonstrated the tool (Userback) [135] that enabled
them to annotate interface elements and enter critique comments.
Participants were then presented with one of the scenarios and
an explanation interface (either summary or detailed), which they
used to critique the system. Upon completing their first critique,
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participants completed a post-scenario questionnaire comprised
of Likert-scale questions assessing their trust in the system, per-
ception of fairness, perceived understanding of the explanation,
perceived learning about ML, and cognitive load. The post-scenario
questionnaire also contained five comprehension questions (de-
signed to gauge participants’ understanding) about the data and
the system based on information found in the explanations: two
multiple-choice questions (e.g., Was there any update provided to
the dataset?) and three open-ended questions (e.g., What kind of
processes were used in data collection?).

After completing the first scenario, participants proceeded
through the same process for the second scenario with an expla-
nation interface with the other level of Information Depth. Upon
completion of both scenarios, we conducted a semi-structured inter-
view with each participant to gain more detailed insights into their
critique and their perceptions of the differing levels of Information
Depth. The interview included open-ended questions prompting
participants to reflect on how they interpreted the explanations,
which aspects they found helpful or challenging, how the level of
detail influenced their critique, and how they compared the two
explanation interfaces. The study sessions lasted about 2 hours
on average. Participants spent approximately 70 minutes on the
critique tasks, 20 minutes on questionnaires, and 25 minutes on the
interview. Participants were compensated $30 for their time. The
study was approved by our institutional research ethics board. All
study materials can be found in the auxiliary materials.

3.6 Data Collection and Analysis

We collected two primary sources of data. The first was question-
naire responses on how participants felt about the data, the system,
and the explanation through a Likert-scale based post-scenario
questionnaire. Additionally, we collected data on their cognitive
load via the NASA TLX tool [58]. We used Wilcoxon Signed-Rank
tests to analyze within-subject comparisons of Information Depth
and Mann-Whitney U tests to analyze between-subject compar-
isons by Progressive Disclosure. We calculated Cronbach’s a for
measures with combined items to check for internal consistency,
using a threshold of 0.70 to determine acceptable reliability. We
used a non-parametric test since we did not assume a normal dis-
tribution.

The second primary data source was participants’ critique com-
ments. Two researchers were involved in analyzing the critique
data. The researcher who conducted the study sessions first coded
the data using a coding scheme from a prior study of training
dataset explanations [6]. During this phase, the researcher applied
the coding scheme to categorize each critique based on the specific
information they referred to within the explanation and their accu-
racy. The second researcher participated in the analysis through
regular meetings with a focus on discussing ambiguous critiques
and alternative interpretations. When disagreement arose, we re-
visited the critique alongside the relevant explanation content and
discussed our reasoning until we reached agreement. This iterative
process continued till we reached agreement on the coding deci-
sions for all critiques. Our process emphasized coding in a way that
meaningfully captured the intent of participants’ critiques, rather
than on maximizing agreement as a metric. Therefore, in line with
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qualitative analysis guidelines in HCI research [85], we did not
calculate an Inter-rater Reliability score for our qualitative data
coding process.

When comparing means, we used a repeated measures ANOVA
with Information Depth as the within-subject factor and Progressive
Disclosure as the between-subject factor. We ran Pearson’s chi-
squared test to compare the categorical distributions. We used p
= .05 as the significance threshold and p <.1 as an indication of a
trend (i.e., approaching significance [27]).

As a supplement to these primary data sources, we collected
qualitative data through semi-structured interviews, which we au-
dio recorded and later transcribed for analysis. Two researchers
were involved in the analysis. We conducted a directed qualitative
content analysis [61] to examine participants’ discussions of In-
formation Depth and Progressive Disclosure. Following a deductive
approach, the researcher who conducted the study sessions coded
relevant comments in which participants explicitly talked about
these factors. Both researchers then discussed the coded data over
multiple meetings to refine the findings. We chose this approach
to provide additional qualitative context to our critique and ques-
tionnaire data while maintaining a focused exploration of the study
variables.

