
QFRecs - Recommending Features in Feature-Rich
Software based on Web Documentation

by

Md Adnan Alam Khan

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

March 2015

c© Copyright 2015 by Md Adnan Alam Khan



Thesis advisor Author

Andrea Bunt Md Adnan Alam Khan

QFRecs - Recommending Features in Feature-Rich Software

based on Web Documentation

Abstract

Prior work on command recommendations for feature-rich software has relied on

data supplied by a large community of users to generate personalized recommenda-

tions. In this work, I explored the feasibility of using an alternative data source: web

documentation. Specifically, the proposed approach uses QF-Graphs, a previously

introduced technique that maps higher-level tasks (i.e., search queries) to commands

referenced in online documentation. The proposed approach uses these command-

to-task mappings as an automatically generated plan library, enabling our prototype

system to make personalized recommendations for task-relevant commands. Through

both offline and online evaluations, I explored potential benefits and drawbacks of this

approach.

ii



Acknowledgments

I am grateful to almighty God for giving me the strength that helped me to pursue

my graduate degree staying away from my family for about two and half years.

I would like to thank my supervisor, Dr. Andrea Bunt, for her support and

guidance throughout the entire duration of my masters program at UofM. I would

also like to thank her for the financial support during these two and half years.

Further, I am grateful to the department of computer science, UofM for the funding

that I received in the form of guaranteed funding package (GFP) and would again

like to thank Dr. Bunt for the assistance provided.

I would like to thank my committee members, Dr. Yang Wang and Dr. Jason

Morrison, for their precious time and feedbacks. I am also grateful to Dr. James

E. Young and Dr. Pourang Irani for their feedbacks on my work in our HCI lab

meetings.

I am thankful to all of my lab-mates in the HCI lab for their support in many ways.

Volodymyr Dziubak deserves a special mention for his support, especially before the

IUI paper submission deadline. I would like to thank him again for presenting the

paper in the conference instead of me. Thanks to Khaled Hasan, Barrett, Anik,

Danial, Stela, joel and Noor for their ideas, comments and feedbacks on my work.

Finally, I would like to acknowledge the love and support of my family staying

overseas and dedicate this thesis to my loving wife, Mahamuda Sultana for her pa-

tience and support.

iii



Publications

Some ideas and figures in this thesis have appeared previously in the following

publication by the author:

Md Adnan Alam Khan, Volodymyr Dziubak, and Andrea Bunt. Exploring person-

alized command recommendations based on information found in web documentation.

In Proceedings of the ACM Conference on Intelligent User Interfaces (IUI), 2015, 10

pages. to appear.

iv



To my loving wife, ”Happy”

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Related Work 5
2.1 Improved tutorial interfaces . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 In-Application Assistance . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Providing Efficient Access to Needed Commands . . . . . . . . . . . . 10
2.4 Extracting Command-to-Task Mappings from Online Documentation 13
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 System Description 16
3.1 Query Feature Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Extracting Interface Elements from Online Resources . . . . . . . . . 19
3.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Generating Recommendations . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Recommendation Types . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Integrating into the Interface . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Offline Evaluation 28
4.1 Potential to Promote Awareness of Relevant Commands . . . . . . . 29

4.1.1 Mean Number of Familiar and Unfamiliar Features in the Rec-
ommended set . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Relevance Measure of the QFRecs System’s Recommendations 30

vi



Contents vii

4.1.3 Percentage of “Accurate”Recommendations . . . . . . . . . . 32
4.1.4 Measure of Unknown Utility Features . . . . . . . . . . . . . . 33
4.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Predicting the Next Feature . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Laboratory Study 40
5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Design, Tasks, and Procedure . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6.1 Primary Task Selection Time . . . . . . . . . . . . . . . . . . 46
5.6.2 Recall Speed (H1) . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6.3 Perceived workload (H2) . . . . . . . . . . . . . . . . . . . . . 47
5.6.4 User Preference (H3) . . . . . . . . . . . . . . . . . . . . . . . 47

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 50
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Limitations and Future work . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Prototype Extensions and Improvements . . . . . . . . . . . . 52
6.2.2 Presentation Techniques . . . . . . . . . . . . . . . . . . . . . 52
6.2.3 Generalizability to Other Applications . . . . . . . . . . . . . 53

A Ethics Approval Certificate 55

B Pseudocode of the QFRecs feature recommendation 58

Bibliography 68



List of Figures

3.1 The general architecture of the QFRecs system. . . . . . . . . . . . . 17
3.2 An example of QF-graph for The GNU Image manipulation program

(GIMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Google suggestions for keyword “how to c ”. . . . . . . . . . . . . . . 19
3.4 GIMP’s view menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 A simple illustration of the QFRecs system. . . . . . . . . . . . . . . 24
3.6 Combined interface prototype with the QFRecs system . . . . . . . . 26
3.7 Separated interface prototype with the QFRecs system . . . . . . . . 27

4.1 The means for the number of familiar features and unfamiliar fea-
tures for different recommendation sizes (Error bars are in standard
deviation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Performance of the QFRecs system recommending an unfamiliar fea-
ture that is then used in the next k feature invocations. . . . . . . . . 31

4.3 Performance of the QFRecs system recommending a familiar feature
that is then used again in the next k feature invocations. . . . . . . . 32

4.4 Percentage of recommendations by the number of useful features (rec-
ommendation size 20 and tail size 20) . . . . . . . . . . . . . . . . . . 33

4.5 Recommendations grouped by number of unknown-utility features (rec-
ommendation size 20 and tail size 20) . . . . . . . . . . . . . . . . . . 34

4.6 Accuracy of the Frequency-based, the Recency-based and QF-based
approach for an average diverse session. . . . . . . . . . . . . . . . . . 36

4.7 Accuracy of the Frequency-based, the Recency-based and QF-based
(QFRecs) approach for an average diverse session. . . . . . . . . . . . 37

4.8 The accuracy of frequency-based approach over users first 30 command
invocations and over all command invocations. . . . . . . . . . . . . . 38

5.1 Sample snapshot of the interface variants used in study: Basic interface
(A), Combined interface (B), and Separated interface (C). The features
highlighted in blue were “familiar”and the features highlighted in pink
were “unfamiliar”features. . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



List of Figures ix

5.2 Mean selection time between commands (with standard errors) for the
main task (left) and the recall task (right) . . . . . . . . . . . . . . . 46

5.3 Mean (st. err.) NASA-TLX values (1=low, 20=high). Rows in bold
indicate significant differences. . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Ethics Approval Certificates . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 TCPS 2: CORE Completion Certificates . . . . . . . . . . . . . . . . 57



List of Tables

3.1 Example connection weights between tasks and features. . . . . . . . 18

4.1 Average percentage of correct recommendations for each tail (i.e., k)
and recommendation size (i.e., R) . . . . . . . . . . . . . . . . . . . 33

x



Chapter 1

Introduction

Feature-rich software applications (e.g., image-manipulation programs, spread-

sheet software and statistical analysis packages) are highly versatile, in part owing to

the hundreds (or even thousands) of commands or features that they make available.

At the same time, this high volume of commands can make feature-rich software

difficult for users to master [23]. For example, studies of long-term application use

have shown that most users have fairly limited command vocabularies [21], typically

using much less than one quarter of the available command set (e.g., [16, 36]). More-

over, most feature-rich software applications introduce more and more features with

each new release. The presence of a large number of features in such applications

introduces two problems: (1) they make it hard for a user to become aware of all

available features and (2) they result in an increase in the size and complexity of the

graphical user interfaces (GUIs) of the applications. These problems lead users to

both frustration [29] and decreased performance [4].

One promising approach to increasing a user’s awareness of the available command

1



2 Chapter 1: Introduction

or feature set is to present them with intelligently generated, personalized command

recommendations (e.g., [36, 37, 40]). Central to this approach is an understanding of

the potential relationships between commands – knowledge that enables an intelligent

system to recommend commands that could complement those currently being used.

Most prior work has extracted this relevancy information from community usage logs,

for example, by applying collaborative filtering algorithms to a large corpus of logged

data (e.g., [36, 37, 40]). While these usage-data centric approaches have shown a great

deal of promise, their practical success hinges on the existence of a large community

of users who are willing to upload their usage data to a central repository.

On the other hand, to deal with the problem of interface complexity, introduced

by the presence of a lot of features or commands in the interface, researchers have

proposed personalized interfaces where interfaces are customized to better suit users’

need [3, 11, 27]. Personalized interfaces aim to enhance a user’s performance by

providing access to a subset of available features. Although research has shown that

personalized interfaces can improve users’ task performance, they can decrease users’

awareness of system features [12, 13].

My thesis investigates whether online resources (e.g., tutorials, online documen-

tation etc.) could be used as data source to generate personalized recommendations

to increase user’s feature awareness. The use of online resources has the potential to

eliminate prior recommendation system’s dependency on community usage log. Fur-

ther, the use of online resources has not been previously explored for feature recom-

mendations. In my thesis, I also investigate different presentation techniques focused

on how the personalized recommendations could be incorporated into the graphical



Chapter 1: Introduction 3

user interface (GUI) with the aim of minimizing interface complexity. Specifically,

my thesis involves following research questions:

• Does generating personalized feature recommendations based on collections

of features found in online resources (e.g., web tutorials, online learning re-

sources etc.) provide useful recommendations that have the potential to enhance

feature-awareness?

• How can we effectively present relevant unknown or less frequently used sys-

tem features into the application’s user interface without introducing additional

interface complexity?

