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ABSTRACT 
Prior work on command recommendations for feature-
rich software has relied on data supplied by a large 
community of users to generate personalized 
recommendations.  In this work, we explore the feasibility 
of using an alternative data source: web documentation.  
Specifically, our approach uses QF-Graphs, a previously 
proposed technique that maps higher-level tasks (i.e., 
search queries) to commands referenced in online 
documentation. Our approach uses these command-to-
task mappings as an automatically generated plan library, 
enabling our prototype system to make personalized 
recommendations for task-relevant commands. Through 
both offline and online evaluations, we explore potential 
benefits and drawbacks of this approach. 
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Recommender systems; Web-based documentation 

ACM Classification Keywords 
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INTRODUCTION 
Feature-rich software applications (e.g., image-
manipulation programs, spreadsheet software and 
statistical analysis packages) are highly versatile, in part 
owing to the hundreds (or even thousands) of commands 
or features that they make available. At the same time, 
this high volume of commands can make feature-rich 
software difficult for users to master [17]. For example, 
studies of long-term application use have shown that most 
users have fairly limited command vocabularies [14], 
typically using much less than one quarter of the available 
command set (e.g., [26, 30]).  

One promising approach to increasing a user’s awareness 
of the available command set is to present them with 
intelligently generated, personalized command 
recommendations (e.g., [30, 31, 35]).  Central to this 
approach is an understanding of the potential relationships 
between commands – knowledge that enables an 
intelligent system to recommend commands that could 
complement those currently being used. Most prior work 
has extracted this relevancy information from community 
usage logs, for example, by applying collaborative 
filtering algorithms to a large corpus on logged data (e.g., 
[30, 31, 35]). While these usage-data centric approaches 
have shown a great deal of promise, their practical 
success hinges on the existence of a large community of 
users willing to upload their usage data to a central 
repository. 

In this work, we propose an alternative approach to 
personalized command recommendations that uses 
command-to-task mappings mined from online 
documentation. Specifically, our approach uses Query-
Feature Graphs (QF-Graphs) [13], a technique that maps 
common web search queries to collections of interface 
elements referenced in the resulting online 
documentation.  Within the context of the GNU Image 
Manipulation Program (GIMP), we illustrate how our 
prototype recommender system uses a QF-Graph as an 
automatically generated plan library.   

Through offline experimentation with previously 
collected usage data, we explore this documentation-
centric approach’s potential to both increase a user’s 
command awareness through task-relevant 
recommendations, and to enable a system to provide 
efficient access to needed commands. In a controlled 
laboratory experiment, we also explore the impact of two 
alternative recommendation presentation techniques on 
immediate task performance as well as on incidental 
awareness of relevant commands not selected during the 
primary task [10].  

Our results suggest that web documentation can be 
leveraged to generate recommendations for commands 
that are relevant to the task at hand. In terms of its ability 
to streamline access to needed commands, our findings 
indicate that the approach works best for users with 
diverse feature usage. Frequency-based approaches, on 
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the other hand, achieve higher predictive accuracy for 
users with stable and homogenous usage patterns. The 
results of our laboratory evaluation reveal that presenting 
recommendations in-place, as opposed to in a separate 
palette, increases users’ incidental command awareness 
without negatively impacting their immediate task 
performance. 

The contributions of this work are as follows. We present 
a novel approach to intelligent command recommendation 
that uses web documentation as a knowledge source. We 
demonstrate potential strengths and weaknesses of this 
approach given a variety of command usage patterns. 
Finally, we present an initial empirical exploration of how 
such a system could display its recommendations within 
the interface.  

RELATED WORK 
Prior work on supporting feature-rich software use has 
focused on three main areas: supporting application 
learning through improved tutorials, providing in-
application assistance, and techniques for streamlining 
access to needed commands.  We describe each of these 
bodies of work below.  We conclude the section with a 
brief description of techniques for mining web 
documentation for command-to-task mappings, one of 
which we apply in our work. 