4 Result

4.1 Impact of Information Depth and
Progressive Disclosure on User Perceptions

As illustrated in Table 1, Information Depth impacted participants’
subjective impressions of the utility of the explanation content and
their impressions of the system. Participants felt they understood
the data more with the detailed explanation (Mdn = 17, IQR = 3) than
they did with the summary explanation (Mdn = 11.5, IQR = 10.75; Z
= 4.155, p <.001). Figure 2 (left) shows that there was much greater
variability for this measure with the summary explanation than
there was with the detailed version. With the detailed explanation,
participants further perceived the information as more sufficient to
critique the system (Z = 3.987, p <.001) and felt that they learned
more (Z = 3.355, p <.001). The detailed explanation also impacted
participants’ perceptions in the system, in that they reported higher
levels of trust in the system (Z = 3.091, p = .002) and that the system
was fairer (Z = 3.913, p <.001). Finally, unsurprisingly, participants
reported higher perceptions of depth (Z = 3.086, p = .002) and
cognitive load (Z = 2.872, p = .004) with the detailed explanation.
The fact that the medians are on the low end of the 7-point scale
suggests that even the detailed explanation was not perceived as
too detailed or overwhelming.

In terms of Progressive Disclosure, as both conditions provided
the same information, expectedly so, there were no differences
in the first five measures in Table 1. However, as demonstrated
in Table 2, there was a statistically significant impact on partici-
pants’ perception of learning (Z = 2.515, p = .012), with participants’
perceived learning being higher when Progressive Disclosure was
present (Mdn = 8.75, IQR = 3.25) than when it was absent (Mdn
= 6.75, IQR = 2.5). Additional tests separating the data for each
Information Depth revealed a trend for summary (Z = 1.651, p =
.099) and a significant difference for detailed (Z = 2.395, p=.017)
explanation. The increased perception of learning with the presence
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Table 1: Median (IQR) values for the Likert-scale questionnaire data based on Information Depth. We report the median and
IQR values since we did not assume a normal distribution of the Likert-scale data and conducted non-parametric test. We also
provide scale ranges as some measures combine multiple questionnaire items.

Scale Range Summary Detailed Z Sig
Trust 8-56 31.5 (8.75) 36.5 (7.75) 3.091 .002
Fairness 4-28 13 (6.75) 16.5 (5.75) 3.913 <.001
Perceived understanding of the data 3-21 11.5 (10.75) 17 (3) 4.155 <.001
Perception of depth 1-7 1.5 (2) 3(2) 3.086 .002
Sufficient information to critique 3-21 9 (6) 15 (6) 3.987 <.001
Perceived learning 2-14 6 (5.75) 9(3.75) 3.355 <.001
Cognitive load 1-7 2.5(3) 3.5(2) 2.872 .004
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B Summary B Detailed

Average number of critique comments

Summary Detailed

Figure 2: Left - Participants’ perceived understanding of the data across Information Depth (the sum of responses to three
items); Right - Average number of comments per participant across Information Depth. Error bars show standard deviation.

Table 2: Median (IQR) values for the Likert-scale questionnaire data based on Progressive Disclosure.

Scale Range Absent Present Z Sig
Perceived learning 2-14 6.75 (2.5) 8.75 (3.25) 2.515 .012
Cognitive load 1-7 3(1.38) 3(2) 0.609 .543

of Progressive Disclosure supports findings from earlier research
which showed Progressive Disclosure affords more efficient learning
progress [29]. For cognitive load, none of the explanations induced
a high cognitive load on participants (each with a median of 3), and
the use of Progressive Disclosure did not statistically significantly
impact this measure.

4.2 Impact of Information Depth and
Progressive Disclosure on Participants’
Critiques

To understand how Information Depth and Progressive Disclosure

impacted the nature of participants’ objective assessment of the

system, we analyzed their critique comments across three dimen-
sions: the volume of their critique comments, the breadth of their
critique topics, and the accuracy of their critiques.