To answer these questions I designed and developed the QFRecs system, an alter-

native approach to personalized command recommendations that uses command-to-

task mappings mined from online documentation. Specifically, the QFRecs system

uses Query-Feature Graphs (QF-Graphs) [17], a technique that maps common in-

ternet search queries to collections of interface elements referenced in the resulting

online documentation. Within the context of the GNU Image Manipulation Program

(GIMP), I illustrate how the proposed recommender system uses a QF-Graph as an

automatically generated plan library. Through offline experimentation with previ-

ously collected usage data, I explore this documentation-centric approach’s potential

to both increase the user’s command awareness through task-relevant recommenda-

tions, and to enable a system to provide efficient access to needed commands. Further,

in a controlled laboratory experiment, I also explore the impact of two alternative

recommendation presentation techniques on immediate task performance as well as



4 Chapter 1: Introduction

on incidental awareness of relevant commands not selected during the primary task

[12].

The structure of the remainder of my thesis is as follows. In chapter 2, I explore

related work. In chapter 3, I describe the process and implementation of the pro-

posed recommender system which I call “QFRecs”. In chapter 4, I report the offline

analysis I performed to evaluate the QFRecs system’s performance and present the

results. In chapter 5, I describe the study I conducted to evaluate two alternative

recommendation presentation techniques and present the results of the study. I con-

clude in chapter 6 by summarizing the contributions of my thesis and discussing its

limitations and possible feature directions.



Chapter 2

Related Work

Assisting novice as well as expert users during their learning phase with feature-

rich software has been a widely studied topic. Assistance can be provided through an

engaging improved tutorial interface, through in-application help, or through task-

specific GUI customization. Therefore, I explore this research work from three main

areas. First, I discuss the research work aimed at designing engaging step-by-step

tutorials to facilitate application learning. After that, I describe prior research work

that is focused on in-application assistance. Then, I discuss various approaches that

prior research has proposed for user interface customization in feature-rich applica-

tions. In addition to these three areas, I also describe the research work that is focused

on extracting information on software use from web documents.

5



6 Chapter 2: Related Work

2.1 Improved tutorial interfaces

Prior work has shown that tutorials play a large role in feature-rich application

learning. Users of feature-rich software applications often consult documentation, web

tutorials, video tutorials, and supporting resources to learn and understand feature-

rich software’s usage and capabilities. Users consult tutorials and supporting re-

sources mainly for “in-task help”, when users need to accomplish a part of a task

immediately [29]. Authoring effective tutorials and supporting resources can be diffi-

cult. Therefore, prior research has focused on automated or semi-automated tutorial

authoring. Automated or semi-automated tutorials focus mostly on improving the

utility of the generated tutorials through combining static tutorials (e.g., image and

text based tutorials) and video tutorials with dynamic interactions (e.g., [5, 20]).

Research has also focused on creating novel and engaging tutorial formats to

help user to learn about feature-rich software (e.g., [10, 24]). Grossman et al. [24]

introduced a system named Chronicle that captures the entire workflow history of a

tutorial and allows novice users to traverse the captured workflow so that users can

better understand the segment of interest of the workflow. Their system also enables

users to find out more about the tools and settings used in that segment of interest.

Another example of an interactive learning tutorial is Sketch-Sketch Revolution [10],

an in-product, content centric interactive system that allows a user to follow an

already existing workflow of an expert user. Along with helping a user to gain the

confidence that they can regenerate expert content, Sketch-Sketch Revolution also

helps users to interact effectively with the application’s user interface.

Further, research has introduced many game-based novel and engaging tutorial



Chapter 2: Related Work 7

systems to help users to learn about new tools and techniques. Examples of such

tutorial system include Jigsaw [8] and GamiCAD [35]. GamiCAD, proposed by Li et

al. [35], is an in-product interactive tutorial system to help first-time AutoCAD users

to become familiar with new features and improve their performance with AutoCAD.

In GamiCAD, new users both learn and improve their performance through real time

feedbacks from the gamified tutorials for their successes and failures. On the other

hand, Jigsaw, proposed by Dong et al. [8], is a discovery-based interactive tutorial

to help users learn new tools and techniques in Adobe Photoshop. In Jigsaw, users

learn about new tools through solving jigsaw puzzles using Adobe Photoshop tools.

Research has also explored ways to harness crowds or community contributions

to improve the utility of web-based tutorials through integrating community refine-

ments [4], by augmenting tutorials with community demonstrations [33], and by using

crowds to help segment video tutorials into steps to permit easier tutorial navigation

[28]. To integrate community refinement, Bunt et al. [4] introduced the TaggedCom-

ments system that aims to enhance the role of the comments to create more engaging

tutorials. TaggedComments allows users to tag tutorial comments with the appropri-

ate section of the tutorial content and provide direct access to all the comments from

the tutorial content. Further, Lafreniere et al. [33] proposed FollowUs, a web-tutorial

system that integrates the application within the tutorial and allows improvement of

the tutorial contents through community contribution. Specifically, FollowUs cap-

tures the workflow of a tutorial from expert users (community members) and embed

the captured video within the original tutorial for other users to follow along with

these community contributed videos.



8 Chapter 2: Related Work

Another example of tutorial enhancement through community contribution is the

work proposed by Kim et al. [28] which aims to provide step-by-step annotation

of how-to videos with the aim of helping users to navigate easily through the video

timeline (e.g. skip unwanted segments, go to the video segment containing segment

of interest). They proposed ToolScape, a step-aware interactive video player that

displays step-by-step annotations along with intermediate result thumbnails in the

video timeline. Their approach also introduced a novel crowdsourcing workflow to

add step-by-step annotations to the existing how-to videos in YouTube.

All the above described tutorial enhancement approaches either aim to create

more engaging tutorials to help users with their workflows or try to increase utility

of the existing tutorials through community contribution. Therefore, the primary

focus of these tutorial interfaces is not the improvement of users’ feature awareness.

In contrast, my proposed system aims to improve users feature awareness through

recommending useful features based meta-data found in these available tutorials.

2.2 In-Application Assistance

As is the case with my work, prior research has also sought to improve software

learning from within the application itself. The Lumiere Project is an early example

of providing assistance to application users using Bayesian user modeling [27]. Using

a hand-crafted model, the Lumiere Project attempts to predict a user’s future action

based on his observed actions and queries. Further, in terms of assisting a user during

the primary task, Grossman et al. [22] proposed ToolClips, a system that provides

contextual video along with traditional tooltips to improve learnability of feature-rich



Chapter 2: Related Work 9

software. In other work, Matejka et al. [38] proposed IP-QAT, a community based

in-product question answering system that shows contextually relevant user posts to

assist other users during their primary tasks.

Most relevant to our work are systems that provide unobtrusive personalized com-

mand recommendations by mining large corpuses of community usage data. The

OWL system, proposed by Linton et al. [37], is one of the first such systems to rec-

ommend relevant unknown features and present those features in the user interface

to enhance users’ feature awareness. The OWL system uses long-term usage history

of individuals within an organization to support an individual learning through fea-

ture recommendations. One of the drawbacks of the OWL system is the following

assumption: users within an organization exhibit similar command usage patterns.

This assumption may fail due to the variance in expertise level within a user group.

Research has also focused on collaborative filtering based command recommen-

dations. For example, CommunityCommands [36, 40] uses collaborative filtering

algorithms on a large corpus of usage data to generate personalized command recom-

mendations. CommunityCommands suggests unused or less frequently used features

in AutoCAD based on explicitly collected usage data from a large AutoCAD user

community, which means their approach requires a large active user community to

capture the usage data. Further, Emerson et al. [42] extended the approach of

CommunityCommands to the Eclipse integrated development environment (IDE) to

suggest useful development features (e.g., code formatter, build tools, etc.) to enhance

the software developers’ fluency. Another example of community-dependent approach

is Patina [39], which provides subtle command recommendations by overlaying heat



10 Chapter 2: Related Work

maps on the interface to highlight commands commonly used by the community.

Thus, researchers have focused on feature recommendations based on users’ long-

term application usage data collected from large user communities. In my thesis,

I have proposed the QFRecs system that uses online resources (e.g., web tutorials,

online documentation) to generate feature recommendations in order to eliminate the

need for large user communities contributing data. The use of online resources has

not been explored as an alternative way to build the underlying knowledge base of

feature recommender systems. Therefore, this research extends the prior work by

exploring a new data source for task-relevant command recommendations.

2.3 Providing Efficient Access to Needed Commands

Modern software applications (e.g., Photoshop, GIMP, and AutoCAD) offer hun-

dreds of system features, which are accessed by their user communities. Prior research

has shown that users of feature-rich software tend to use only a small subset of the

available command set. For example, Lafreniere et al. [32] found that at least 90%

of the users of the GNU Image Manipulation Program (GIMP) use only 27 of 352

available commands. Li et al. [36] also reported that 90% of Autodesk’s AutoCAD

users use less than 90 commands out of thousands of available commands. Therefore,

previous research has examined ways to provide more efficient access to needed com-

mands (most frequently used commands) by reducing the search space. This research

has proposed various approaches that ranged from personalized interfaces (e.g., [2],[3],

[41]), to community-authored task-specific interfaces accessible through in-application

keyword search [30, 31], to interfaces that adaptively promote commands according



Chapter 2: Related Work 11

to recency and frequency information (e.g., [11, 19]).

In general, personalized interfaces attempt to adapt the interface elements of

feature-rich software applications to better suit users’ needs in order to improve

users’ interaction efficiency. Interfaces can be personalized through two opposing

ways: (1) system-controlled (adaptive) and (2) user-controlled (adaptable), which

differs in terms of who performs the customization (the user or the system). Re-

searchers found that, in most cases, user-controlled personalization has performed

better than system-controlled personalization [11, 18]. For example, Findlater et al.

[11] compared static, adaptive and adaptable menus and found that adaptable menus

are preferred over the others and adaptable menus performed better than adaptive

menus under certain conditions.