Improved Tutorial Interfaces 
Prior work has shown that tutorials play a large role in 
application learning (e.g., [7, 25]), but that authoring 
effective tutorials can be difficult [32].  Consequently, 
prior research has focused on automated or semi-
automated tutorial authoring (e.g., [5, 16]), and creating 
novel and engaging tutorial formats (e.g., [6, 8, 18, 29]). 
Work has also begun to explore ways to harness crowds 
or community contributions to improve the utility of web-
based tutorials, for example, through integrated 
community refinements [3], by augmenting tutorials with 
community demonstrations [27], and by using crowds to 
help segment video tutorials into steps to permit easier 
tutorial navigation [23]. Finally, prior work has sought to 
make it easier for users to select appropriate tutorials, by 
highlighting the commands used [7, 24].   

In-Application Assistance 
As is the case with our work, prior research has also 
sought to improve software learning from within the 
application itself.  One approach has focused on helping 
users understand how to use commands through, for 
example, intelligent task assistants [20], Q&A forums 
embedded within the interface [34] and video-based tool-
tips [19].  

Most relevant to our work are systems that provide 
unobtrusive personalized command recommendations by 
mining large corpuses of community usage data. For 
example, the OWL system used long-term usage histories 
from individuals within an organization to recommend 

commands that were underused in comparison to their 
peers. Similarly, CommunityCommands [30, 35] used 
collaborative filtering algorithms on a large corpus of 
usage data to generate personalized command 
recommendations.  Patina, on the other hand, provided 
subtle command recommendations by overlaying heat 
maps on the interface to highlight commands commonly 
used by the community [33]. We extend this prior work 
by exploring a new data source for task-relevant 
command recommendations – web-based documentation. 
We also further explore the question of how to present 
these types of command recommendations within the 
interface. 

Providing Efficient Access to Needed Commands 
Given that users of feature-rich software tend to use only 
a small subset of the available command set (e.g., [26, 
30]), prior work has examined ways to provide more 
efficient access to needed commands by reducing the 
search space.  These approaches have ranged from user-
customizable subset interfaces (e.g., [2, 36]), to 
community-authored task-specific interfaces accessible 
through in-application keyword search [28], to interfaces 
that adaptively promote commands according to recency 
and frequency information (e.g., [10, 15]). Our 
recommendation presentation techniques are informed by 
this body of work. We also extend this prior research by 
exploring a new way to compute relevant command 
subsets. 

Extracting Command-to-Task Mappings from Online 
Documentation 
Given the prevalence of online documentation for feature-
rich software, prior work has explored the feasibility of 
using these resources to generate task-specific command 
groupings. For example, Fourney et al. [13] proposed 
Query-Feature Graphs (QF-Graphs) as a way to relate 
users’ search queries for feature-rich applications to 
individual interface elements referenced in the resulting 
webpages. The very recent CommandSpace work also 
uses web documentation to model the relationships 
between tasks and commands, but does so using a vector-
space representation as opposed to a graph [1]. We extend 
this work by systematically exploring the potential of 
these mappings to support personalized command 
recommendations. 

PROTOTYPE DESCRIPTION 
The core component of our system, which we refer to as 
QFRecs (see Figure 1), is the Query-Feature Graph that 
was originally introduced by Fourney et al. [13]. As 
illustrated in the simplified example in Figure 2, a Query-
Feature Graph (QF-Graph) is a weighted bipartite graph, 
which associates user search queries (i.e, natural language 
descriptions of high-level tasks [26], Figure 2 a, left), with 
the features of a target application (Figure 2 a, right). The 
weight of the edge between a query node and a feature 
node represents their strength of association (see Table 1 
for example weights). 
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OS x”), or the “vs” string (e.g. “gimp vs adobe”, “adobe 
illustrator vs gimp”). This left us with 9889 queries. An 
altnerative would have been to restrict the search queries 
to those containing the string “GIMP how to”, however, 
this strategy appeared to result in unnecessary information 
loss (e.g., it removed over 90% of the queries).  