4.2.1 Critique Data Amount. Participants provided a total of 544
(mean = 17, SD = 5.82) comments as part of their critiques. These
comments included feedback on the system, the data used in the
explanation, and the presentation of the explanation. To gain a
sense if participants’ critique amount would change between ex-
planations, we compared the number of comments they have made
for each explanation they interacted with during the study.
Figure 2 (right) provides the average number of comments ac-
cording to Information Depth. We saw a main effect of Information
Depth on the number of comments provided (Fy30 = 14.951, p <
.001), where participants provided more comments in the detailed
explanation (mean = 9.84, SD = 4.31) in comparison to the summary
explanation (mean = 7.16, SD = 2.46). This suggests that participants
provided more thorough feedback on the system when presented
with detailed explanations. The effect of Progressive Disclosure on
the number of comments was not significant (Fy 30 = 0.943, p = .339)
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nor was the interaction effect of Information Depth X Progressive
Disclosure (F130 = 0.978, p = .33)'. We further analyzed partici-
pants’ average critique length (i.e., the average number of words in
a comment) but we did not see any statistically significant effects
(p > .401).

We also analyzed the distribution of participants’ critiques re-
garding whether they primarily discussed strengths, weaknesses,
or general critiques of the systems. With the summary explanation,
participants identified 78 strengths,124 weaknesses, and 27 general
comments, compared to 125 strengths, 151 weaknesses, and 39 gen-
eral comments with the detailed explanation. Regarding Progressive
Disclosure, participants identified 99 strengths, 123 weaknesses, 34
general comments when it was present, versus 104 strengths, 152
weaknesses, and 32 general comments when it was absent. The
distribution of the comments did not differ significantly across In-
formation Depth (y?(2, N = 544) = 2.17, p = .337) or Progressive
Disclosure (x?(2, N = 544) = 1.36, p = .506).

4.2.2 Critique Data Coverage. We analyzed participants’ critiques
in terms of the coverage of topics presented in the explanation. For
topic coverage, we label each comment in terms of the high-level
categories presented in the explanation (Section 3.3). These cate-
gories include Data Collection, Demographics, Usage, and General
Information. A few comments from participants focused on the
overall dataset and did not fit under these categories. We labeled
such comments under a “overall” category which resulted in five
comment topics (Data Collection, Demographics, Usage, General
Information, Overall).

At a group level, all the topics were covered in participants’ cri-
tiques for both levels of Information Depth, supporting previous
findings that participants collectively find value in all the presented
information [6]. On an individual level, we saw a trend, concerning
Information Depth (F1 30 = 3.817, p = .06) where participants covered
a slightly higher number of topics with the summary explanation
(mean = 3.78, SD = 1.18) than with the detailed explanation (mean
=3.28, SD = 0.99). However, as this effect only approaches signifi-
cance (p = .06), we interpret this result as suggestive rather than
definitive. There was no significant main effect of Progressive Dis-
closure (F130 = 0.18, p = .674) on the number of topics covered nor
a significant Information Depth X Progressive Disclosure interaction
(F1,30 =0.537, p = .469).

We saw a statistically significant difference in the distribution of
topics covered in participants’ comments according to Information
Depth (x?(4, N = 544) = 41.41, p < .00001). Figure 3 (left) provides
an overview of the distribution of topics and Table 3 provides some
illustrative examples. In the detailed explanation, more than half
of the comments focused on Data Collection whereas with the sum-
mary explanation, topic coverage was more balanced. This indicates
that participants not only utilized the additional depth on the data
collection process (e.g., specific details on collection tools and data
pre-processing) in the detailed explanation, they also prioritized
this information over other topics. Although additional details
were available across multiple topics, participants did not use this
information as much. This could either be because they found
the Data Collection aspect to be the most critical or because the

!For the cases where we used repeated measure ANOVA, we report the interaction
effects as the test allows for this reporting.
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Data Collection information was presented as the first category. In
contrast, with the summary explanations, participants spread their
critiques more evenly across multiple topics. Progressive Disclosure,
on the other hand, did not significantly impact the distribution of
topics covered (y%(4, N = 544) = 5.35, p = .253).