In addition to system or user-controlled personalization, prior research has also

focused on reduced functionality interfaces. For example, McGrenere et al. [41] eval-

uated a customized interface of feature-rich software that enables a user to toggle

between a feature-reduced interface, which contains an adaptably chosen subset of

features and the full-featured default interface. Their results showed that the adapt-

able prototype with toggle capability results better user satisfaction than the default

interface. Further, Lafreniere et al. [30] proposed AdaptableGIMP, a crowd-based

approach for adaptable interface for the GNU graphical image manipulation pro-

gram (GIMP). In their prototype interface, a user can access task-specific interfaces

that are created by the application’s user community. Upon selecting a task, a re-

duced functionality interface tailored for that specific task is provided to the user.

Combining the adaptive and the adaptable approach, Bunt et al. [3] proposed a



12 Chapter 2: Related Work

mixed-initiative approach for feature-reduced interfaces which provides customiza-

tion suggestions (adaptively) to maximize the user’s customization performance but

the control of customization remains in the user’s hands (adaptable). The result

of their evaluation showed that the mixed-initiative approach improves task perfor-

mance and is preferred over a purely adaptable approach. However, researchers also

found that users often fail to customize their interfaces due to the lack of proper

customization mechanisms in adaptable interfaces [2]. Further, research has also pro-

vided evidence that interface personalization through reduced functionality interfaces

diminish a user’s ability to learn new features by drawing attention to only a subset

of features [13].

Apart from reduced functionality interfaces, a number of researchers have focused

on adaptation techniques that adapt each feature’s (e.g. menu items, toolbar items

etc.) presentation in the interface. Those techniques can be divided into two main

categories: (1) techniques that maintain spatial consistency but adapt visual and

temporal presentation, and (2) techniques that adapt spatial position of the features

in the interface. Examples of techniques that adapts spatial position of features in-

clude: Microsoft Smart menus, and Split menus [43]. Microsoft Smart menus hide

the least useful menu items from initially visible ones to draw a user’s attention to

the frequently used menus. Split menus show top-n most frequent items in the top

split to provide faster access to most frequently used items. The remaining menu

items are displayed in the bottom split [43]. On the other hand, examples of tech-

niques that alter visual and temporal representation include: Resizing or Morphing [7]

Highlighting [18], and Ephemeral adaptation [14]. Resizing or morphing adaptively



Chapter 2: Related Work 13

predicted menu items in long menus attempt to decrease a user’s menu selection

time [7]. Highlighting maintains spatial consistency and presents predicted items in

a coloured background to draw a user’s attention to these features [18]. Ephemeral

adaptation uses abrupt appearance of predicted items followed by delayed onset of

the non-predicted items to minimize a user’s visual search time [14].

In case of my work, the feature recommendations generated by the QFRecs system

are incorporated within the interface. Therefore, I explored interface personalization

approaches proposed in prior research. Those interface personalization approaches

aim to increase users’ interaction efficiency with the interface rather than focusing

on enhancing users’ feature awareness. Further, prior research also showed that some

forms of interface personalization (e.g., reduced functionality interfaces) can have

negative impacts on users’ feature awareness [12]. Therefore, I used ephemeral adap-

tation with highlighting [14] in the default menus instead of providing a reduced

functionality interface.

2.4 Extracting Command-to-Task Mappings from

Online Documentation

The QFRecs system uses online resources (e.g. tutorials, web documentation) as

an alternative data source to community contributed usage data. Therefore, research

work focused on automatic extraction of references to interface elements from online

resources is important to my work. Automated recognition of references to interface

elements from step-by-step tutorials has been an active research topic. For example,



14 Chapter 2: Related Work

Fourney et al. [15] proposed a named-entity recognizer that identifies user interface

elements (e.g. name of features, palettes, etc) from web page contents. Similar to

Fourney et al.’s work, Laput et al. [34] proposed a conditional random field (CRF)

based extractor for interface elements from step-by-step tutorials. Further, Ekstrand

et al. proposed a context-aware search technique that extracts interface elements’

names from each page of the search results. They presented the application icons

of the extracted elements with each result so that the user can easily find the most

relevant pages.

Given the prevalence of online documentation for feature-rich software, prior work

has also explored the feasibility of using these resources to generate task-specific com-

mand groupings. For example, Fourney et al. [17] proposed Query-Feature Graphs

(QF-Graphs) as a way to relate users’ search queries for feature-rich applications to

individual interface elements referenced in the resulting webpages. The QF-Graph is

one of the components of the QFRecs system. Another example of the use of online

documentation is CommandSpace [1], which uses web documentation to model the

relationships between tasks and commands using a vector-space representation as op-

posed to a graph. CommandSpace used the CRF-based extractor proposed by Laput

et al. [34] to model an application’s domain language using deep learning techniques.

2.5 Summary

From the literature review, we see that significant research has been done on en-

hancing tutorial content to facilitate learning of feature-rich applications [4, 5, 8, 10].

However, these works mainly focused on either automating or semi-automating the tu-



Chapter 2: Related Work 15

torial generation process [5, 20] or introducing new and novel tutorial formats to sup-

port more engaging learning [4, 8, 10, 24, 35]. We see work focused on in-application

assistance that aims to support users during their task [9, 22, 24, 39, 42]. Further,

we found that a few of them focused on improving feature awareness through fea-

ture recommendations using community usage logs [36, 37, 38]. Therefore, my thesis

work focuses on extending feature recommendation approaches using automatically

extracted command-to-task mapping from online documentations.



Chapter 3

System Description

This chapter presents the QFRecs recommendation system, describing how QFRecs

recommends novel and useful system features or commands to users based on data

collected from online resources. The QFRecs system aims to recommend novel and

useful features for two purposes. The first purpose is to enhance a user’s feature

awareness by visualizing novel and useful unknown features during the user’s primary

task. Its other purpose is to improve primary task performance through providing

quick access to necessary features.

The input to the QFRecs system is a user’s last n selected features and based

on that, the QFRecs system generates novel and useful recommendations. After

that, a feature-rich application adapts the interface based on the recommendations

generated from the QFRecs system. More specifically, the QFRecs system provides

an intelligent service that works below the feature-rich application’s user interface and

adapts the user interface based on the user’s current context (e.g., previous feature

selection history).

16



Chapter 3: System Description 17

Query Feature (QF) graph

S
ea

rc
h 

Q
ue

ri
es

S
ys

te
m

 
fe

at
ur

es

Query Feature (QF) graph

Interface
adaptation 

Search queries

Online resources

Data 
Cleaning User Interface

Figure 3.1: The general architecture of the QFRecs system.

In the following sections, I present QFRecs, a feature recommender system built

based on online resources. First, I describe the Query-Feature graph (QF-graph),

which is a core component of the QFRecs system. Then I discuss how the information

required to build a QF-graph can be collected from online resources (e.g. tutorials,

online documentation, etc.). After that, I describe my data cleaning process to reduce

the noise from the collected raw QF-graph data. Then, I follow this by describing

the recommendation generation process using the noise-reduced QF-graph (generated

from the cleaned raw QF-graph data). Finally, I discuss the types of recommendations

that the system generates.

3.1 Query Feature Graph

A core component of the QFRecs system (see Figure 3.1), is the QF-graph orig-

inally introduced by Fourney et al. [17]. As illustrated in Figure 3.2, a QF-graph

is a weighted bipartite graph, which associates internet search queries (i.e., natural

language descriptions of high-level tasks [16], Figure 3.2 left side), with the features



18 Chapter 3: System Description

Search Queries System Features

how to blur image 
background in gimp

how to blend two 
images in gimp

Gimp how to transparent 
background

Gimp make image 
black and white

blur/sharpen

blend

feather

add layer mask

color balance

Figure 3.2: An example of QF-graph for The GNU Image manipulation program

(GIMP)

Table 3.1: Example connection weights between tasks and features.

Blur/Sharpen Blend .... Color Balance
how to blur image

background in GIMP 9.33 6.82 .... 0
.... .... .... .... ....
.... .... .... .... ....

Gimp make image
black and white 0 0 .... 8.77

or commands of a target feature-rich application (Figure 3.2 right side) that appear

in the result web pages. The weight of the edge between a query node and a feature

node represents their strength of association (see Table 3.1) determined by the scoring

function of the QAP (Question Answering Passage) algorithm [6].



Chapter 3: System Description 19

Figure 3.3: Google suggestions for keyword “how to c ”.

3.2 Extracting Interface Elements from Online Re-

sources

The process of building a QF-graph starts with collecting common user search

queries issued for a target application using the CUTS method [16], which leverages

the Google Suggest API. As an illustration, the search query suggestions for a partial

query “gimp how to c”is shown in Figure 3.3. Fourney et al. [16] showed that these

search query suggestions made by Google Suggest represent a unit of task that can

be accomplished in GIMP such as “gimp how to crop”, “gimp how to change fonts”,

etc. Using the CUTS method, all possible search queries for a target application are

generated. These queries are then executed and the resulting webpages are examined

for occurences of application-specific features (using a list of features that can be

generated semi-automatically using the application’s localization data).



20 Chapter 3: System Description

As a starting point, I used the raw QF-graph data generated by Fourney et al.

[17] for the GNU Graphics Manipulation Program (GIMP). The target application is

GIMP for two reason: it allows for greater modification possibilities than propietary

software, and it is possible to perform offline evalutations of QF-based approach using

data previously collected through the “Ingimp”project [32, 44].

3.3 Data Preparation

In moving from the original QF-Graph concept to a concrete application, I dis-

covered two sources of noise that impacted the quality of the prototype’s recommen-

dations requiring that I “clean”this original QF-Graph for it to be suitable for my

purposes. As an overview, the cleaning process took part in two steps. First, I pruned

tasks from the left-hand side of the QF-Graph that were not representative of high-

level tasks. Second, since the goal was to recommend specific GIMP commands, I

made sure that all system features on the right-hand side of the graph corresponded

to actual elements in the GIMP interface. I describe these source of noise and the

methods for cleaning the data in further detail here to illustrate some of the challenges

of using the document-based approach to command recommendation in practice.