The second source of noise concerned the features 
themselves (see Figure 2 a, right for example features in a 
QF-Graph). We found that not all the features extracted 
from the Web documentation mapped to commands in the 
actual GIMP interface. The primary cause was minor 
textual differences in labelling (e.g., “by color select” vs. 
“select by colour”). Most differences were resolved 
automatically by string matching using regular 
expressions. The matching rules for the regular 
expressions were crafted manually based on actual 
command names from the GIMP menus. After this 
process, there remained 40-50 unmapped features (of the 
original 617 distinct features in the raw QF-Graph). For 
these remaining features, the mapping was done manually 
based on our knowledge of the target application. Manual 
inspection also revealed that a feature’s parent entity (e.g., 
menu name) was sometimes present in the raw data in 
addition to the command itself. This is because Web 
documentation will often specify a command’s full path. 
For example, the line “Tools >  Paint Tools > Paintbrush” 
would lead both “Tools” and “Paint Tools” to appear in 
the graph. We removed such menu names from the graph. 

Generating Recommendations 
To generate personalized, contextually relevant command 
recommendations, QFRecs uses the cleaned QF-graph as 
an automatically generated plan library. Based on a user’s 
last x command selections (i.e., the history size), QFRecs 
“activates” the corresponding nodes in the graph (i.e., the 
recently used features/commands). Our system currently 
uses the last 5 distinct observed commands for this initial 
activiation phase, however, this history size is a 
configurable parameter.  Larger history sizes will mean 
recommendations tailored more to the user’s overall 
usage than their current context. After the the user’s last x 
commands are activiated, QFRecs “activites” possible 
task (query) nodes based on their connection weights. 
This step amounts to estimating which of the tasks in the 
graph are most likely to be the user’s current task. Using 
these estimations, QFRecs then “activates” other relevant 
commands for those candidate tasks. 

This process is illustrated in Figure 2. In this example, the 
history is size 2 and the last two observed commands are 
“Blur/Sharpen” and “feather”. QFRecs first finds the set 
of tasks that are strongly associated those two features 
(see the left-hand nodes in Figure 2 a) using the edge 
weights in Table 1. In the next step, QFRecs uses those 
strongly associated tasks to isolate other features (see the 
right-hand nodes in Figure 2 b) associated with those 
tasks. These features are then ranked according to the 

summed weights of all of their associated tasks activated 
in the previous step, enabling the system to recommend 
the top k features. In this small example (k = 2) QFRecs 
recommends “blend” and “add layer mask” to the user.   

Recommendation Types 
Using the process described above, the recommended 
commands will be one of the following two types:  

1. “Familiar” Recommendations: These are commands 
in the user’s existing command vocabulary that are 
predicted to be most relevant to the current usage 
context. 

2. “Unfamiliar” Recommendations: These are 
contextually-relevant recommendations for 
commands that are not yet in the user’s command 
vocabulary.  

These recommendations serve different purposes.  
“Familiar” recommendations will not introduce users to 
new commands, but if promoted effectively, have the 
potential to improve task effeciency. “Unfamiliar” 
recommendations, on the other hand, have the potential to 
enhance feature awareness. That this method is capable of 
generating both types of recommendations raises a 
number of interesting interface presentation questions, 
which we begin to explore in our laboratory evaluation. 
However, we first explore the accuracy and potential 
utility of these document-based recommendations using 
offline analysis.  

OFFLINE EVALUATION 
We evaluated our QF-Graph approach on a corpus of 
GIMP usage data that was collected as part of the Ingimp 
project [26, 36]. This corpus contains feature usage 
histories (or logs) from 207 users, collected over a period 
of approximately two years. We used this data to evaluate 
our prototype along two dimensions. The first was its 
ability to generate relevant recommendations, to gain an 
initial understanding of the approach’s potential to 
improve users’ feature awareness. We also evaluated the 
approach’s accuracy in predicting a user’s next command 
selection, comparing our approach to frequency- and 
recency-based prediction algorithms (e.g., [9. 15]). 