4.2.3 Critique Data Accuracy. We also coded the accuracy of the
critique data to investigate if participants seemed to understand the
information they were using as part of their critiques. To guide our
coding, we followed prior work where participants’ critique com-
ments were coded in a 3-point scale (accurate, somewhat accurate,
inaccurate) [6]. While we could label majority of the comments
using this scale, some of the comments contained a question or
stated uncertainty about the dataset. We labeled such comments as
“uncertain”.

Figure 3 (right) depicts a distribution of the critique accuracy
across Information Depth. We found a statistically significant differ-
ence in the distribution of the critique accuracy across Information
Depth (x%(3, N = 544) = 22.715, p < .0001). Looking at the dif-
ferences, we noticed that the participants provided slightly more
accurate and somewhat accurate comments with the detailed expla-
nation (accurate: 241/315, somewhat accurate: 58/315) than with
the summary explanation (accurate: 153/229, somewhat accurate:
36/229). We further observed that participants showed more un-
certainty in the summary explanation (34/229) than in the detailed
explanation (15/315). Finally, we found only one comment in the
detailed explanation to be completely inaccurate in comparison to
the six comments in the summary explanation. The fact that only
7 out of 544 comments were rated as to be completely inaccurate
suggests that both the explanations were at least moderately com-
prehensible for participants. This further supports earlier findings
that participants can productively use training dataset explanation
to generate reasonably accurate critique comments [6]. Here we
demonstrated that participants can also achieve reasonably accu-
rate critiques even with a summarized version. Table 4 provides
some illustrative examples of critique comments in terms of their
accuracy.

4.3 Impact of Information Depth and
Progressive Disclosure on Comprehension
Questionnaire

To gain an additional sense of participants’ understanding of the
explanation content, we analyzed responses to the two multiple
choice questions and the three open-ended questions from the
post-scenario comprehension questionnaire. We used a three-point
scale to grade the open-ended questions (1 for correct answer, 0.5
for partially correct answer, 0 for incorrect answer). The average
scores for both the detailed explanation (mean = 4.27, SD = 0.61)
and summary explanation (mean = 4.06, SD = 0.79) were high, with
no significant main effects of Information Depth (F130 = 1.664, p
= .207) or Progressive Disclosure (F130 = 1.484, p =.233), and no
Information Depth X Progressive Disclosure interaction effect (Fy 30
=0.798, p = .37). These questions were designed to be high-level to
ensure they were answerable with both explanations, which likely
contributed to the lack of significant effects. The questions and
sample graded answers can be found in the auxiliary materials.
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Table 3: Illustrative Examples Of Participants’ Critique Across Information Depth.

Summary Detailed
Collection This is a large dataset which is helpful in Combination of manual and automated processes for data
developing accurate models. (P25) collection indicates a balanced approach that leverages

both human expertise and technological efficiency in data
collection. (P24)

Demographics This transparency from demographics information  This does not reflect the general population, so you are
enables the system to monitor and potentially training your system on non-representative data. This
mitigate biases in hiring decisions. (P23) could lead to bias in its learning. (P32)

Usage Clear guidance for usage ensures appropriate and ~ Good explanation on what this should be used for. (P13)
ethical utilization, and helps prevent harm. (P24)

General It is up to date and contains resumes received No individual consent raises ethical issues and invasion of

Information between 2015 and 2022. (P18) privacy. (P16)

Overall Good summary to quickly explain but could use a  Overall, the dataset, while might have its flaws, is great in
bit more information regarding the Al (P21) assessing qualifications, experience and skills. (P6)
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Figure 3: Left - Distributions of topics in participants’ critique across Information Depth; Right - Distribution of the accuracy
of participants’ critique comments across Information Depth.