In terms of the high-level tasks (see Figure 3.2, left for examples), manual ex-

ploration of 12, 311 search queries used to build the original QF-graph revealed that

many of the queries are not actually representative of high-level tasks. Therefore, I

removed queries from this original graph if they met any of the following criteria: they

contained digits (e.g., “gimp review 2010 ”, “gimp 2.6 fonts”, etc.), operating system

names (e.g., “gimp for macOS x”), or the “vs”string (e.g., “gimp vs adobe”, “adobe



Chapter 3: System Description 21

illustrator vs gimp”). This removal process left me with 9889 queries. An alternative

would have been to restrict the search queries to those containing the string “GIMP

how to”, however, this strategy appeared to result in unnecessary information loss

(e.g., this would have removed over 90% of the queries).

The second source of noise concerned the features themselves (see Figure 3.2, right

for example features in a QF-Graph). I found that not all the features extracted from

the Web documentation mapped to commands in the actual GIMP interface. The

primary cause was minor textual differences in labelling (e.g., “by color select”vs.

“select by colour”). Most differences were resolved automatically by string match-

ing using regular expressions. The matching rules for the regular expressions were

crafted manually based on actual command names from the GIMP menus. Using

regular expression and string matching, I mapped 569 features out of the original

617 distinct features in raw QF-Graph to the actual commands present in the GIMP

interface. For example, “rectangular select”was mapped to “Rectangle Select”of the

actual interface. Since the QF-Graph doesn’t guarantee the presence of all available

features of the GIMP user interface, I could not map the remaining features of the

actual interface using the matching rules. For these remaining features, the mapping

was done manually based on our knowledge of the target application.

Manual inspection also revealed that a feature’s parent entity (e.g., menu name)

was sometimes present in the raw data in addition to the command itself. This is

because Web documentation often specifies a command’s full path. For example, the

line “Tools > Paint Tools > Paintbrush”would lead both “Tools”and “Paint Tools”to

appear in the graph. In the cleaned QF-Graph, I included the child menu items only



22 Chapter 3: System Description

Figure 3.4: GIMP’s view menu.

(e.g., “Paintbrush ”).

On the other side, there were 67 features of the 417 actual GIMP interface ele-

ments not present in the raw QF-Graph. 27 of these missing features were under the

“view”menu of the actual interface. The most probable reason could be that these

features modify the presentation of the user interface of the GIMP than the input

image (See Figure 3.4). Therefore, these features have less chance to be present in

the actual tutorial’s text. The remaining unmapped features were mostly from the

“Filters”menu of the actual interface. Since the cleaned QF-graph doesn’t contain

67 features of the actual GIMP interface, currently the QFRecs system is unable to

recommand these features. In order to recommend these features to users, one way

is to manually incorporate them into the QF-graph.



Chapter 3: System Description 23

3.4 Generating Recommendations

To generate personalized, contextually relevant feature recommendations, the

QFRecs system uses the cleaned QF-graph as an automatically generated plan library.

Based on a user’s last x command selections (e.g., the history size), the QFRecs sys-

tem selects the corresponding nodes in the graph (i.e., the recently used features or

commands). The system currently uses the last 5 distinct observed commands for

this initial activation phase, however, this history size is a configurable parameter.

Larger history sizes will mean recommendations tailored more to the user’s overall

usage than their current context. After the user’s last x commands are selected,

the QFRecs system determines possible task (query) nodes based on their connection

weights. This step amounts to estimating which of the tasks in the QF-graph are most

likely to be the user’s current task. Using these estimations, the QFRecs system then

selects other relevant commands for those candidate tasks.

This process is illustrated in Figure 3.5. In this example, the history is size 2 and

the last two observed commands are: “Blur/Sharpen”and “feather”. The QFRecs

system first finds the set of tasks that are strongly associated those two features (see

the left-hand nodes in Figure 3.5a) using the edge weights in Table 3.1. In the next

step, the QFRecs system uses those strongly associated tasks to isolate other features

(see the right-hand nodes in Figure 3.5b) associated with those tasks. These features

are then ranked according to the summed weights of all of their associated tasks

activated in the previous step, enabling the system to recommend the top k features.

In this small example (k = 2) QFRecs recommends “blend”and “add layer mask”to

the user. The pseudocode of the overall process is included in Appendix B.



24 Chapter 3: System Description

Tasks Features

how to blur image 
background in gimp

how to blend two 
images in gimp

Gimp how to transparent 
background

Gimp make image 
black and white

blur/sharpen

blend

feather

add layer mask

color balance

(a) Selection of possible tasks (in orange) based on current user context.

Tasks Features

how to blur image 
background in gimp

how to blend two 
images in gimp

Gimp how to transparent 
background

Gimp make image 
black and white

blur/sharpen

blend

feather

add layer mask

color balance

(b) Selection of features to recommend (in green) based on tasks selected in Figure 3.5a.

Figure 3.5: A simple illustration of the QFRecs system.



Chapter 3: System Description 25

3.5 Recommendation Types

Using the process described in section 3.4, the recommended commands are one

of the following two types:

• “Familiar”Recommendations: Commands in the user’s existing command vo-

cabulary that are predicted to be most relevant to the current usage context.

• “Unfamiliar”Recommendations: Contextually-relevant commands not yet in

the user’s command vocabulary.

These recommendations serve different purposes. “Familiar”recommendations will

not introduce users to new commands, but if promoted effectively, they have the

potential to improve task efficiency. “Unfamiliar”recommendations, on the other

hand, have the potential to enhance feature awareness. The proposed approach is

capable of generating both types of recommendations raises a number of interesting

interface presentation questions, which is explored in chapter 5. However, the QFRecs

system is first explored for the accuracy and potential utility of these document-based

recommendations using offline analysis in chapter 4.

3.6 Integrating into the Interface

To present the features recommended from the QFRecs system, I developed two

prototypes of the QFRecs system each with a different presentation technique. Based

on the related work described in section 2.3, I used the ephemeral menu adaptation

technique [14] for presenting recommended menu items in these prototype interfaces.



26 Chapter 3: System Description

Figure 3.6: Combined interface prototype with the QFRecs system

In one prototype, named Combined Interface (Figure 3.6), I presented both types

(familiar and unfamiliar features) of recommended features in the menus and used

colored highlighting [18] to distinguish between the two types. In the second proto-

type, named Separated Interface (Figure 3.7), I presented contextually relevant and

familiar features within the menus using the ephemeral highlighting technique but

relevant and unfamiliar features are presented in a separate palette similar to the

CommunityCommands [40]. In this prototype, I also used highlighting for the rec-

ommended features in the menus to distinguish them from the non-recommended

features.



Chapter 3: System Description 27

Figure 3.7: Separated interface prototype with the QFRecs system

3.7 Summary

In this chapter, I presented the QFRecs feature recommender system. First, I

described the QF-graph. Then I discussed how the information required to build a

QF-graph can be collected from online resources (e.g., tutorials, online documentation

etc.). After that, I described the data cleaning process that I performed to reduce

the noise in the collected raw QF-graph data. Then, I followed this by describing

my system’s recommendation generation process using the noise-reduced QF graph

generated from the cleaned raw QF-graph data. After that I discussed the types

recommendations that my system generates. Finally, I described how my system

integrates generated recommendations into the application’s interface.



Chapter 4

Offline Evaluation

In this chapter, I evaluate the QFRecs system’s prediction accuracy on a corpus

of GIMP usage data that was collected as part of the Ingimp project [33, 44]. This

corpus contains feature usage histories (or logs) from 207 GIMP users, collected over

a period of approximately two years. I evaluate the QFRecs system along two di-

mensions. The first is its ability to generate relevant recommendations, to gain an

initial understanding of the approach’s potential to improve users’ feature awareness.

Second, I evaluate the QFRecs system’s accuracy in predicting a user’s next feature

or command selection and compare the QFRecs system’s approach to frequency- and

recency-based prediction algorithms (e.g., [11, 18]).

28



Chapter 4: Offline Evaluation 29

4.1 Potential to Promote Awareness of Relevant

Commands

In the following subsections, I measure the QFRecs system’s potential to generate

recommendations that can improve users’ feature awareness. To do so, I analyze the

QFRecs system’s performance on InGimp usage data from several aspects.

4.1.1 Mean Number of Familiar and Unfamiliar Features in

the Recommended set

In assessing the QFRecs system’s potential to make users aware of new commands,

I examined how many of the generated recommendations could be classified as unfa-

miliar. As defined in section 3.5, Unfamiliar features are those that are predicted to

be contextually-relevant but not yet observed in users’ feature or command selection

history. Familiar features are those that are predicted to be contextually-relevant

and observed in users’ feature or command selection history. Figure 4.1 illustrates

the mean breakdown of the recommendations into the two types when the QFRecs

system generates for 5, 10, 15 and 20 recommendations (recommendation size in

Figure 4.1). Since the number of unfamiliar features is greater than the number of

familiar features in all the cases, these results indicate that the QFRecs system tends

to favour unfamiliar recommendations, particularly as the number of recommended

features increases. For example, for the recommendation set size of 20 features, on

average the QFRecs recommended about 13 unfamiliar features.



30 Chapter 4: Offline Evaluation

0

2

4

6

8

10

12

14

16

5 10 15 20

UnfamiliarFamiliar

Recommendation size

N
um

be
r 

of
 fe

at
ur

es

Figure 4.1: The means for the number of familiar features and unfamiliar features

for different recommendation sizes (Error bars are in standard deviation).

