
 Exploring Personalized Command Recommendations
based on Information Found in Web Documentation

Md Adnan Alam Khan, Volodymyr Dziubak, Andrea Bunt
Department of Computer Science

University of Manitoba
Winnipeg, MB

{akhan, vdziubak, bunt}@cs.umanitoba.ca

ABSTRACT
Prior work on command recommendations for feature-
rich software has relied on data supplied by a large
community of users to generate personalized
recommendations. In this work, we explore the feasibility
of using an alternative data source: web documentation.
Specifically, our approach uses QF-Graphs, a previously
proposed technique that maps higher-level tasks (i.e.,
search queries) to commands referenced in online
documentation. Our approach uses these command-to-
task mappings as an automatically generated plan library,
enabling our prototype system to make personalized
recommendations for task-relevant commands. Through
both offline and online evaluations, we explore potential
benefits and drawbacks of this approach.

Author Keywords
Feature-rich software; Software learnability;
Recommender systems; Web-based documentation

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

INTRODUCTION
Feature-rich software applications (e.g., image-
manipulation programs, spreadsheet software and
statistical analysis packages) are highly versatile, in part
owing to the hundreds (or even thousands) of commands
or features that they make available. At the same time,
this high volume of commands can make feature-rich
software difficult for users to master [17]. For example,
studies of long-term application use have shown that most
users have fairly limited command vocabularies [14],
typically using much less than one quarter of the available
command set (e.g., [26, 30]).

One promising approach to increasing a user’s awareness
of the available command set is to present them with
intelligently generated, personalized command
recommendations (e.g., [30, 31, 35]). Central to this
approach is an understanding of the potential relationships
between commands – knowledge that enables an
intelligent system to recommend commands that could
complement those currently being used. Most prior work
has extracted this relevancy information from community
usage logs, for example, by applying collaborative
filtering algorithms to a large corpus on logged data (e.g.,
[30, 31, 35]). While these usage-data centric approaches
have shown a great deal of promise, their practical
success hinges on the existence of a large community of
users willing to upload their usage data to a central
repository.

In this work, we propose an alternative approach to
personalized command recommendations that uses
command-to-task mappings mined from online
documentation. Specifically, our approach uses Query-
Feature Graphs (QF-Graphs) [13], a technique that maps
common web search queries to collections of interface
elements referenced in the resulting online
documentation. Within the context of the GNU Image
Manipulation Program (GIMP), we illustrate how our
prototype recommender system uses a QF-Graph as an
automatically generated plan library.

Through offline experimentation with previously
collected usage data, we explore this documentation-
centric approach’s potential to both increase a user’s
command awareness through task-relevant
recommendations, and to enable a system to provide
efficient access to needed commands. In a controlled
laboratory experiment, we also explore the impact of two
alternative recommendation presentation techniques on
immediate task performance as well as on incidental
awareness of relevant commands not selected during the
primary task [10].

Our results suggest that web documentation can be
leveraged to generate recommendations for commands
that are relevant to the task at hand. In terms of its ability
to streamline access to needed commands, our findings
indicate that the approach works best for users with
diverse feature usage. Frequency-based approaches, on

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org
IUI 2015, March 29–April 1, 2015, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3306-1/15/03…$15.00.
http://dx.doi.org/10.1145/2678025.2701387

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

225

the other hand, achieve higher predictive accuracy for
users with stable and homogenous usage patterns. The
results of our laboratory evaluation reveal that presenting
recommendations in-place, as opposed to in a separate
palette, increases users’ incidental command awareness
without negatively impacting their immediate task
performance.

The contributions of this work are as follows. We present
a novel approach to intelligent command recommendation
that uses web documentation as a knowledge source. We
demonstrate potential strengths and weaknesses of this
approach given a variety of command usage patterns.
Finally, we present an initial empirical exploration of how
such a system could display its recommendations within
the interface.

RELATED WORK
Prior work on supporting feature-rich software use has
focused on three main areas: supporting application
learning through improved tutorials, providing in-
application assistance, and techniques for streamlining
access to needed commands. We describe each of these
bodies of work below. We conclude the section with a
brief description of techniques for mining web
documentation for command-to-task mappings, one of
which we apply in our work.

Improved Tutorial Interfaces
Prior work has shown that tutorials play a large role in
application learning (e.g., [7, 25]), but that authoring
effective tutorials can be difficult [32]. Consequently,
prior research has focused on automated or semi-
automated tutorial authoring (e.g., [5, 16]), and creating
novel and engaging tutorial formats (e.g., [6, 8, 18, 29]).
Work has also begun to explore ways to harness crowds
or community contributions to improve the utility of web-
based tutorials, for example, through integrated
community refinements [3], by augmenting tutorials with
community demonstrations [27], and by using crowds to
help segment video tutorials into steps to permit easier
tutorial navigation [23]. Finally, prior work has sought to
make it easier for users to select appropriate tutorials, by
highlighting the commands used [7, 24].

In-Application Assistance
As is the case with our work, prior research has also
sought to improve software learning from within the
application itself. One approach has focused on helping
users understand how to use commands through, for
example, intelligent task assistants [20], Q&A forums
embedded within the interface [34] and video-based tool-
tips [19].

Most relevant to our work are systems that provide
unobtrusive personalized command recommendations by
mining large corpuses of community usage data. For
example, the OWL system used long-term usage histories
from individuals within an organization to recommend

commands that were underused in comparison to their
peers. Similarly, CommunityCommands [30, 35] used
collaborative filtering algorithms on a large corpus of
usage data to generate personalized command
recommendations. Patina, on the other hand, provided
subtle command recommendations by overlaying heat
maps on the interface to highlight commands commonly
used by the community [33]. We extend this prior work
by exploring a new data source for task-relevant
command recommendations – web-based documentation.
We also further explore the question of how to present
these types of command recommendations within the
interface.