4.4 Interview Findings systems and commented on how the lack of detail in the summary

We additionally examined our interview data to explore if they explanations led to frustration and uncertainty.

support or contradict our results from participants’ critiques and
questionnaire responses. Below we present our key findings from
the interviews.

I really felt like with the [summary] one, I didn’t have
enough context or enough information to really know
how the data [was] being used or where it is coming

4.4.1  Unequivocal Preferences for Detailed Explanations. Our inter- from. So, the lack of information impacted my trust
view data suggests a clear preference for the detailed explanations, in the system. The [detailed] one, I feel like there was
which supports our results from the questionnaire responses (Sec- a lot more background information. (P25)

tion 4.1) and participants’ critique data (Section 4.2). Participants
consistently emphasized the importance of detailed explanations
to understand the systems’ functionalities and implications.

We saw a statistically significant impact of Information Depth
on participants’ perceived cognitive load (Section 4.1) and some
participants in the interview also acknowledged the potential for
information overload with the detailed explanation. However, they
still preferred having the additional information to make informed

[I prefer the detailed] one because it gave me more
information to make an informed decision if 'm going
to purchase that system. But then the [summary] one,

I would say, it was really vague. I didn’t understand decisions.

(it] fully, so I think I just felt more confident in the To be honest, I didn’t really have trouble, analyzing

[detailed] one. (P5) the [summary] one. I got confused at some point, but
Most found the level of detail provided in the detailed expla- [that was] because there was not enough informa-

nation to be crucial for forming informed opinions about the AI tion. Even though I understood the [detailed one] and
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Table 4: Illustrative examples for the critique accuracy ratings with researchers’ interpretation of the critique comment in

italics.
Summary Detailed
Accurate This seems like a generally large sample, N=11k, which  Using average values for missing attributes might not
is good. (P33). provide accurate representation for individuals. (P20)
Comment on large sample size being helpful for training. ~Comment on the concerns of using average values for
missing data.
Somewhat Restricting the dataset’s usage to only one specific This information is unnecessary. Knowing one’s
Accurate purpose may limit its potential applications and insights ethnicity could potentially introduce bias (both positive
that could benefit other areas. (P24) and negative). (P8)
Comment is somewhat correct in that it seemed to ignore ~ Comment is somewhat correct as it seemed to ignore the
the risk of using the same data in improper contexts fact that having such demographic information in the
without the usage guidance. dataset might be necessary to understand the
representativeness of the dataset.
Incorrect How would the individuals know their data was used?  If the data from applicants below 10 years old were
This information does not serve any purpose. (P18) used to train decision making for adult applicants, that
Participant incorrectly assume that the information on would be questionable. (P5)
previous use cases is for the individuals whose data are in ~ Participant misunderstood a part of the explanation that
the dataset and not for the potential consumer of the mentioned that 9% of the applicants came from the age
dataset. group of over 55 years as applicants being less than 10
years old.
Uncertain This lacks information. Which 3 genders? Which 5 How do we know that this tool is reliable and accurate?

categories? How does ethnicity and country affect the

application? (P13)

What if it messed up data during the extraction
process? (P11)

would prefer it, it was a bit mentally challenging to
analyze [the detailed explanation]. (P14)

4.4.2  Progressive Disclosure of Information can be a Useful Addition
to Explanations. Participants, regardless of the presence of Progres-
sive Disclosure, appreciated the well-organized interfaces with the
mix of text and infographics. The majority of the participants who
interacted with the explanation with Progressive Disclosure further
commented on the interactive nature of the explanations, citing
that it allowed them to control what information they accessed.
This might help explain why participants reported learning more
with Progressive Disclosure.