4.1.2 Relevance Measure of the QFRecs System’s Recom-

mendations

As a measure of recommendation relevance, I used a modified version of the k-

tail evaluation method, introduced by Li et al. [36] to evaluate their Community-

Commands recommendation system [36, 40]. A k-tail evaluation divides a series of

used features F into two sets: a training set (Ftrain) and a test set (Ftest), such that

the test set Ftest contains k distinct features which are not in Ftrain. The training

set is then used as the user’s history to measure the prediction algorithm’s perfor-

mance based on how well it predicts those k distinct features in Ftest. To focus on

the relevance of the unfamiliar recommendations to the user’s current usage context,

the k-tail evaluation method was adapted as follows: I measured whether or not



Chapter 4: Offline Evaluation 31

0

10

20

30

40

50

60

70

80

90

5 10 15 20

A
c

cu
ra

cy
 %

Recommendation size

k=5 k=10 k=15 k=20

Figure 4.2: Performance of the QFRecs system recommending an unfamiliar feature

that is then used in the next k feature invocations.

the QFRecs system’s recommendations predict at least one new feature in the next

k feature invocations (i.e., whether or not at least one unfamiliar recommendation

appears in the next k feature invocations).

Figure 4.2 depicts the results for a range of recommendation and tail sizes. With

a recommendation size of 20, the QFRecs system achieves a k-tail accuracy that is

up to 80%. In some respects, this figure represents a lower bound on the relevance of

the recommendations; users may be failing to use certain features not due to the lack

of relevance, but because of lack of awareness. The k-tail accuracy of the QFRecs

system for familiar recommendations is also evaluated, with Figure 4.3 illustrating

similar trends that the QFRecs system achieves about 84% k-tail accuracy.



32 Chapter 4: Offline Evaluation

0

10

20

30

40

50

60

70

80

90

5 10 15 20

A
cc

u
ra

cy
 %

Recommendation size

k=5 k=10 k=15 k=20

Figure 4.3: Performance of the QFRecs system recommending a familiar feature that

is then used again in the next k feature invocations.

4.1.3 Percentage of “Accurate”Recommendations

To provide further insight into the relevance of the novel command recommenda-

tions, I examined how many of the unfamiliar recommendations are accurate accord-

ing to the modified k-tail evaluation method. Table 4.1 illustrates that, on average,

3% - 9% of “unfamiliar”recommendations in a given set appear in the user’s next k

commands. The table also illustrates the large variability in accuracy, with up to

80% of the recommendations appear in the user’s next k selections.

Figure 4.4 examines the “accuracy”of the unfamiliar recommendations for rec-

ommendation size 20 and tail size 20 in further details. In particular, I grouped

all the generated recommendations based on how many unfamiliar recommendations

appear in a user’s next k feature invocations. Figure 4.4 shows that about 52% of

the generated feature recommendations for recommendation size of 20 contain 2 or



Chapter 4: Offline Evaluation 33

K = 5 K = 10 K = 15 K = 20
Accuracy Max SD Accuracy Max SD Accuracy Max SD Accuracy Max SD

% % % % % % % %
R = 5 3.3 60 10.79 5.79 80 11.95 6.68 80 12.75 7.25 80 13.76
R = 10 3.85 40 6.11 5.81 50 7.54 7.3 50 8.46 8.53 50 9.13
R = 15 4.39 33.33 5.05 6.39 40 6.29 7.68 40 7.07 8.7 40 7.64
R = 20 4.52 25 4.07 6.38 30 5.1 7.84 35 5.76 9 35 6.24

Table 4.1: Average percentage of correct recommendations for each tail (i.e., k) and

recommendation size (i.e., R)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pe
rc

en
ta

ge
 %

Number of features

Figure 4.4: Percentage of recommendations by the number of useful features (recom-

mendation size 20 and tail size 20)

more unfamiliar features ( > 1.8 expected number of unknown features) which were

present in users’ next 20 feature invocations.

4.1.4 Measure of Unknown Utility Features

In the recommendations generated by the QFRecs system, there exists a subset

of features which are unfamiliar to users but do not appear in users’ next k feature



34 Chapter 4: Offline Evaluation

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pe
rc

en
ta

ge
s 

%

Number of features

Figure 4.5: Recommendations grouped by number of unknown-utility features (rec-

ommendation size 20 and tail size 20)

invocation. Although these features are novel and unfamiliar to users, the perfor-

mance measures described in figure 4.2 consider them as wrong predictions. These

features are missing in users’ next k feature selections, therefore the utility of these

features are unknown in the evaluation on inGimp data. There may be concern for

their usefulness, but these features have the potential to enhance users’ feature aware-

ness. I refer to these features as unknown-utility features. I measured the percentage

of predictions grouped by the number of unknown-utility features. Figure 4.5 shows

the results for recommendation size of 20 and tail size of 20. Figure 4.5 shows that

about 13% of recommendations contain 15 unknown-utility features. Figure 4.5 also

indicates that every set of recommended features contains at least 8 unknown-utility

features.



Chapter 4: Offline Evaluation 35

4.1.5 Summary

Combined, for recommendation size 20 and tail size 20, these results suggest

that the QF-based approach (as currently instantiated in the QFRecs system) is

able to recommend at least one relevant and unfamiliar feature in about 80% of the

recommended sets. Further, about 83% of the recommendations contain at least one

known relevant feature which helps user to recall features. Results also indicate that

each recommended set of 20 features contains about 8 to 19 unknown-utility features,

which may be useful to users. Given the above results, if the recommended features

are promoted effectively within the interface, the recommendations could potentially

aid users in completing their current task and enhance their feature-awareness. The

question of presentation is explored further in my laboratory study chapter 5.

4.2 Predicting the Next Feature

The results described in section 4.1 provide an initial indication that the QFRecs

system does generate some user-relevant recommendations in that they appear later

in the user’s command stream. In this section, I explore the approach’s potential

to immediately streamline access to needed commands, by analyzing the degree to

which the recommended set accurately predicts the next command in the stream. I

also compared the QFRecs system with two algorithms commonly used in prior work

on adaptive interfaces (e.g., [11, 18]): frequency-based predictions, and recency-based

predictions. In this section, I define an accurate prediction as one where the user’s

next action is within the recommended set of commands.



36 Chapter 4: Offline Evaluation

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20

A
cc

u
ra

cy
-%

Recommendation-size

Frequency Recency QF-based

Figure 4.6: Accuracy of the Frequency-based, the Recency-based and QF-based ap-

proach for an average diverse session.

In case of frequency-based approach, I only considered the user’s usage data (not

all user’s usage data) to calculate his feature usage frequency. I found that the

frequency-based algorithm dramatically outperformed the others when it came to

predicting the user’s next command (see Figure 4.6). When examining the reasons

why, I found that the users in this particular dataset tended to have very homogenous

and stable command usage, which naturally favours the frequency-based approach.

As an example, consider a feature invocation sequence of length 149, but that consists

of only 10 distinct features. With a recommendation size of 10, once these 10 features

are observed, the algorithm will never fail. To better characterize and explore the

dataset, I define a user’s feature usage diversity, Rd, as follows

Rd =
NumberofDistinctFeaturesUsed

SequenceLength
(4.1)

In the InGimp dataset, the mean Rd for all 178 users with usage sequences longer

than 20 is 0.1668 (standard deviation of 0.1329). The max(Rd) was 0.6666 (sequence



Chapter 4: Offline Evaluation 37

0

5

10

15

20

25

30

35

5 10 15 20

A
cc

u
ra

cy
 %

Recommendation size

Frequency Recency QF-based

Figure 4.7: Accuracy of the Frequency-based, the Recency-based and QF-based

(QFRecs) approach for an average diverse session.

length = 42 and number of distinct commands = 28) and min(Rd) was 0.0043 (se-

quence length = 23459 and number of distinct commands = 101). Whereas the

frequency-based approach substantially outperforms the QFRecs system for users

with low feature diversity, the results are much more promising for users with high

feature diversity. As an example, Figure 4.7 compares the accuracy of the different

algorithms for a user with near mean feature diversity (0.1667). In this case, the

QFRecs system actually outperforms the alternatives when the recommendation size

is 5 or less.

A second potential downside of the frequency-based approach is that it requires

usage patterns to stabilize before it can be effective. For example, Figure 4.8 com-

pares the frequency-based approach’s accuracy over its first 30 feature invocations to

its overall performance. The QFRecs system, on the other hand, requires less start-



38 Chapter 4: Offline Evaluation

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20

A
cc

u
ra

cy
 %

Recommendation size

All First 30

Figure 4.8: The accuracy of frequency-based approach over users first 30 command

invocations and over all command invocations.

up time, as it is currently set to generate recommendations based on the last five

commands.

4.3 Discussion

The offline evaluation indicates that for my target application (GIMP), the QF-

based approach was able to generate at least some contextually relevant recommenda-

tions. For example, when providing the user with 20 recommendations (which would

be distributed throughout the entire menu hierarchy), previously collected GIMP us-

age data indicated that at least one recommended command would subsequently be

used within a user’s next 20 selections. Further work is required, however, to as-

sess the relevance and utility of recommended commands that do not later appear

in the user’s command stream, since their omission does not imply a lack of utility.



Chapter 4: Offline Evaluation 39

A potential first step in this direction would be to collect relevance ratings from ap-

plication experts; however, a longer-term experiment is necessary to fully assess the

value of these recommendations from the user’s perspective. A longer-term experi-

ment would also enable us to compare the QF-based approach to the collaborative

filtering approaches explored in prior work [36, 40].

4.4 Summary

In this chapter, I discussed the evaluation of QFRecs system on a corpus of

GIMP usage data that was collected as part of Ingimp project [33, 44]. I found

that frequency-based or any history-based approach is sensitive to the usage diversity

and session length. While the QFRecs system may not be an effective predictor given

long, homogenous sessions, it has advantages for short, diverse user sessions. I also

illustrated that the QFRecs system can recommend useful and novel features (un-

known previously) which are relevant to a user’s context (used in next k selections)

whereas a frequency- or recency-based approach is (by definition) unable to recom-

mend unfamiliar commands. Given the potential for the QFRecs system to produce

recommendations that are both needed and novel, in Chapter 5, I explore how the

system might present these recommendations to the user.