Providing Efficient Access to Needed Commands
Given that users of feature-rich software tend to use only
a small subset of the available command set (e.g., [26,
30]), prior work has examined ways to provide more
efficient access to needed commands by reducing the
search space. These approaches have ranged from user-
customizable subset interfaces (e.g., [2, 36]), to
community-authored task-specific interfaces accessible
through in-application keyword search [28], to interfaces
that adaptively promote commands according to recency
and frequency information (e.g., [10, 15]). Our
recommendation presentation techniques are informed by
this body of work. We also extend this prior research by
exploring a new way to compute relevant command
subsets.

Extracting Command-to-Task Mappings from Online
Documentation
Given the prevalence of online documentation for feature-
rich software, prior work has explored the feasibility of
using these resources to generate task-specific command
groupings. For example, Fourney et al. [13] proposed
Query-Feature Graphs (QF-Graphs) as a way to relate
users’ search queries for feature-rich applications to
individual interface elements referenced in the resulting
webpages. The very recent CommandSpace work also
uses web documentation to model the relationships
between tasks and commands, but does so using a vector-
space representation as opposed to a graph [1]. We extend
this work by systematically exploring the potential of
these mappings to support personalized command
recommendations.

PROTOTYPE DESCRIPTION
The core component of our system, which we refer to as
QFRecs (see Figure 1), is the Query-Feature Graph that
was originally introduced by Fourney et al. [13]. As
illustrated in the simplified example in Figure 2, a Query-
Feature Graph (QF-Graph) is a weighted bipartite graph,
which associates user search queries (i.e, natural language
descriptions of high-level tasks [26], Figure 2 a, left), with
the features of a target application (Figure 2 a, right). The
weight of the edge between a query node and a feature
node represents their strength of association (see Table 1
for example weights).

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

226

T
c
a
[
q
e
(
a

Q
a
F
P
a
p
e
c
s
c

how to blur image
background in GIM

…
Gimp make image

black and white

Table 1. Exam

The process of
common user
application usi
12], which le

queries are then
examined for o
(using a list o
automatically u

QFRecs’s gene
a starting point
Fourney et al.
Program (GIM
allows for g
propietary soft
evalutations o
collected throu
section we des
clean this raw

Blur/sharpen

e
MP

9.33

…
e

0

mple connection
featu

Figure 1. Th

f building a QF
r search que
ing an applica
everages the G
n executed and
occurences of
of features th
using the applic

eral architectur
t, we use the “
[13] for the G

MP). We focus
greater modi
tware, and we
of our approa
ugh the Ingimp
scribe some o
QF-Graph. W

Blend …

6.82 …

… …

0 …

n weights betwe
ures.

he general archi

F-Graph starts w
eries issued
ation of the C
Google Sugges
d the resulting
application-sp

hat can be ge
cation’s localiz

re is depicted i
raw” QF-graph

GNU Graphics
on GIMP for
fication poss
are able to p

ach using da
 project [26, 3

of the steps th
We follow this

Figure 2. A s

Color balance

0

…

8.77

een tasks and

itecture for our

with collecting
for a target

CUTS method
st API. These

g webpages are
pecific features
enerated semi-
zation data).

n Figure 1. As
h generated by
s Manipulation
two reason: it

sibilities than
perform offline
ata previously
37]. In the next
hat we took to

by describing

simple illustrati

r prototype com

g
t
d
e
e
s
-

s
y
n
t
n
e
y
t
o
g

how
perso

Data
In m
concr
that
recom
QF-G
overv
First,
Grap
Seco
comm
right-
elem
sourc
furth
using
recom

In te
exam
used
queri
tasks
graph
conta
fonts

ion of the QF-G

mmand recomm

our approach
onalized comm

a Preparation
moving from
rete applicatio

impacted
mmendations r
Graph for it to
view, our clea
, we pruned ta

ph that were n
ond, since the g
mands, we ma
-hand side o

ments in the
ces of noise an

her detail here
g the docum
mmendation in

erms of the hig
mples), manual

to build the o
ies were not
s. Therefore, w
h if they met
ained digits (e
s”, etc.), operat

Graph based ap

mender system Q

uses the clean
mand recommen

the original Q
on, we discove

the quality
requiring that
o be suitable f
aning process
asks from the l
not representat
goal was to rec
ade sure that al
of the graph
GIMP interfa

nd our method
to illustrate so

ment-based a
n practice.

gh-level tasks
l exploration o
original QF-G
actually repr

we removed qu
t any of the
e.g. “gimp re
ting system na

pproach.

QFRecs.

ed QF-Graph t
ndations.

QF-Graph con
red two source

of our p
we “clean” th

for our purpos
took part in

left-hand side
tive of high-l
commend spec
ll system featu
corresponded

ace. We desc
s for cleaning
ome of the cha
approach to

(see Figure 2
of 12,311 sear

Graph revealed
resentative of
ueries from th
following cri

eview 2010”,
ames (e.g. “gim

to generate

ncept to a
es of noise
prototype’s
his original
ses. As an
two steps.
of the QF-
evel tasks.
cific GIMP
ures on the

to actual
cribe these
the data in
allenges of

command

 a, left for
rch queries
that many
high-level

his original
iteria: they
“gimp 2.6

mp for mac

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

227

OS x”), or the “vs” string (e.g. “gimp vs adobe”, “adobe
illustrator vs gimp”). This left us with 9889 queries. An
altnerative would have been to restrict the search queries
to those containing the string “GIMP how to”, however,
this strategy appeared to result in unnecessary information
loss (e.g., it removed over 90% of the queries).