Potential to Promote Awareness of Relevant 
Commands 
In assessing the approach’s potential to make users aware 
of new commands, we first examined (according to the 
definitions above), how many of the generated 
recommendations could be classified as “unfamiliar”. 
Figure 3 illustrates the mean breakdown of the 
recommendations into the two types when QFRecs 
generates 5, 10, 15 and 20 recommendations 
(Recommendation Size in Figure 3). These results 
indicate that the QF-based approach tends to favor 
“unfamiliar” recommendations, particularly as the number 
of recommendations increases.  
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Figure 5. Performance of our QF-based approach in 
recommending a “familiar” feature that is then used again in

the next k feature invocations.
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Figure 3. Performance of our QF-based approach 
recommending an “unfamiliar” feature that is then used in 

the next k feature invocations. 
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Figure 4. The mean number of familiar features and novel 
unfamiliar features for different recommendation sizes. 
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As a measure of recommendation relevance, we used a 
modified version of the K-tail evaluation method, 
introduced by Li et al. to evaluate their 
CommunityCommands recommender system [30, 35]. A 
K-tail evaluation divides a series of used features F into 
two sets: a training set (ܨ௧௥௔௜௡	) and a test set (ܨ௧௘௦௧), such 
that the test set	ܨ௧௘௦௧ contains k distinct features which are 
not in	ܨ௧௥௔௜௡. The training set is then used as the user’s 
history and the prediction algorithm’s performance is 
measured according to how well it predicts those k-
distinct features in	ܨ௧௘௦௧. As an initial measure of the 
relevance of the “unfamiliar” recommendations to the 
user’s current usage context, we adapted this evaluation 
method as follows: We measured whether or not our 
system’s recommendations predict at least one new 
feature in the next k feature invocations (i.e., whether or 
not at least one “unfamiliar” recommendation appears in 
the next k feature invocations).  

Figure 4 depicts our results for a range of 
recommendation and tail sizes. With a recommendation 
size of 20, QFRecs achieves a k-tail “accuracy” that is up 
to 80%. We also analyzed the k-tail accuracy of QFRecs’s 
“familiar” recommendations, with Figure 5 illustrating 
similar trends. 

To provide further insight into the relevance of the novel 
command recommendations, we also examined how 

many of the “unfamiliar” recommendations are “accurate” 
according to the above definition. Table 2 illustrates that, 
on average, 3 - 9% of “unfamiliar” recommendations in a 
given set appear in the user’s next k commands. The table 
also illustrates a large variability in accuracy, with up to 
80% of the recommendations appearing in the user’s next 
k selections. In some respects, the results in Figure 4 and 
Table 2 represent a lower bound on the relevance of the 
system’s recommendations; users may be failing to use 
certain features not because of lack of relevance, but 
because of lack of awareness.  

Combined, these results suggest that the QF-based 
approach (as currently instantiated in our QFRecs system) 
is able to recommend at least some relevant commands.  
The results also suggest that if promoted effectively 
within the interface, the recommendations could 
potentially aid users in completing their current task. We 
explore this question of presentation in our laboratory 
study and describe potential ways to improve the 
recommendations in the Discussion.  

Predicting the Next Command 
The above results provide an initial indication that the 
QF-based approach does generate some user-relevant 
recommendations in that they appear later in the user’s 
command stream.  In this section, we explore the 
approach’s potential to immediately streamline access to 
needed commands, by analyzing the degree to which the 
recommended set accurately predicts the next command 
in the stream. We also compared our QF-based approach 
with two algorithms commonly used in prior work on 
adaptive interfaces (e.g. [9, 15]): frequency-based 
predictions, and recency-based predictions. In this case, 
we defined an “accurate” prediction as one where the 
user’s next action is within the recommended set of 
commands.  