Chapter 5

Laboratory Study

As described in the section 3.5, the QFRecs system’s recommendations can be

divided into two types: features or commands that are familiar to the user (i.e., they

are part of the user’s usage history) and those that are unfamiliar (i.e., they are

not part of the usage history). Since the goal of my laboratory evaluation was to

explore two different ways to present the system’s recommendations, I conducted a

formal laboratory study with 18 participants comparing two prototype user interfaces

for presenting the recommendations of the QFRecs system to the control interface

(with no adaptive behavior). In the study, I also explored the usefulness of the

QFRecs system on users’ primary task performance and incidental awareness. This

laboratory study was approved by University of Manitoba’s Research Ethics Board.

The certificate of approval is included in Appendix A.

40



Chapter 5: Laboratory Study 41

Figure 5.1: Sample snapshot of the interface variants used in study: Basic interface

(A), Combined interface (B), and Separated interface (C). The features highlighted

in blue were “familiar”and the features highlighted in pink were “unfamiliar”features.

5.1 Participants

Eighteen participants (two females) were recruited from a university campus. Par-

ticipants were between the ages of 18-25 and were provided with a $15 gift card.

5.2 Apparatus

An Intel Core i7 desktop with 8 GB of RAM and Microsoft Windows 7 was used for

the experiment. The system was connected to a 22”LCD monitor with a 1920x1080

resolution. The experiment software recorded all timing and selection data.



42 Chapter 5: Laboratory Study

5.3 Conditions

Our three interface variants were as follows:

1. Basic Interface: A control condition with traditional static menus (Figure 5.1

A).

2. Combined Interface: Recommendations for both “familiar”and “unfamil-

iar”features were highlighted in place (i.e., within the menus) using one of the

best known visual highlighting techniques: ephemeral adaptation [14]. With

ephemeral adaptation, recommended items appear immediately when a menu

is opened, with the remaining items gradually appearing after an initial delay

(500 ms as in [14]). The two types of recommendations (“familiar”vs. “unfa-

miliar”) were distinguished only by colour (Figure 5.1 B). In figure 5.1 B, the

features highlighted in blue were “unfamiliar”and the features highlighted in

pink were “familiar”features.

3. Separated Interface: “Familiar”recommendations were ephemerally high-

lighted within the menus but “unfamiliar”recommendations were presented in

a separate palette (as well as appearing as non-recommended features in the

menus). In figure 5.1 C, the features highlighted in blue were “familiar”features.

The full menu path of a feature was also available on mouse hover over the

feature in the palette. In comparison to the Combined Interface, with the Sepa-

rated Interface, users could choose to ignore these “unfamiliar”recommendations

completely in favour of focusing on their primary task. This palette-based ap-

proach has been commonly explored in prior work on novel command recom-



Chapter 5: Laboratory Study 43

mendations (e.g., [36, 37]).

To enable both the combined and separated user interface to make recommen-

dations using real GIMP usage data (see the subsection 5.4), and QF-graph to be

built from actual web queries and resulting documentation, the menu hierarchy in

all interfaces was modeled after The GNU Image Manipulation Program (GIMP)

version 2.8.6. To simplify the interface slightly for the participants, I excluded the

“Windows”and “Help”menus, resulting in 9 top-level menus containing a total of 368

features.

5.4 Design, Tasks, and Procedure

The experimental task was a sequence of menu selections using each of the three

interfaces described in section 5.3. In other words, the study used a within-subjects

design, where all participants experienced all three interface variants. The menu

selections were based on a real user’s data from the Ingimp dataset described in the

section 4.1. I selected data from a user with a sufficiently long sequence that was also

close to the data set’s mean diversity. The selected usage sequence was 74 selections

long and had a diversity of 0.2065 (defined in the section 4.1). From this sequence, I

used the first 20 selections as “training”, and the next 50 features as the main task

(discarding last 4 selections in the interest of participant time). The reason behind

asking participants to select a sequence of feature selections rather than performing

a real task is time. In a real task, participants may take longer time based in the

complexity of the task and may also devote a large portion of the time to figure out

a certain step of the task rather than selecting features.



44 Chapter 5: Laboratory Study

For each feature selection, the experimental interface provided participants with

the name of the feature, but not the menu name. As a result, participants had

to explore the interface (using the categorization as a guide) to find their needed

commands. Once the participant correctly selected the displayed feature, the next

feature to be selected was displayed. I used the same selection sequence in all inter-

face variants, but used different interface masks (the GIMP menus, Geography-related

menus, and Cuisine-related menus) to mitigate learning effects between conditions.

The structure of all three masks was identical. The order of interface and the assign-

ment of masks to the interface were counterbalanced using a Latin square.

After each main task, I measured incidental command awareness [12], by having

participants perform a recall test. During this recall test, participants selected 24

distinct commands that were recommended by the QFRecs system but that were not

part of the main task.

The procedure for the 1.5 hour experiment was as follows: participants first com-

pleted a background and demographics questionnaire. Then, for each interface vari-

ant, participants completed a training task consisting of 20 selections, followed by the

main task consisting of 50 selections. After the main task, participants completed

the NASA-TLX [25], which measures perceived workload. Participants then com-

pleted the recall test described above prior to repeating the above steps with the next

interface variant. The session concluded with a comparative questionnaire.

In the Combined and Separated interfaces, the QFRecs system presented its top 20

recommendations based on the user’s last 5 command selections. With this particular

usage stream, this recommended set accurately predicted the next command in the



Chapter 5: Laboratory Study 45

stream 18% of the time.

5.5 Hypotheses

Given the low predictive accuracy of the QFRecs system’s recommended set in

comparison to those studied in prior work (e.g., [11]), I did not have any apriori

hypotheses on the effect of the interface on selection speed during the primary task.

I did, however, have the following hypotheses with respect to recall selection speed,

perceived workload and user preference:

• H1 (Recall Speed): The Combined interface will have faster recall times than

both the Basic interface and the Separated interface. I expect no difference

between the Basic interface and the Separated interface.

• H2 (Perceived Workload): Perceived workload will be lower with the Combined

interface than with the Separated interface.

• H3 (User Preference): Users will prefer the Combined interface over the Sepa-

rated interface.

5.6 Results

The result was analyzed with a one-way RM-ANOVA with Interface (Basic, Com-

bined, Separated) as the within-subjects factor. p < 0.05 was used as the threshold

for significance, and Bonferroni corrections were applied to all post-hoc comparisons.

Error bars in figure 5.2 represent Standard Error.



46 Chapter 5: Laboratory Study

0

5

10

15

20

25

30

35

40

Task Recall

M
ea

n
 c

o
m

m
an

d
 t

im
e,

 s
ec

Separated Basic Combined

Figure 5.2: Mean selection time between commands (with standard errors) for the

main task (left) and the recall task (right)

5.6.1 Primary Task Selection Time

As expected, there is no significant main effect of interface on primary task selec-

tion time (F2,34 = 1.064, p = 0.356, η2 = 0.059, Figure 5.2 left). The fact that the

recommendations did not significantly improve immediate task performance is con-

sistent with prior results on low accuracy predictors (e.g., [14]). Despite having only

limited immediate accuracy, the recommendations did not hurt task performance,

and perhaps even helped it slightly (as indicated by the means and effect size), when

presented in-place (in combined interface).



Chapter 5: Laboratory Study 47

5.6.2 Recall Speed (H1)

In the case of the incidental awareness task (i.e., the Recall test), the main effect

of Interface was statistically significant (F2,34 = 12.731, p < 0.001, η2 = 0.428, Figure

5.2 right). Moreover, the post-hoc comparisons revealed significantly faster selections

using the Combined interface (19.8s, se 1.3s) when compared to either the Basic

(32.0s, se. 1.4s, p < 0.001) or Separated (32.0s, se. 2.7s, p = 0.005) conditions. The

difference between the Basic and Separated conditions was not statistically significant

(p = 1.00). Therefore, the result provides evidence to support H1.

5.6.3 Perceived workload (H2)

As a measure of a perceived workload, the data from NASA-TLX questionnaires

were used. Figure 5.3 shows significant main effects of Interface on two of the NASA-

TLX categories: hard work and frustration. For these categories, participants re-

ported experiencing lower workload with the Combined interface, however, the only

significant pairwise difference revealed by the post-hoc comparisons was that of frus-

tration for the Combined and Basic interface variants (p = 0.038). Therefore, the

result could not fully support the H2.

5.6.4 User Preference (H3)

Regarding subjective preferences, in the post study questionnaire participants

were asked to rank the different interface types based on their overall performance.

The analysis of results showed high inclination towards the Combined option, with 13

interviewees ranking it as their most preferred interface variation. For comparison,



48 Chapter 5: Laboratory Study

Basic Separated Combined F Sig
Mentalrdemand 13.11r(3.32) 12.78r(4.07) 11.28r(3.98) 1.756 0.188
Physicalrdemand 4.5r(4.25) 4.89r(4.00) 3.94r(3.44) 1.125 0.336
Temporalrdemand 10.78r(5.51) 10.78r(4.57) 9.72r(4.56) 0.98 0.386
Success 6.22r(4.84) 4.56r(4.03) 4.78r(4.33) 1.717 0.195
Hard6work 14.286(4.32) 12.946(4.36) 10.396(5.24) 3.754 0.034
Frustration 10.896(3.76) 9.396(4.6) 7.116(4.24) 5.251 0.01

Figure 5.3: Mean (st. err.) NASA-TLX values (1=low, 20=high). Rows in bold

indicate significant differences.

3 users rated the Separated interface as their primary choice and only two preferred

the Basic one (this difference was significant with χ2 = 16.0, p = 0.002). Therefore,

the result supports the H3.