The second source of noise concerned the features
themselves (see Figure 2 a, right for example features in a
QF-Graph). We found that not all the features extracted
from the Web documentation mapped to commands in the
actual GIMP interface. The primary cause was minor
textual differences in labelling (e.g., “by color select” vs.
“select by colour”). Most differences were resolved
automatically by string matching using regular
expressions. The matching rules for the regular
expressions were crafted manually based on actual
command names from the GIMP menus. After this
process, there remained 40-50 unmapped features (of the
original 617 distinct features in the raw QF-Graph). For
these remaining features, the mapping was done manually
based on our knowledge of the target application. Manual
inspection also revealed that a feature’s parent entity (e.g.,
menu name) was sometimes present in the raw data in
addition to the command itself. This is because Web
documentation will often specify a command’s full path.
For example, the line “Tools > Paint Tools > Paintbrush”
would lead both “Tools” and “Paint Tools” to appear in
the graph. We removed such menu names from the graph.

Generating Recommendations
To generate personalized, contextually relevant command
recommendations, QFRecs uses the cleaned QF-graph as
an automatically generated plan library. Based on a user’s
last x command selections (i.e., the history size), QFRecs
“activates” the corresponding nodes in the graph (i.e., the
recently used features/commands). Our system currently
uses the last 5 distinct observed commands for this initial
activiation phase, however, this history size is a
configurable parameter. Larger history sizes will mean
recommendations tailored more to the user’s overall
usage than their current context. After the the user’s last x
commands are activiated, QFRecs “activites” possible
task (query) nodes based on their connection weights.
This step amounts to estimating which of the tasks in the
graph are most likely to be the user’s current task. Using
these estimations, QFRecs then “activates” other relevant
commands for those candidate tasks.

This process is illustrated in Figure 2. In this example, the
history is size 2 and the last two observed commands are
“Blur/Sharpen” and “feather”. QFRecs first finds the set
of tasks that are strongly associated those two features
(see the left-hand nodes in Figure 2 a) using the edge
weights in Table 1. In the next step, QFRecs uses those
strongly associated tasks to isolate other features (see the
right-hand nodes in Figure 2 b) associated with those
tasks. These features are then ranked according to the

summed weights of all of their associated tasks activated
in the previous step, enabling the system to recommend
the top k features. In this small example (k = 2) QFRecs
recommends “blend” and “add layer mask” to the user.

Recommendation Types
Using the process described above, the recommended
commands will be one of the following two types:

1. “Familiar” Recommendations: These are commands
in the user’s existing command vocabulary that are
predicted to be most relevant to the current usage
context.

2. “Unfamiliar” Recommendations: These are
contextually-relevant recommendations for
commands that are not yet in the user’s command
vocabulary.

These recommendations serve different purposes.
“Familiar” recommendations will not introduce users to
new commands, but if promoted effectively, have the
potential to improve task effeciency. “Unfamiliar”
recommendations, on the other hand, have the potential to
enhance feature awareness. That this method is capable of
generating both types of recommendations raises a
number of interesting interface presentation questions,
which we begin to explore in our laboratory evaluation.
However, we first explore the accuracy and potential
utility of these document-based recommendations using
offline analysis.

OFFLINE EVALUATION
We evaluated our QF-Graph approach on a corpus of
GIMP usage data that was collected as part of the Ingimp
project [26, 36]. This corpus contains feature usage
histories (or logs) from 207 users, collected over a period
of approximately two years. We used this data to evaluate
our prototype along two dimensions. The first was its
ability to generate relevant recommendations, to gain an
initial understanding of the approach’s potential to
improve users’ feature awareness. We also evaluated the
approach’s accuracy in predicting a user’s next command
selection, comparing our approach to frequency- and
recency-based prediction algorithms (e.g., [9. 15]).

Potential to Promote Awareness of Relevant
Commands
In assessing the approach’s potential to make users aware
of new commands, we first examined (according to the
definitions above), how many of the generated
recommendations could be classified as “unfamiliar”.
Figure 3 illustrates the mean breakdown of the
recommendations into the two types when QFRecs
generates 5, 10, 15 and 20 recommendations
(Recommendation Size in Figure 3). These results
indicate that the QF-based approach tends to favor
“unfamiliar” recommendations, particularly as the number
of recommendations increases.

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

228

Figure 5. Performance of our QF-based approach in
recommending a “familiar” feature that is then used again in

the next k feature invocations.

0

20

40

60

80

100

5 10 15 20

A
cc
u
ra
cy
 %

Recommendation size

k=5 k=10 k=15 k=20

Figure 3. Performance of our QF-based approach
recommending an “unfamiliar” feature that is then used in

the next k feature invocations.

0

20

40

60

80

100

5 10 15 20

A
cc
u
ra
cy
 %

Recommendation size

k=5 k=10 k=15 k=20

Figure 4. The mean number of familiar features and novel
unfamiliar features for different recommendation sizes.

0

5

10

15

5 10 15 20

N
u
m
b
er
 o
f
fe
at
u
re
s

Recommendation size

Familiar Unfamiliar

As a measure of recommendation relevance, we used a
modified version of the K-tail evaluation method,
introduced by Li et al. to evaluate their
CommunityCommands recommender system [30, 35]. A
K-tail evaluation divides a series of used features F into
two sets: a training set (ܨ௧௥௔௜௡) and a test set (ܨ௧௘௦௧), such
that the test set	ܨ௧௘௦௧ contains k distinct features which are
not in	ܨ௧௥௔௜௡. The training set is then used as the user’s
history and the prediction algorithm’s performance is
measured according to how well it predicts those k-
distinct features in	ܨ௧௘௦௧. As an initial measure of the
relevance of the “unfamiliar” recommendations to the
user’s current usage context, we adapted this evaluation
method as follows: We measured whether or not our
system’s recommendations predict at least one new
feature in the next k feature invocations (i.e., whether or
not at least one “unfamiliar” recommendation appears in
the next k feature invocations).