When it comes to this [explanation] where you have
to interact with the information, and you have to
purposely [click] to look for the information, it kind
of gives you a feeling of being in control of whatever
information I'm seeing. This made me more interested
in learning more in terms of the processes and reading
more in depth in all the categories. (P28)

Other participants, however, did not find any potential benefit of
Progressive Disclosure, particularly with the summary explanation.

I felt like clicking sometimes was unnecessary because
so little information [was revealed] in one click. (P1)

This indicates that Progressive Disclosure might be valued only
when explanations contain substantial information.

5 Discussion

Our study showed that Information Depth strongly shapes users’
perceptions of training dataset explanations, their critiques of the

Al system that provide the explanation, and their cognitive load.
Detailed explanation significantly increased participants’ perceived
understanding, trust, and fairness judgments of the Al system, as
well as their perceived learning, though they also required more
cognitive effort. Participants’ critiques also reflected a tradeoft:
detailed explanations led to more accurate critiques but narrower
topic coverage (i.e., with a heavy focus on data collection informa-
tion), while summary explanations prompted shorter critiques with
slightly more balanced coverage across the different topics present
in the explanation. Progressive Disclosure did not reduce cognitive
load, but it did influence perceptions of learning. Participants ex-
pressed a consistent preference for detailed explanations despite
the added effort.

5.1 Implications for Design

Our findings reveal several important design considerations for
training dataset explanations. Participants’ clear preference for
detailed explanations despite the additional effort suggested that
completeness and clarity may matter more than brevity when users
seek to understand how an Al system was trained. This implies
that explanation design should not default to minimalism; rather
designers should prioritize presenting rich information in digestible
ways.

Our results provide a starting point for establishing the role of
Progressive Disclosure in explanation design. The fact that Pro-
gressive Disclosure did not reduce cognitive load, but enhanced
participants’ perception of learning suggests that its strength might
lie less in lowering cognitive burden and more in shaping the user
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experience, for example by supporting reflection and learning. Pro-
gressive Disclosure may be particularly useful in onboarding work-
flows, where supporting exploration, learning, and reflection is
more important than immediate efficiency. Designers should there-
fore view Progressive Disclosure not as a universal solution for
cognitive load management, but as one component in a broader
design strategy that balances learning and usability.

The observed preference for detailed explanations emerged in a
context where participants were presented with a reflective, high-
stakes critique task. In such settings, users may be more willing to
tolerate higher cognitive effort in exchange for a sense of complete-
ness and understanding. This suggests that detailed explanations
may be most appropriate during onboarding, auditing, or evalu-
ation phases, when users are motivated to build a foundational
mental model of the system. In contrast, users might benefit from
summary explanations in lower-stakes or time constrained con-
texts. Designers should therefore treat explanation depth as context
dependent choices, informed by users’ goals and needs rather than
fixed defaults.

Our findings highlight a potential tension between supporting
both accurate and comprehensive critiques. Participants provided
more critique comments with greater accuracy with the detailed ex-
planation, but tended to focus predominantly on data collection (the
first category in the interface), whereas explanation topic coverage
was relatively more balanced with the summary explanation. There-
fore, designers may need to consider the goal of the explanation
when deciding on how depth to provide. For example, if the goal is
to encourage users to consider all aspects of a system, and improv-
ing subjective impressions is not important, summary explanations
might be most effective. On the other hand, detailed explanation
might be better suited for critique accuracy and enhancing subjec-
tive impressions. Future work should explore explanations that are
not only detailed but also incorporate mechanisms that motivate
users to engage with different types of information. For example,
one approach could be to highlight key pieces of information to
draw attention [28, 51, 130]. Another approach could be to prompt
users [117] to consider all relevant information.

5.2 Methodological and Theoretical Reflections

Contextualizing our results requires consideration of how Infor-
mation Depth and Progressive Disclosure were implemented in the
study. While participants’ predominant focus on data collection
information in their critique with the detailed explanation could
indicate that they viewed this information as most critical, it is also
possible that its placement at the top of the explanation biased their
attention. Future research could examine how different informa-
tion orders impact what users prioritize within the explanations. In
addition, the longer critiques with the detailed explanations might
simply reflect that there was more material to comment on. Future
work should systematically investigate whether increased critique
length reflects deeper understanding and more critical evaluation.