5.7 Discussion

This laboratory evaluation is one of a few systematic explorations of how to present

command recommendations designed to promote command awareness (as opposed to

short-term efficiency). The results indicate that presenting these types of recom-

mendations in-place can significantly improve incidental command awareness over a

palette-based approach. This is perhaps not surprising given that this presentation

technique is more obtrusive. What is perhaps more surprising is that the extra visual

complexity introduced into the main interface did not appear to negatively impact

short-term task efficiency. Users also preferred this in-place presentation strategy and

reported lower levels of frustration. Further exploration is needed to determine the

sensitivity of these results to factors such as the number of recommendations and



Chapter 5: Laboratory Study 49

their distribution across the menus.

5.8 Summary

In this chapter, I presented the study that I conducted to evaluate the QFRecs

system against the control interface, which involved measuring the effect of feature

recommendations on participants’ task performance, recall speed, perceived work-

load and user preference. According to the results, even the low prediction accuracy

of QFRecs does not hurt users’ primary task performance. I found the combined

interface of the QFRecs system significantly improves users’ feature awareness over

the control interface. In the user study, participants generally liked the combined

interface with the QFRecs system more than the other interface prototypes.



Chapter 6

Conclusion

Feature-rich software applications (e.g., image-manipulation programs, word pro-

cessor programs) contain hundreds (or even thousands) of commands or features.

Moreover, the number of features are increasing with each new version. Prior re-

search showed that most users of feature-rich software use a small fraction ( less than

10%) of available features [29, 36] and are unfamiliar with most of the functionalities.

This thesis proposes a recommendation system, the QFRecs system, which lever-

ages a new form of information on command relevance: command-to-task mappings

mined from Web documentation, to suggest relevant and unfamiliar commands to

users. The offline evaluation of the QFRecs system suggests that this technique has

the potential to expose users to a number of new and relevant commands, while the

laboratory evaluation suggests value in integrating the recommendations within the

main interface.

50



Chapter 6: Conclusion 51

6.1 Contributions

The first contribution of my thesis is a novel approach to command recommen-

dation in feature-rich software that uses web documentation (e.g., Web tutorials) as

a knowledge source. Prior approaches of feature recommendations tend to collect

command usage data from the user community to build the knowledge base [37, 36].

In contrast, this approach intends to eliminate the need of collecting command usage

data by creating knowledge base from online documentations. I have also demon-

strated the potential strengths and weaknesses of this approach given a variety of

command usage patterns.

The second contribution of my thesis is an empirical exploration of how such a

system should promote its recommendations within the interface. I have designed

and implemented two prototypes (combined interface and separated interface) em-

bedded with the QFRecs system by mirroring the GNU image manipulation program

(GIMP). Further, I have evaluated the prototypes with the control interface in a for-

mal laboratory study with 18 participants. The results of the user study indicate

that combined interface has statistically significant effect on users’ incidental feature

awareness than control interface and separated interface. However, the results do not

show any significant main effect on users’ primary task performance between interface

prototypes.



52 Chapter 6: Conclusion

6.2 Limitations and Future work

Combined, the results of the offline and laboratory evaluations suggest that rec-

ommendations generated based on information mined from web documentation is a

promising approach to improve command awareness in feature-rich software. They

also highlight a number of important considerations moving forward.

6.2.1 Prototype Extensions and Improvements

Motivated by this initial feasibility study, there are a number of system-related

improvements worth exploring. Aside from culling queries from the original QF-

Graph that were clearly not representative of high-level tasks, I did little to optimize

the graph’s suitability to act as a recommender. More sophisticated lexical analysis

or machine learning could enable the system to focus its recommendations on a more

informative set of high-level tasks. It also possible that restricting the documentation

set to specific tutorial repositories would improve the precision of the command-

to-task mappings. Finally, there are numerous avenues that could be explored to

improve the approach’s predictive capabilities, such as incorporating more frequency

information into the recommendations.

6.2.2 Presentation Techniques

While the results of the user study show initial promise for an in-place presen-

tation technique, there are a number of open questions concerning how to present

recommendations in a way that will eventually lead to their adoption. For example,

with the palette approach, it would be easier to provide rich supplemental informa-



Chapter 6: Conclusion 53

tion on why the command is recommended and how it might be used in practice. In

a palette, the system could display its confidence in each recommended command,

the list of tasks to which the command relates, and links to documentation that illus-

trate how to use the command. Such information could also potentially be integrated

within the main interface (available, for example, on mouse over), but at the risk of

impacting immediate task performance. Understanding these types of presentation-

level tradeoffs will be important to the ultimate success of all approaches to command

recommendation, not just ones based on Web documentation. It is also possible that

a more static presentation technique is desirable. For example, the system could

recommend entire task-centric interface that corresponds to the user’s most probable

high-level tasks [30, 31].

There is also the potential to make the interaction between the system and the

user more of a mixed-initiative one [26]. In particular, the system could leverage

the fact that the high-level tasks are in a human-readable form and display its task

assessments to the user. The user could then refine these assessments to obtain more

refined recommendations.

6.2.3 Generalizability to Other Applications

Finally, it would be interesting to explore the generalizability of the QF-based ap-

proach to command recommendations to feature-rich applications other than GIMP.

Fourney et al.’s original QF-Graph results suggest that the technique will extend to

other applications with a large Web presence [17]. Exploring generalizability to other

applications, however, could provide insight on how properties of the graphs them-



54 Chapter 6: Conclusion

selves affect their abilities to generate useful recommendations, such as the range of

high-level tasks present, and the connectedness of the graphs.



Appendix A

Ethics Approval Certificate

55



56 Appendix A: Ethics Approval Certificate

Figure A.1: Ethics Approval Certificates



Appendix A: Ethics Approval Certificate 57

 

 

PANEL ON  
RESEARCH ETHICS  
Navigating the ethics of human research 

TCPS 2: CORE 

Certificate of Completion 
 
 

This document certifies that 
 
 
 

 
has completed the Tri-Council Policy Statement:   
Ethical Conduct for Research Involving Humans  

Course on Research Ethics (TCPS 2: CORE) 
 

Date of Issue:  

Md Adnan Khan

4 July, 2014

Figure A.2: TCPS 2: CORE Completion Certificates



Appendix B

Pseudocode of the QFRecs feature

recommendation

Perform step 1 - 6, whenever a user selects a menu item (e.g., feature):

1. Select x most-recently used features from the user’s history.

2. Initialize the weight of the x most-recently used features in the QF-graph using

following:

Fi =


1 if Fi is in n most-recently used features.

0 otherwise.

(B.1)

3. Calculate relevance of the queries using the edge weight between features to

queries. The relevance weight of each queries Qj is calculated using following:

Qj =
n∑

i=1

Eij ∗ Fi (B.2)

where n = total number of features in the QF-graph.

58



Appendix B: Pseudocode of the QFRecs feature recommendation 59

4. Update the weight of each feature Fi, using following:

Fi =
m∑
j=1

Eji ∗Qj (B.3)

5. Rank all features based on the updated weights and recommend top r number

of features to users.

6. Initialize all features weight to 0



Bibliography

[1] Eytan Adar, Mira Dontcheva, and Gierad Laput. Commandspace: Modeling the

relationships between tasks, descriptions and features. In Proceedings of the 27th

Annual ACM Symposium on User Interface Software and Technology, UIST ’14,

pages 167–176, New York, NY, USA, 2014. ACM.

[2] Nikola Banovic, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice. Trig-

gering triggers and burying barriers to customizing software. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12,

pages 2717–2726, New York, NY, USA, 2012. ACM.

[3] Andrea Bunt, Cristina Conati, and Joanna McGrenere. Supporting interface

customization using a mixed-initiative approach. In Proceedings of the 12th In-

ternational Conference on Intelligent User Interfaces, IUI ’07, pages 92–101, New

York, NY, USA, 2007. ACM.

[4] Andrea Bunt, Patrick Dubois, Ben Lafreniere, Michael A. Terry, and David T.

Cormack. Taggedcomments: Promoting and integrating user comments in on-

line application tutorials. In Proceedings of the SIGCHI Conference on Human

60



Bibliography 61

Factors in Computing Systems, CHI ’14, pages 4037–4046, New York, NY, USA,

2014. ACM.

[5] Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva, Wilmot Li, and Björn

Hartmann. Mixt: Automatic generation of step-by-step mixed media tutorials.

In Proceedings of the 25th Annual ACM Symposium on User Interface Software

and Technology, UIST ’12, pages 93–102, New York, NY, USA, 2012. ACM.

[6] Charles L. A. Clarke, Gordon V. Cormack, and Thomas R. Lynam. Exploiting

redundancy in question answering. In Proceedings of the 24th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’01, pages 358–365, New York, NY, USA, 2001. ACM.

[7] Andy Cockburn, Carl Gutwin, and Saul Greenberg. A predictive model of menu

performance. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’07, pages 627–636, New York, NY, USA, 2007. ACM.

[8] Tao Dong, Mira Dontcheva, Diana Joseph, Karrie Karahalios, Mark Newman,

and Mark Ackerman. Discovery-based games for learning software. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12,

pages 2083–2086, New York, NY, USA, 2012. ACM.

[9] Michael Ekstrand, Wei Li, Tovi Grossman, Justin Matejka, and George Fitz-

maurice. Searching for software learning resources using application context. In

Proceedings of the 24th Annual ACM Symposium on User Interface Software and

Technology, UIST ’11, pages 195–204, New York, NY, USA, 2011. ACM.



62 Bibliography

[10] Jennifer Fernquist, Tovi Grossman, and George Fitzmaurice. Sketch-sketch rev-

olution: An engaging tutorial system for guided sketching and application learn-

ing. In Proceedings of the 24th Annual ACM Symposium on User Interface Soft-

ware and Technology, UIST ’11, pages 373–382, New York, NY, USA, 2011.

ACM.

[11] Leah Findlater and Joanna McGrenere. A comparison of static, adaptive, and

adaptable menus. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’04, pages 89–96, New York, NY, USA, 2004. ACM.