Figure 4 depicts our results for a range of
recommendation and tail sizes. With a recommendation
size of 20, QFRecs achieves a k-tail “accuracy” that is up
to 80%. We also analyzed the k-tail accuracy of QFRecs’s
“familiar” recommendations, with Figure 5 illustrating
similar trends.

To provide further insight into the relevance of the novel
command recommendations, we also examined how

many of the “unfamiliar” recommendations are “accurate”
according to the above definition. Table 2 illustrates that,
on average, 3 - 9% of “unfamiliar” recommendations in a
given set appear in the user’s next k commands. The table
also illustrates a large variability in accuracy, with up to
80% of the recommendations appearing in the user’s next
k selections. In some respects, the results in Figure 4 and
Table 2 represent a lower bound on the relevance of the
system’s recommendations; users may be failing to use
certain features not because of lack of relevance, but
because of lack of awareness.

Combined, these results suggest that the QF-based
approach (as currently instantiated in our QFRecs system)
is able to recommend at least some relevant commands.
The results also suggest that if promoted effectively
within the interface, the recommendations could
potentially aid users in completing their current task. We
explore this question of presentation in our laboratory
study and describe potential ways to improve the
recommendations in the Discussion.

Predicting the Next Command
The above results provide an initial indication that the
QF-based approach does generate some user-relevant
recommendations in that they appear later in the user’s
command stream. In this section, we explore the
approach’s potential to immediately streamline access to
needed commands, by analyzing the degree to which the
recommended set accurately predicts the next command
in the stream. We also compared our QF-based approach
with two algorithms commonly used in prior work on
adaptive interfaces (e.g. [9, 15]): frequency-based
predictions, and recency-based predictions. In this case,
we defined an “accurate” prediction as one where the
user’s next action is within the recommended set of
commands.

When considering all users’ data, we found that the
frequency-based algorithm dramatically outperformed the
others when it came to predicting the user’s next
command (see Figure 6). When examining the reasons
why, we found that the users in this particular dataset
tended to have very homogenous and stable command

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

229

Figure 6. The overall accuracy in predicting the next
command of the Frequency-based, Recency-based and QF-

based approaches for different recommendation sizes.

0

20

40

60

80

100

5 10 15 20

A
cc
u
ra
cy
 %

Recommendation size

Frequency Recency QF‐based

Figure 7. Accuracy of the Frequency-based, the Recency-
based and QF-based approach for an average diverse

session.

0

5

10

15

20

25

30

35

5 10 15 20

A
cc
u
ra
cy
, %

Recommendation size

Frequency Recency QF‐based

usage, which naturally favors the frequency-based
approach. As an example, consider a feature invocation
sequence of length 149, but that consists of only 10
distinct features. With a recommendation size of 10, once
these 10 features are observed, the algorithm will never
fail.

To better characterize and explore the dataset, we defined
a user’s feature usage diversity, 	ܴௗ, as follows ܴௗ = ே௨௠௕௘௥	௢௙	஽௜௦௧௜௡௖௧	ி௘௔௧௨௥௘௦	௎௦௘ௗௌ௘௤௨௘௡௖௘	௅௘௡௚௧௛	

In this dataset, the mean Rୢ for all 178 users with usage
sequences longer than 20 is 0.1668 with a standard
deviation of 0.1329. The max(ܴௗ) was 0.6666 (sequence

length = 42 and number of distinct commands = 28) and
min(ܴௗ) was 0.0043 (sequence length = 23459 and
number of distinct commands = 101). Whereas the
frequency-based approach substantially outperformed the
QF-Graph approach for users with low feature diversity,
the results are much more promising for users with high
feature diversity. As an example, Figure 7 compares the
accuracy of the different algorithms for a user with near
mean feature diversity (0.1667). In this case, the QF-
based approach actually outperforms the alternatives
when the recommendation size is 5.

A second potential downside of the frequency-based
approach is that it requires usage patterns to stabilize
before it can be effective. For example, Figure 8
compares the frequency-based approach’s accuracy over
its first 30 feature invocations to its overall performance.
Our QF-based approach, on the other hand, requires less
start-up time; it is currently set to generate
recommendations based on the last five commands.

Thus, to summarize, we found that a frequency-based or
any history-based approach is sensitive to the usage
diversity and session length. While the QF-based
approach may not be an effective predictor when faced
with long, homogenous sessions, it has advantages for
short, diverse user sessions. Further, a frequency- or
recency-based approach is (by definition) unable to
recommend “unfamiliar” commands.

Given the potential for the QF-based approach to produce
recommendations that are both needed and novel, in the

 K = 5 K = 10 K = 15 K = 20

Accuracy

%
Max

%
Standard
deviation

Accuracy
%

Max
%

Standard
deviation

Accuracy
%

Max
%

Standard
deviation

Accuracy
%

Max
%

Standard
deviation

R = 5 3.3 60 10.79 5.79 80 11.95 6.68 80 12.75 7.25 80 13.76

R=10 3.85 40 6.11 5.81 50 7.54 7.3 50 8.46 8.53 50 9.13

R=15 4.39 33.33 5.05 6.39 40 6.29 7.68 40 7.07 8.7 40 7.64

R=20 4.52 25 4.07 6.38 30 5.1 7.84 35 5.76 9 35 6.24

Table 2. Average and maximum percentage of correct recommendations for each tail (k) and recommendation set size (R).

Figure 8. The accuracy of frequency-based approach over
users’ first 30 command invocations and over all command

invocations.