When considering all users’ data, we found that the 
frequency-based algorithm dramatically outperformed the 
others when it came to predicting the user’s next 
command (see Figure 6). When examining the reasons 
why, we found that the users in this particular dataset 
tended to have very homogenous and stable command 
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Figure 6. The overall accuracy in predicting the next 
command of the Frequency-based, Recency-based and QF-

based approaches for different recommendation sizes. 
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Figure 7. Accuracy of the Frequency-based, the Recency-
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usage, which naturally favors the frequency-based 
approach. As an example, consider a feature invocation 
sequence of length 149, but that consists of only 10 
distinct features. With a recommendation size of 10, once 
these 10 features are observed, the algorithm will never 
fail.  

To better characterize and explore the dataset, we defined 
a user’s feature usage diversity, 	ܴௗ, as follows ܴௗ = ே௨௠௕௘௥	௢௙	஽௜௦௧௜௡௖௧	ி௘௔௧௨௥௘௦	௎௦௘ௗௌ௘௤௨௘௡௖௘	௅௘௡௚௧௛	  

In this dataset, the mean  Rୢ for all 178 users with usage 
sequences longer than 20 is 0.1668 with a standard 
deviation of 0.1329. The max(ܴௗ	) was 0.6666 (sequence 

length = 42 and number of distinct commands = 28) and 
min(ܴௗ) was 0.0043 (sequence length = 23459 and 
number of distinct commands = 101). Whereas the 
frequency-based approach substantially outperformed the 
QF-Graph approach for users with low feature diversity, 
the results are much more promising for users with high 
feature diversity. As an example, Figure 7 compares the 
accuracy of the different algorithms for a user with near 
mean feature diversity (0.1667). In this case, the QF-
based approach actually outperforms the alternatives 
when the recommendation size is 5. 

A second potential downside of the frequency-based 
approach is that it requires usage patterns to stabilize 
before it can be effective. For example, Figure 8 
compares the frequency-based approach’s accuracy over 
its first 30 feature invocations to its overall performance. 
Our QF-based approach, on the other hand, requires less 
start-up time; it is currently set to generate 
recommendations based on the last five commands.  

Thus, to summarize, we found that a frequency-based or 
any history-based approach is sensitive to the usage 
diversity and session length. While the QF-based 
approach may not be an effective predictor when faced 
with long, homogenous sessions, it has advantages for 
short, diverse user sessions. Further, a frequency- or 
recency-based approach is (by definition) unable to 
recommend “unfamiliar” commands.  

Given the potential for the QF-based approach to produce 
recommendations that are both needed and novel, in the 
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R = 5 3.3 60 10.79 5.79 80 11.95 6.68 80 12.75 7.25 80 13.76 

R=10 3.85 40 6.11 5.81 50 7.54 7.3 50 8.46 8.53 50 9.13 

R=15 4.39 33.33 5.05 6.39 40 6.29 7.68 40 7.07 8.7 40 7.64 

R=20 4.52 25 4.07 6.38 30 5.1 7.84 35 5.76 9 35 6.24 

Table 2. Average and maximum percentage of correct recommendations for each tail (k) and recommendation set size (R). 

Figure 8. The accuracy of frequency-based approach over 
users’ first 30 command invocations and over all command 

invocations. 
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Figure 10. Mean selection time between commands (with 
standard errors) for the main task (left) and the recall task 

(right) 

0

5

10

15

20

25

30

35

40

Task Recall

M
ea
n
 c
o
m
m
an
d
 t
im

e,
 s Separated Basic Combined

Design, Tasks, and Procedure 
The experimental task was a sequence of menu selections 
using each of the three interfaces described above. In 
other words, our study used a within-subjects design, 
where all participants experienced all three interface 
variants. The menu selections were based on a real user’s 
data from the Ingimp dataset described in the “Offline 
Evaluation” section. We selected data from a user with a 
sufficiently long sequence that was also close to the data 
set’s mean diversity. The selected usage sequence was 74 
selections long and had a diversity of .2065 (defined in 
the “Offline Evaluation” section). From this sequence, we 
used the first 20 selections as “training”, and the next 50 
features as the main task (discarding last 4 selections in 
the interest of participant time).  