[12] Leah Findlater and Joanna McGrenere. Evaluating reduced-functionality inter-

faces according to feature findability and awareness. In Proceedings of the 11th

IFIP TC 13 International Conference on Human-computer Interaction, INTER-

ACT’07, pages 592–605, Berlin, Heidelberg, 2007. Springer-Verlag.

[13] Leah Findlater and Joanna McGrenere. Beyond performance: Feature awareness

in personalized interfaces. Int. J. Hum.-Comput. Stud., 68(3):121–137, 2010.

[14] Leah Findlater, Karyn Moffatt, Joanna McGrenere, and Jessica Dawson.

Ephemeral adaptation: The use of gradual onset to improve menu selection

performance. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’09, pages 1655–1664, New York, NY, USA, 2009.

ACM.

[15] Adam Fourney, Ben Lafreniere, Richard Mann, and Michael Terry. ”then click

ok!”: Extracting references to interface elements in online documentation. In



Bibliography 63

Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, CHI ’12, pages 35–38, New York, NY, USA, 2012. ACM.

[16] Adam Fourney, Richard Mann, and Michael Terry. Characterizing the usability

of interactive applications through query log analysis. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages

1817–1826, New York, NY, USA, 2011. ACM.

[17] Adam Fourney, Richard Mann, and Michael Terry. Query-feature graphs: Bridg-

ing user vocabulary and system functionality. In Proceedings of the 24th Annual

ACM Symposium on User Interface Software and Technology, UIST ’11, pages

207–216, New York, NY, USA, 2011. ACM.

[18] Krzysztof Z. Gajos, Mary Czerwinski, Desney S. Tan, and Daniel S. Weld. Ex-

ploring the design space for adaptive graphical user interfaces. In Proceedings of

the Working Conference on Advanced Visual Interfaces, AVI ’06, pages 201–208,

New York, NY, USA, 2006. ACM.

[19] Krzysztof Z. Gajos, Katherine Everitt, Desney S. Tan, Mary Czerwinski, and

Daniel S. Weld. Predictability and accuracy in adaptive user interfaces. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’08, pages 1271–1274, New York, NY, USA, 2008. ACM.

[20] Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo

Igarashi. Generating photo manipulation tutorials by demonstration. In ACM

SIGGRAPH 2009 Papers, SIGGRAPH ’09, pages 66:1–66:9, New York, NY,

USA, 2009. ACM.



64 Bibliography

[21] Saul Greenberg. The Computer User As Toolsmith: The Use, Reuse, and Orga-

nization of Computer-based Tools. Cambridge University Press, New York, NY,

USA, 1993.

[22] Tovi Grossman and George Fitzmaurice. Toolclips: An investigation of con-

textual video assistance for functionality understanding. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages

1515–1524, New York, NY, USA, 2010. ACM.

[23] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. A survey of soft-

ware learnability: Metrics, methodologies and guidelines. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages

649–658, New York, NY, USA, 2009. ACM.

[24] Tovi Grossman, Justin Matejka, and George Fitzmaurice. Chronicle: Capture,

exploration, and playback of document workflow histories. In Proceedings of

the 23Nd Annual ACM Symposium on User Interface Software and Technology,

UIST ’10, pages 143–152, New York, NY, USA, 2010. ACM.

[25] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load

index): Results of empirical and theoretical research. Human mental workload,

1(3):139–183, 1988.

[26] Eric Horvitz. Principles of mixed-initiative user interfaces. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’99, pages

159–166, New York, NY, USA, 1999. ACM.



Bibliography 65

[27] Eric Horvitz, Jack Breese, David Heckerman, David Hovel, and Koos Rommelse.

The Lumiere project: Bayesian user modeling for inferring the goals and needs

of software users. In Proceedings of the Fourteenth Conference on Uncertainty

in Artificial Intelligence, UAI’98, pages 256–265, San Francisco, CA, USA, 1998.

Morgan Kaufmann Publishers Inc.

[28] Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J. Guo, Robert C. Miller,

and Krzysztof Z. Gajos. Crowdsourcing step-by-step information extraction to

enhance existing how-to videos. In Proceedings of the 32Nd Annual ACM Con-

ference on Human Factors in Computing Systems, CHI ’14, pages 4017–4026,

New York, NY, USA, 2014. ACM.

[29] Ben Lafreniere, Andrea Bunt, Matthew Lount, and Michael A Terry. Under-

standing the roles and uses of web tutorials. In ICWSM, 2013.

[30] Benjamin Lafreniere, Andrea Bunt, Matthew Lount, Filip Krynicki, and

Michael A. Terry. Adaptablegimp: Designing a socially-adaptable interface. In

Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Soft-

ware and Technology, UIST ’11 Adjunct, pages 89–90, New York, NY, USA, 2011.

ACM.

[31] Benjamin Lafreniere, Andrea Bunt, and Michael Terry. Task-centric interfaces

for feature-rich software. In Proceedings of the 26th Australian Computer-Human

Interaction Conference on Designing Futures: The Future of Design, OzCHI ’14,

pages 49–58, New York, NY, USA, 2014. ACM.

[32] Benjamin Lafreniere, Andrea Bunt, John S. Whissell, Charles L. A. Clarke, and



66 Bibliography

Michael Terry. Characterizing large-scale use of a direct manipulation application

in the wild. In Proceedings of Graphics Interface 2010, GI ’10, pages 11–18,

Toronto, Ont., Canada, Canada, 2010. Canadian Information Processing Society.

[33] Benjamin Lafreniere, Tovi Grossman, and George Fitzmaurice. Community en-

hanced tutorials: Improving tutorials with multiple demonstrations. In Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI

’13, pages 1779–1788, New York, NY, USA, 2013. ACM.

[34] Gierad Laput, Eytan Adar, Mira Dontcheva, and Wilmot Li. Tutorial-based

interfaces for cloud-enabled applications. In Proceedings of the 25th Annual ACM

Symposium on User Interface Software and Technology, UIST ’12, pages 113–122,

New York, NY, USA, 2012. ACM.

[35] Wei Li, Tovi Grossman, and George Fitzmaurice. Gamicad: A gamified tutorial

system for first time autocad users. In Proceedings of the 25th Annual ACM

Symposium on User Interface Software and Technology, UIST ’12, pages 103–

112, New York, NY, USA, 2012. ACM.

[36] Wei Li, Justin Matejka, Tovi Grossman, Joseph A. Konstan, and George Fitz-

maurice. Design and evaluation of a command recommendation system for soft-

ware applications. ACM Trans. Comput.-Hum. Interact., 18(2):6:1–6:35, July

2011.

[37] Frank Linton and Hans-Peter Schaefer. Recommender systems for learning:

Building user and expert models through long-term observation of application



Bibliography 67

use. User Modeling and User-Adapted Interaction, 10(2-3):181–208, February

2000.

[38] Justin Matejka, Tovi Grossman, and George Fitzmaurice. Ip-qat: In-product

questions, answers, & tips. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology, UIST ’11, pages 175–184, New York,

NY, USA, 2011. ACM.

[39] Justin Matejka, Tovi Grossman, and George Fitzmaurice. Patina: Dynamic

heatmaps for visualizing application usage. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, CHI ’13, pages 3227–3236,

New York, NY, USA, 2013. ACM.

[40] Justin Matejka, Wei Li, Tovi Grossman, and George Fitzmaurice. Communi-

tycommands: Command recommendations for software applications. In Pro-

ceedings of the 22Nd Annual ACM Symposium on User Interface Software and

Technology, UIST ’09, pages 193–202, New York, NY, USA, 2009. ACM.

[41] Joanna McGrenere, Ronald M. Baecker, and Kellogg S. Booth. An evaluation

of a multiple interface design solution for bloated software. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’02, pages

164–170, New York, NY, USA, 2002. ACM.

[42] Emerson Murphy-Hill, Rahul Jiresal, and Gail C. Murphy. Improving software

developers’ fluency by recommending development environment commands. In

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foun-



68 Bibliography

dations of Software Engineering, FSE ’12, pages 42:1–42:11, New York, NY,

USA, 2012. ACM.

[43] Andrew Sears and Ben Shneiderman. Split menus: Effectively using selection

frequency to organize menus. ACM Trans. Comput.-Hum. Interact., 1(1):27–51,

March 1994.

[44] Michael Terry, Matthew Kay, Brad Van Vugt, Brandon Slack, and Terry Park.

Ingimp: Introducing instrumentation to an end-user open source application. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, CHI ’08, pages 607–616, New York, NY, USA, 2008. ACM.


	Abstract
	Acknowledgments
	Publications
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Improved tutorial interfaces
	In-Application Assistance
	Providing Efficient Access to Needed Commands
	Extracting Command-to-Task Mappings from Online Documentation
	Summary

	System Description
	Query Feature Graph
	Extracting Interface Elements from Online Resources
	Data Preparation
	Generating Recommendations
	Recommendation Types
	Integrating into the Interface
	Summary

	Offline Evaluation
	Potential to Promote Awareness of Relevant Commands
	Mean Number of Familiar and Unfamiliar Features in the Recommended set
	Relevance Measure of the QFRecs System's Recommendations
	Percentage of “Accurate”Recommendations
	Measure of Unknown Utility Features
	Summary

	Predicting the Next Feature
	Discussion
	Summary

	Laboratory Study
	Participants
	Apparatus
	Conditions
	Design, Tasks, and Procedure
	Hypotheses
	Results
	Primary Task Selection Time
	Recall Speed (H1)
	Perceived workload (H2)
	User Preference (H3)

	Discussion
	Summary

	Conclusion
	Contributions
	Limitations and Future work
	Prototype Extensions and Improvements
	Presentation Techniques
	Generalizability to Other Applications


	Ethics Approval Certificate
	Pseudocode of the QFRecs feature recommendation
	Bibliography