0

20

40

60

80

100

5 10 15 20

A
cc
u
ra
cy
 %

Recommendation size

All First 30

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

230

n
th

L
T
d
A
Q
ty
a
“
W
r
t
r
p
a
p

P
E
u
1

C
O

1

2

next section, w
hese recomme

LABORATORY
The goal of ou
different ways
As described i
QFRecs’s reco
ypes: comman

are part of the
“unfamiliar” (i
We experiment
recommendatio
echniques to

recommendatio
presentation tec
and on incident
part of the prim

Participants
Eighteen partic
university camp
18-25 and were

Conditions
Our three interf

1. Basic Inte
static menu

2. Combined
“familiar”
in place (i.
known vi
adaptation

Figure 9. Sam
interface (C

we explore how
ndations to the

Y EVALUATIO
ur laboratory ev

to present the
in the section
ommendations
nds that are “fa
e user’s usage
.e., they are no
ted with two di
ons and com
o a contr

ons. We exp
chniques on bo
tal awareness o

mary task.

cipants (2 fem
pus. Participan
e rewarded with

face variants w

erface: A contr
us (Figure 9 A)

d Interface:
and “unfamilia
.e., within the m
sual highlight

[11]. Wit

mple snapshot o
). The recomme

w the system
e user.

N
valuation was
e system’s reco
 “Recommend

can be divi
amiliar” to the

history) and
ot part of the u
ifferent ways to
mpared both
rol condition
plore the im
oth primary tas
of recommend

males) were rec
nts were betwe
h a 15$ gift car

were as follows

rol condition w
).

Recommendat
ar” features we
menus) using o
ting technique
th ephemera

of the interface
endations highl

might present

to explore two
ommendations
dation Types”,
ided into two
user (i.e., they
those that are
usage history)
o present these

presentation
n with no

mpact of the
sk performance
ed features not

cruited from a
een the ages of
rd.

:

with traditional

tions for both
ere highlighted
one of the best
es: ephemeral
l adaptation,

variants used in
lighted in pink a

“unfam

t

o
.
,
o
y
e
.
e
n
o
e
e
t

a
f

l

h
d
t
l
,

r
m
a
T
“
“
o
h

3. S
w
(
r
(
i
t
a
C
u
r
t
b
c

To e
real G
QF-g
docu
mode
(GIM
for o
“Help
total

n study: Basic i
are the “familia
miliar” features

recommended
menu is opene
appearing afte
The two type
“unfamiliar”) w
“familiar” fea
overlay and
highlighted wi

Separated In
were ephemer
(using also
recommendatio
(as well as ap
in the menus)
the full com
available on
Combined Int
users could c
recommendatio
their primary
been common
command reco

enable our sys
GIMP usage d
graph to be
umentation, the
eled after The

MP) version 2.
our participant
p” menus, resu
of 368 feature

interface (A), C
ar” features and
s.

items appea
ed, with the re
er an initial de
s of recomme
were distingui

atures were h
the “unfam

th a blue overl

nterface: “Fam
rally highligh
a blue ove

ons were prese
ppearing as no

(Figure 9 C)
mmand path e

mouse over.
terface, with t
choose to ign
ons completely
task. This pal

nly explored i
ommendations

stem to make
data (see the “
built from a

e menu hierarc
e GNU Image
.8.6. To simpl
ts, we exclud
ulting in 9 top-
es.

Combined interf
d the features h

ar immediately
emaining items
elay (500 ms a
endations (“fam
ished only by
highlighted wi
miliar” featu
lay (Figure 9 B

miliar” recomm
hted within t
rlay) but “u

ented in a separ
n-recommende
. In the separa
each feature

In comparis
the Separated
nore these “u
y in favor of fo
lette-based app
in prior work
(e.g. [30, 31]).

recommendat
“Tasks” section
actual web qu
chy in all inte
e Manipulation
lify the interfa
ded the “Wind
-level menus co

face (B), and Se
highlighted in b

y when a
s gradually
as in [11]).
miliar” vs.
colour: the
ith a pink
ures were
B).

mendations
the menus
unfamiliar”
rate palette
ed features
ate palette,

was also
on to the

d Interface,
unfamiliar”
focusing on
proach has

k on novel
.

tions using
n), and our
ueries and
erfaces was
n Program

ace slightly
dows” and
ontaining a

eparated
blue are

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

231

Figure 10. Mean selection time between commands (with
standard errors) for the main task (left) and the recall task

(right)

0

5

10

15

20

25

30

35

40

Task Recall

M
ea
n
 c
o
m
m
an
d
 t
im

e,
 s Separated Basic Combined

Design, Tasks, and Procedure
The experimental task was a sequence of menu selections
using each of the three interfaces described above. In
other words, our study used a within-subjects design,
where all participants experienced all three interface
variants. The menu selections were based on a real user’s
data from the Ingimp dataset described in the “Offline
Evaluation” section. We selected data from a user with a
sufficiently long sequence that was also close to the data
set’s mean diversity. The selected usage sequence was 74
selections long and had a diversity of .2065 (defined in
the “Offline Evaluation” section). From this sequence, we
used the first 20 selections as “training”, and the next 50
features as the main task (discarding last 4 selections in
the interest of participant time).

For each feature selection, our experimental interface
provided participants with the name of the feature, but not
the menu name. As a result, participants had to explore
the interface (using the top-level menu names as a guide)
to find their needed commands. Once the participant
correctly selected the displayed feature, the next feature to
be selected was displayed. We used the same selection
sequence in all interface variants, but used different
interface “masks” (the GIMP menus, Geography-related
menus, and Cuisine-related menus) to mitigate learning
effects between conditions. The structure of all three
masks was identical. To further account for potential
order effects, the order of interface and the assignment of
masks to interface were counterbalanced using a Latin
Square.

After each main task, we measured incidental command
awareness [11], by having participants perform a recall
test. During this recall test participants selected 24 distinct
commands that were recommended by the QF-based
system but that was not part of the main task.