Regarding Progressive Disclosure, while the lack of impact on
trust, fairness perception, and perceived understanding can be at-
tributed to the fact that the same information was ultimately avail-
able across all conditions, it was surprising to see no differences
in cognitive load based on suggestions in prior work [115, 136].
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One plausible explanation is that the task context imposed only
low to moderate cognitive load. Even the detailed explanations
yielded relatively modest load (e.g., mean value of 3.5 on a 7-point
scale), which might have left limited room for Progressive Disclo-
sure to provide measurable relief. Additionally, given the absence
of critical time pressure, participants may have been able to ac-
commodate additional information without experiencing overload
[57]. Progressive Disclosure might be more impactful in contexts
characterized by time pressure or higher task complexity. It is also
possible that alternative ways of achieving Progressive Disclosure
might be more impactful, such as starting with a brief summary
explanation and allowing users to expand it into a detailed ver-
sion. Future research could also investigate other approaches to
mitigating cognitive load, including cognitive forcing functions
(e.g., mechanisms like checklists to slow down how people process
information) [22, 37, 49], and alternative explanation formats (e.g.,
visuals, video, and hybrid approaches) [122].

Our study also raises questions about the role of prior knowledge
of Al in shaping users’ interactions with explanations. Although,
we balanced participants’ Al literacy [80, 126] and backgrounds
across study conditions to minimize potential confounds associ-
ated with differing levels of Al knowledge, our participant pool
demonstrated a relatively high mean Al literacy score (mean = 5.6,
SD = 0.73), suggesting that many were generally knowledgeable
about AL Given recent findings that Al knowledge can shape user
perceptions of Al explanations [43, 110, 122], future work should
investigate whether AI background or literacy impacts how users
leverage training dataset explanations. For example, it is possible
that participants with lower Al literacy feel burdened by detailed
explanations and prefer summary explanations.

Evaluating how well users comprehend explanations remains a
methodological challenge. Given the limitation of depending solely
on subjective measures [21, 54, 70, 101], we used critique-based
measures and comprehension questionnaire alongside subjective
ratings to better capture participants’ understanding of the expla-
nation and the system. Critiques revealed how participants acted
on the information, while comprehension questionnaire provided
an objective lens. However, assessing the accuracy of the critiques
was challenging due to the variations in participants’ interpretation
of the same information and a lack of established ground truth (i.e.,
an objective standard used to evaluate the correctness of partic-
ipants’ critiques) [132]. Similarly, our comprehension questions
were at a surface level to ensure that they were answerable with
both explanations, limiting their ability to measure subtle differ-
ences in comprehension. Future work should explore how to design
more nuanced comprehension questions that better differentiate
between varying levels of understanding. Future research could
also explore additional comprehension data collection techniques,
such as think-aloud protocols [113] or eye-tracking [12, 87].

5.3 Study Limitations

Alongside the methodological and theoretical reflections noted in
Section 5.2, we recognize the limitations of this study. First, our
sample of 32 participants, a deliberate choice made to support man-
ageable coding and in-depth qualitative analysis of critique data
(Section 3.1), limited our statistical power. For Information Depth (a
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within-subjects factor), the study was sufficiently powered to detect
medium-to-large effects. In contrast, for Progressive Disclosure (a
between-subjects factor), it was powered to detect only large effects.
As such, the lack of significant findings for Progressive Disclosure
should not be interpreted as evidence of no effect, but rather as
an indication that smaller effects might not have been detectable
with the current design. Future work should involve larger samples
(e.g., around 300 participants), potentially using crowdsourcing, to
better detect the smaller effects. Future work could also explore
alternative study designs to increase the statistical power to de-
tect differences across levels of Progressive Disclosure and to elicit
contrastive comments on this factor.