For each feature selection, our experimental interface 
provided participants with the name of the feature, but not 
the menu name. As a result, participants had to explore 
the interface (using the top-level menu names as a guide) 
to find their needed commands. Once the participant 
correctly selected the displayed feature, the next feature to 
be selected was displayed. We used the same selection 
sequence in all interface variants, but used different 
interface “masks” (the GIMP menus, Geography-related 
menus, and Cuisine-related menus) to mitigate learning 
effects between conditions. The structure of all three 
masks was identical. To further account for potential 
order effects, the order of interface and the assignment of 
masks to interface were counterbalanced using a Latin 
Square. 

After each main task, we measured incidental command 
awareness [11], by having participants perform a recall 
test. During this recall test participants selected 24 distinct 
commands that were recommended by the QF-based 
system but that was not part of the main task.  

The procedure for the 1.5 hour experiment was as 
follows: Participants first completed a background and 
demographics questionnaire. Then, for each interface 
variant, participants completed a training task consisting 
of 20 selections, followed by the main task consisting of 
50 selections. After the main task, participants completed 

the NASA-TLX [22], which measures perceived 
workload. Participants then completed the recall test 
described above prior to repeating the above steps with 
the next interface variant. The session concluded with a 
comparative questionnaire.  

In the Combined and Separated interfaces, our prototype 
system presented its top 20 recommendations based on 
the user’s last 5 command selections. With this particular 
usage stream, this recommended set accurately predicted 
the next command in the stream 18% of the time. 

Apparatus 
An Intel Core i7 desktop with 8 GB of RAM and 
Microsoft Windows 7 was used for the experiment. The 
system was connected to a 22’’ LCD monitor with a 
1920x1080 resolution. The experiment software recorded 
all timing and selection data.   

Hypotheses 
Given the low predictive accuracy of QFRecs’s 
recommended set in comparison to those studied in prior 
work (e.g., [11]), we did not have any apriori hypotheses 
on the effect of interface on selection speed during the 
primary task. We did, however, have the following 
hypotheses with respect to recall selection speed, 
perceived workload and user preference: 

H1 (Recall Speed): The Combined interface will have 
faster recall times than both the Basic interface and the 
Separated interface. We expect no difference between the 
Basic interface and the Separated interface. 

H2 (Perceived Workload): Perceived workload will be 
lower with the Combined interface than with the 
Separated interface. 

H3 (User Preference): Users will prefer the Combined 
interface over the Separated interface. 

Results 
We performed our analysis with a one-way RM-ANOVA 
with Interface (Basic, Combined, Separated) as the 
within-subjects factor.  We used p > 0.05 as our threshold 
for significance, and Bonferroni corrections were applied 
to all post-hoc comparisons. Error bars in the figures 
represent Standard Error. 

Primary Task Selection Time 
As expected, we did not find a significant main effect of 
Interface on primary task selection time (ܨଶ,ଷସ = 1.064, p 
 ଶ = .059, Figure 10 left). The fact that theߟ ,356. =
recommendations did not significantly improve 
immediate task performance is consistent with prior 
results on low accuracy predictors (e.g., [11]). Despite 
having only limited immediate accuracy, the 
recommendations did not hurt task performance, and 
perhaps even helped it slightly (as indicated by the means 
and effect size), when presented in-place.  
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Recall Speed (H1) 
In the case of the incidental awareness task (i.e., the 
Recall test), we found the main effect of Interface was 
statistically significant (ܨଶ,ଷସ = 12.731, p < .001, ߟଶ = 
.428, Figure 10 right). Moreover, the post-hoc 
comparisons revealed significantly faster selections using 
the Combined interface (19.8s, se 1.3s) when compared to 
either the Basic (32.0s, se. 1.4s, p < 0.001) or Separated 
(32.0s, se. 2.7s, p = 0.005) conditions. The difference 
between the Basic and Separated conditions was not 
statistically significant (p = 1.00). Therefore, we find 
support for H1. 