The procedure for the 1.5 hour experiment was as
follows: Participants first completed a background and
demographics questionnaire. Then, for each interface
variant, participants completed a training task consisting
of 20 selections, followed by the main task consisting of
50 selections. After the main task, participants completed

the NASA-TLX [22], which measures perceived
workload. Participants then completed the recall test
described above prior to repeating the above steps with
the next interface variant. The session concluded with a
comparative questionnaire.

In the Combined and Separated interfaces, our prototype
system presented its top 20 recommendations based on
the user’s last 5 command selections. With this particular
usage stream, this recommended set accurately predicted
the next command in the stream 18% of the time.

Apparatus
An Intel Core i7 desktop with 8 GB of RAM and
Microsoft Windows 7 was used for the experiment. The
system was connected to a 22’’ LCD monitor with a
1920x1080 resolution. The experiment software recorded
all timing and selection data.

Hypotheses
Given the low predictive accuracy of QFRecs’s
recommended set in comparison to those studied in prior
work (e.g., [11]), we did not have any apriori hypotheses
on the effect of interface on selection speed during the
primary task. We did, however, have the following
hypotheses with respect to recall selection speed,
perceived workload and user preference:

H1 (Recall Speed): The Combined interface will have
faster recall times than both the Basic interface and the
Separated interface. We expect no difference between the
Basic interface and the Separated interface.

H2 (Perceived Workload): Perceived workload will be
lower with the Combined interface than with the
Separated interface.

H3 (User Preference): Users will prefer the Combined
interface over the Separated interface.

Results
We performed our analysis with a one-way RM-ANOVA
with Interface (Basic, Combined, Separated) as the
within-subjects factor. We used p > 0.05 as our threshold
for significance, and Bonferroni corrections were applied
to all post-hoc comparisons. Error bars in the figures
represent Standard Error.

Primary Task Selection Time
As expected, we did not find a significant main effect of
Interface on primary task selection time (ܨଶ,ଷସ = 1.064, p
 ଶ = .059, Figure 10 left). The fact that theߟ ,356. =
recommendations did not significantly improve
immediate task performance is consistent with prior
results on low accuracy predictors (e.g., [11]). Despite
having only limited immediate accuracy, the
recommendations did not hurt task performance, and
perhaps even helped it slightly (as indicated by the means
and effect size), when presented in-place.

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

232

Recall Speed (H1)
In the case of the incidental awareness task (i.e., the
Recall test), we found the main effect of Interface was
statistically significant (ܨଶ,ଷସ = 12.731, p < .001, ߟଶ =
.428, Figure 10 right). Moreover, the post-hoc
comparisons revealed significantly faster selections using
the Combined interface (19.8s, se 1.3s) when compared to
either the Basic (32.0s, se. 1.4s, p < 0.001) or Separated
(32.0s, se. 2.7s, p = 0.005) conditions. The difference
between the Basic and Separated conditions was not
statistically significant (p = 1.00). Therefore, we find
support for H1.

Perceived workload (H2)
As a measure of a perceived workload, we used the data
from NASA-TLX questionnaires. Table 3 shows
significant main effects of Interface on two of the NASA-
TLK categories: “hard work” and “frustration”. For these
categories, participants reported experiencing lower
workload with the Combined interface, however, the only
significant pairwise difference revealed by the post-hoc
comparisons was that of frustration for the Combined and
Basic interface variants (p = 0.038). Therefore, we could
not fully support H2.

User Preference (H3)
Regarding subjective preferences, in the post study
questionnaire we asked our participants to rank the
different interface types based on their overall
performance. The analysis of results showed high
inclination towards the Combined option, with 13
participants ranking it as their most preferred interface
variation. For comparison, 3 users rated the Separated
interface as their primary choice and only two preferred
the Basic one (this difference was significant with ߯ଶ = 16.0, p = 0.002). Therefore we find support for H3.

DISCUSSION
Combined, the results of our offline and laboratory
evaluations suggest that recommendations generated
based on information mined from web documentation is a
promising approach to improving command awareness in
feature-rich software. They also highlight a number of
important considerations moving forward.

Assessing the Utility of Novel Recommendations
Our offline evaluation indicates that for our target

application (GIMP), the QF-based approach was able to
generate at least some contextually relevant
recommendations. For example, when providing the user
with 20 recommendations (which would be distributed
throughout the entire menu hierarchy), previously
collected GIMP usage data indicated that at least one
recommended command would subsequently be used
within a user’s next 15 selections. Further work is
required, however, to assess the relevance and utility of
recommended commands that do not later appear in the
user’s command stream, since their omission does not
imply a lack of utility. A potential first step in this
direction would be to collect relevance ratings from
application experts; however, a longer-term experiment is
necessary to fully assess the value of these
recommendations from the user’s perspective. A longer-
term experiment would also enable us to compare the QF-
based approach to the collaborative filtering approaches
explored in prior work [30, 35].

Prototype Extensions and Improvements
Motivated by our initial feasibility study, there are a
number of system-related improvements worth exploring.
Aside from culling queries from the original QF-Graph
that were clearly not representative of high-level tasks, we
did little to optimize the graph’s suitability to act as a
recommender. More sophisticated lexical analysis or
machine learning could enable the system to focus its
recommendations on a more informative set of high-level
tasks. It also possible that restricting the documentation
set to specific tutorial repositories would improve the
precision of the command-to-task mappings. Finally,
there are numerous avenues that could be explored to
improve the approach’s predictive capabilities, such as
incorporating command usage frequency.

In addition improving the algorithmic component, there is
also the potential to make the interaction between the
system and the user more of a mixed-initiative one [21].
In particular, the system could leverage the human-
readable format of the high-level tasks to display its task
assessments to the user. The user could then refine these
assessments to obtain more tailored recommendations.