Second, while our participants were generally motivated to en-
gage with the explanations (a challenge identified in prior work
[22, 52, 125]), the task of critiquing likely acted as a cognitive forc-
ing function [72], encouraging deeper engagement with the ex-
planations than what one might see in a more ecologically valid
setting. Further, by explicitly framing participants as evaluators,
the study may have introduced anchoring effects [123], leading
them to calibrate their critiques around the richness of the informa-
tion provided. As a result, this evaluative context may overestimate
how much users would attend to detailed explanations in everyday
use [137]. Future research should examine the generalizability of
our findings to a broader variety of tasks, including those that do
not inherently prompt critical thinking, such as simple information
retrieval [83] or decision-support tasks [96].

Finally, although our scenario-based approach is consistent with
prior work on Al explainability [5, 18, 41-43, 73, 118], it might not
fully capture the complexities and nuances of real-world applica-
tions. Future studies should validate our findings in more real-word
settings, particularly with domain experts [11, 55, 94, 122].

5.4 Broader Challenges for Effective
Explanation Design

The increased trust and judgment of system fairness for detailed ex-
planations over summary versions raises important considerations
regarding the potential for overreliance [9, 99, 101, 128, 133]. The
higher perceived trust and judgment of fairness suggests that users
felt more confident in the system, however, this confidence is only
beneficial for Human-AlI collaboration if participants have engaged
in critical thinking [62]. Using critiquing as a task in our study
guarded against automatic thinking [62] and we observed positive
impacts on critique accuracy with the detailed explanations. How-
ever, critique performance is still an indirect proxy for practical
use, and our findings do not speak to whether participants could
leverage the explanation content effectively in decision-making
or appropriately calibrate their reliance on the Al system. This
gap is especially important given prior work on the illusion of ex-
planatory depth [34], where people overestimate their operational
understanding [91]. Future work should therefore incorporate de-
cision tasks with known ground truth and objective, performance-
based measures such as decision accuracy [101], error detection
[9] to provide a more complete account of the practical impact
of training dataset explanations. An encouraging prior finding is
that participants showed lower trust with detailed training dataset
explanations with “red flags” compared to those that described
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fewer potential causes for concern [5], suggesting that depth can
sometimes support calibration rather than inflate trust.

Despite their longer format than many Al explanations, the train-
ing dataset explanations as designed do not appear to suffer from
the pitfall of high cognitive load. Training dataset explanations
might still be susceptible to other explainability pitfalls outlined in
Section 2.2, such as lack of actionability [45, 76] and misinterpreta-
tion [6]. Future research should explore how different explanation
characteristics influence the number of actionable insights user
derive from the explanation. Further studies should also explore
how different presentation formats (e.g., textual, visual, or hybrid)
[6, 122] influence the risk of misinterpretation or shape the kinds
of insights users take away. Unless such pitfalls are addressed,
transparency risks generating confusion rather than accountability.

6 Conclusion

In this paper, we examined how the depth of information in training
dataset explanations and the use of Progressive Disclosure influ-
ence users’ perceptions and understanding of an AI system and
their cognitive load. In comparison to summary versions, detailed
explanations improved users’ understanding and subjective impres-
sions of the system even though they led to higher cognitive load.
Information depth further impacted the balance of topics that par-
ticipants covered in their critiques of the system. While the use of
Progressive Disclosure did not reduce cognitive load, it enhanced
perceived learning. These findings highlight important design trade-
offs in training dataset explanations by emphasizing the need to
balance completeness, clarity, and effort. Future research should
further explore these tradeoffs, particularly in terms of how users’
AT knowledge influences these results, or how the results might
generalize to field studies. Additional work should also explore
other design factors for training dataset explanations to improve
user comprehension and satisfaction, thereby advancing the goal
of achieving fully transparent and responsible human-centered Al
systems.
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