Presentation Techniques
Our laboratory evaluation is one of few systematic
explorations of how to present command
recommendations designed to promote command
awareness (as opposed to short-term efficiency). Our
results indicate that presenting these types of
recommendations in-place can significantly improve
incidental command awareness over a palette-based
approach. This is perhaps not surprising given that this
presentation technique is more obtrusive. What is perhaps
more surprising is that the extra visual complexity
introduced into the main interface did not appear to
negatively impact short-term task efficiency. Users also
preferred this in-place presentation strategy and reported

Basic Separated Combined F Sig

Mental demand 13.1 (.78) 12.8 (.96) 11.3 (.94) 1.756 0.188

Physical demand 4.5 (1.0) 4.9 (.94) 4.0 (.81) 1.125 0.336

Temporal demand 10.8 (1.3) 10.8 (1.1) 9.7 (1.1) 0.98 0.386

Success 6.2 (1.1) 4.6 (.95) 4.8 (1.0) 1.717 0.195

Hard work 14.3 (1.0) 12.9 (1.0) 10.4 (1.2) 3.754 0.034

Frustration 10.9 (.86) 9.4 (1.1) 7.1 (1.0) 5.251 0.01

Table 3. Mean (st. err.) NASA-TLX values (1=low, 20=high).
Rows in bold indicate significant differences.

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

233

lower levels of frustration. Further exploration is needed
to determine the sensitivity of these results to factors such
as the number of recommendations, their distribution
across the menus, etc.

While our results show initial promise for an in-place
presentation technique, there are a number of open
questions concerning how to present recommendations in
a way that will eventually lead to their adoption. For
example, with the palette approach, it would be easier to
provide rich supplemental information on why the
command is recommended and how it might be used in
practice. In a palette, the system could display its
confidence in each recommended command, the list of
tasks to which the command relates, and links to
documentation that illustrate how to use the command.
Such information could also potentially be integrated
within the main interface (available, for example, on
mouse over), but at the risk of impacting immediate task
performance. A palette-based approach could also
potentially do more to promote command location
awareness than simply displaying the command path on
mouse over. For example, users could be provided with
an animated location cue when they select a command in
the palette.

Understanding the above types of presentation-level
tradeoffs will be important to the ultimate success of all
approaches to command recommendation, not just ones
based on Web documentation. It is also possible that a
more static presentation technique is desirable. For
example, the system could recommend entire task-centric
interface that corresponds to the user’s most probable
high-level tasks [28].

Generalizability
Finally, it would be interesting to explore the
generalizability of the QF-based approach to command
recommendations to feature-rich applications other than
GIMP. Fourney et al.’s original QF-Graph graph results
suggest that the technique will extend to other
applications with a large Web presence [13]. Exploring
generalizability to other applications, however, could
provide insight on how properties of the graphs
themselves affect their abilities to generate useful
recommendations, such as the range of high-level tasks
present, and the connectedness of the graphs.

In addition to exploring the generalizability of our
approach to other feature-rich applications, it will also be
important moving forward to explore the generalizability
of our study results to a more diverse user population.

SUMMARY
In this paper we have created a prototype recommender
system that leverages a new form of information on
command relevance: command-to-task mappings mined
from Web documentation. Our offline evaluation suggests
that this technique has the potential to expose users to a

number of new and relevant commands, while our online
evaluation suggests value in integrating the
recommendations within the main interface. Our work
also suggests a number of promising avenues for future
research, included developing a more detailed
understanding of the design space for recommendation
presentation and exploring ways to tailor the system’s
recommendations according to user feedback. Long-term
evaluations of deployed technologies are also needed to
assess the impact of these document-based
recommendations on command use.

ACKNOWLEDGEMENTS
This work was supported by the GRAND Network Centre
of Excellence and the Natural Sciences and Engineering
Research Council (NSERC). We also thank Adam
Fourney for his invaluable help in providing data
for building the QF graph.

REFERENCES
1. Adar, E., Dontcheva, M., and Laput, G.

CommandSpace : Modeling the Relationships
Between Tasks , Descriptions and Features.In Proc.
UIST 2014, 167-176.

2. Bunt, A., Conati, C. and McGrenere, J. Supporting
Interface Customization Using a Mixed-Initiative
Approach. In Proc. IUI 2007, 92-10.

3. Bunt, A., Dubois, P., Lafreniere, B., Terry, M. and
Cormack, D. TaggedComments: Promoting and
Integrating User Comments in Online Application
Tutorials. In Proc. CHI 2014, 4037-4046.

4. Charles L. A. Clarke, Gordon V. Cormack, and
Thomas R. Lynam. Exploiting redundancy in
question answering. In Proc. SIGIR Research and
Development in Information Retrieval 2001, 358-
365.

5. Chi, P.P., Ahn, S., Ren, A., Dontcheva, M., Li, W.,
and Hartmann, B. MixT: Automatic Generation of
Step-by-Step Mixed Media Tutorials.In Proc. UIST
2012, 93–102

6. Dong, T., Dontcheva, M., Joseph, D., Karahalios, K.,
Newman, M.W., and Ackerman, M.S. Discovery-
Based Games for Learning Software. In Proc. CHI
2012, 2083–2086.

7. Ekstrand, M., Li, W., Grossman, T., Matejka, J., and
Fitzmaurice, G. Searching for Software Learning
Resources Using Application Context. In Proc. UIST
2011, 195–204.

8. Fernquist, J., Grossman, T., and Fitzmaurice, G.
Sketch-Sketch Revolution: An Engaging Tutorial
System for Guided Sketching and Application
Learning.In Proc. UIST 2011, 373–382.

9. Findlater, L. and McGrenere, J. A Comparison of
Static, Adaptive, and Adaptable Menus. In Proc. CHI
2004, 89-96.

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

234

10. Findlater, L., Mcgrenere, J., Evaluating Reduced-
Functionality Interfaces According to Feature
Findability and Awareness. In Proc. Interact 2007,
592-605.

11. Findlater, L., Moffatt, K., Mcgrenere, J., and
Dawson, J. Ephemeral Adaptation: The Use of
Gradual Onset to Improve Menu Selection
Performance. In Proc. CHI 2009, 1655–1664.

12. Fourney, A., Mann, R., and Terry, M. Characterizing
the Usability of Interactive Applications through
Query Log Analysis.In Proc. CHI 2011, 1817–1826.

13. Fourney, A., Mann, R., and Terry, M. Query-feature
graphs: bridging user vocabulary and system
functionality. In Proc. UIST 2011, 207-216.

14. Greenberg, S. The Computer User As Toolsmith: The
Use, Reuse, and Organization of Computer-based
Tools. Cambridge University Press, 1993.

15. Gajos, K., Czerwinski, M., Tan, D. and Weld, D.
Exploring the design space for adaptive graphical
user interfaces. In Proc. AVI 2006, 201-208.

16. Grabler, F., Agrawala, M., and Erato, J.S.T.
Generating Photo Manipulation Tutorials by
Demonstration. In Proc. SIGGRAPH 2009, 1–9.

17. Grossman, T.; Fitzmaurice, G. and Attar, R. A survey
of software learnability: metrics, methodologies and
guidelines. In Proc. CHI 2009, 649-658.

18. Grossman, T., Matejka, J., and Fitzmaurice, G.
Chronicle: Capture, Exploration, and Playback of
Document Workflow Histories.In Proc. CHI 2010,
143–152.

19. Grossman, T. and Fitzmaurice, G. ToolClips: An
investigation of contextual video assistance for
functionality understanding. In Proc. CHI 2010,
1515-1524.

20. Horvitz, E., Breese, J., Heckerman, D., Hovel, D.,
and Rommelse, K. The Lumiere Project: Bayesian
User Modeling for Inferring the Goals and Needs of
Software Users. In Proc. UAI 1998, 256–265.

21. Horvitz, E. Principles of mixed-initiative user
interfaces. In Proc CHI 99. 159-166.

22. Hart, S.G., Staveland, L.E.: Development of NASA-
TLX (Task Load Index): Results of Empirical and
Theoretical Research. Human Mental Workload 1,
139–183 (1988)

23. Kim, J., Nguyen, P.T., Weir, S., Guo, P.J., Miller,
R.C., and Gajos, K.Z. Crowdsourcing Step-by-Step
Information Extraction to Enhance Existing How-to
Videos.In Proc. CHI 2014, 4017–4026.

24. Kong, N., Grossman, T., Hartmann, B., Fitzmaurice,
G., and Agrawala, M. Delta: A Tool For
Representing and Comparing Workflows.In Proc.
CHI 2012, 1027–1036.

25. Lafreniere, B., Bunt, A., Lount, M. and Terry, M.
Understanding the Roles and Uses of Web Tutorials.
In Proc ICWSM 2013, 303-310.

26. Lafreniere, B., Bunt, A., Whissell, J., Clarke, C., and
Terry, M. Characterizing Large-Scale Use of a Direct
Manipulation Application in the Wild. In Proc GI
2010, 11-17.

27. Lafreniere, B., Grossman, T., and Fitzmaurice, G.
Community Enhanced Tutorials: Improving Tutorials
with Multiple Demonstrations. In Proc. CHI 2013,
1779–1788.

28. Lafreniere, B., Krynicki, F., Terry, M., Bunt, A. and
Lount, M. AdaptableGIMP: Designing a Socially-
Adaptable Interface, In Proc. UIST 2011, 89-90.

29. Li, W., Grossman, T., and Fitzmaurice, G.
GamiCAD: A Gamified Tutorial System For First
Time AutoCAD Users.In Proc. UIST 2012, 103–112.

30. Li, W., Matejka, J., Grossman, T., Konstan, J. A. and
Fitzmaurice, G. Design and Evaluation of a
Command Recommendation System for Software
Applications. In ACM Trans. Comput.-Hum.
Interact., ACM, 2011, 18, 6:1-6:35.

31. Linton, F. and Schaefer, H.-P. Recommender
Systems for Learning: Building User and Expert
Models Through Long-Term Observation of
Application Use. User Modeling and User-Adapted
Interaction, Kluwer Academic Publishers (2000),
181-208.

32. Lount, M., and Bunt. A., Characterizing web-based
tutorials: Exploring quality, community, and
showcasing strategies. In Proc. SIGDOC 2014.

33. Matejka, J., Grossman, T., and Fitzmaurice, G.
Patina: Smart Heatmaps for Visualizing Application
Usage.In Proc. CHI 2013, 3227-3236.

34. Matejka, J., Grossman, T., and Fitzmaurice, G. IP-
QAT: In-Product Questions, Answers & Tips. In
Proc. UIST 2011, 175–184.

35. Matejka, J., Li, W., Grossman, T., and Fitzmaurice,
G. CommunityCommands: Command
Recommendations for Software Applications. In
Proc. UIST 2009, 193–202.

36. McGrenere, J., Baecker, R.M., and Booth, K.S. An
Evaluation of a Multiple Interface Design Solution
for Bloated Software. In Proc. CHI 2002, ACM Press
(2002), 163–170

37. Terry, M., Kay, M., Van Vugt, B., Slack, B., and
Park, T. 2008. Ingimp: introducing instrumentation to
an end-user open source application. In Proc. CHI
2008. 607-616.

IUI 2015 • Recommenders / Web March 29–April 1, 2015, Atlanta, GA, USA

235