Perceived workload (H2) 
As a measure of a perceived workload, we used the data 
from NASA-TLX questionnaires. Table 3 shows 
significant main effects of Interface on two of the NASA-
TLK categories: “hard work” and “frustration”. For these 
categories, participants reported experiencing lower 
workload with the Combined interface, however, the only 
significant pairwise difference revealed by the post-hoc 
comparisons was that of frustration for the Combined and 
Basic interface variants (p = 0.038). Therefore, we could 
not fully support H2.  

User Preference (H3) 
Regarding subjective preferences, in the post study 
questionnaire we asked our participants to rank the 
different interface types based on their overall 
performance. The analysis of results showed high 
inclination towards the Combined option, with 13 
participants ranking it as their most preferred interface 
variation. For comparison, 3 users rated the Separated 
interface as their primary choice and only two preferred 
the Basic one (this difference was significant with ߯ଶ = 16.0, p = 0.002). Therefore we find support for H3.  

DISCUSSION 
Combined, the results of our offline and laboratory 
evaluations suggest that recommendations generated 
based on information mined from web documentation is a 
promising approach to improving command awareness in 
feature-rich software. They also highlight a number of 
important considerations moving forward.  

Assessing the Utility of Novel Recommendations 
Our offline evaluation indicates that for our target 

application (GIMP), the QF-based approach was able to 
generate at least some contextually relevant 
recommendations. For example, when providing the user 
with 20 recommendations (which would be distributed 
throughout the entire menu hierarchy), previously 
collected GIMP usage data indicated that at least one 
recommended command would subsequently be used 
within a user’s next 15 selections. Further work is 
required, however, to assess the relevance and utility of 
recommended commands that do not later appear in the 
user’s command stream, since their omission does not 
imply a lack of utility. A potential first step in this 
direction would be to collect relevance ratings from 
application experts; however, a longer-term experiment is 
necessary to fully assess the value of these 
recommendations from the user’s perspective. A longer-
term experiment would also enable us to compare the QF-
based approach to the collaborative filtering approaches 
explored in prior work [30, 35]. 

Prototype Extensions and Improvements 
Motivated by our initial feasibility study, there are a 
number of system-related improvements worth exploring. 
Aside from culling queries from the original QF-Graph 
that were clearly not representative of high-level tasks, we 
did little to optimize the graph’s suitability to act as a 
recommender. More sophisticated lexical analysis or 
machine learning could enable the system to focus its 
recommendations on a more informative set of high-level 
tasks. It also possible that restricting the documentation 
set to specific tutorial repositories would improve the 
precision of the command-to-task mappings. Finally, 
there are numerous avenues that could be explored to 
improve the approach’s predictive capabilities, such as 
incorporating command usage frequency.  

In addition improving the algorithmic component, there is 
also the potential to make the interaction between the 
system and the user more of a mixed-initiative one [21]. 
In particular, the system could leverage the human-
readable format of the high-level tasks to display its task 
assessments to the user. The user could then refine these 
assessments to obtain more tailored recommendations.  

Presentation Techniques 
Our laboratory evaluation is one of few systematic 
explorations of how to present command 
recommendations designed to promote command 
awareness (as opposed to short-term efficiency). Our 
results indicate that presenting these types of 
recommendations in-place can significantly improve 
incidental command awareness over a palette-based 
approach. This is perhaps not surprising given that this 
presentation technique is more obtrusive. What is perhaps 
more surprising is that the extra visual complexity 
introduced into the main interface did not appear to 
negatively impact short-term task efficiency. Users also 
preferred this in-place presentation strategy and reported 

Basic Separated Combined F Sig 

Mental demand 13.1 (.78) 12.8 (.96) 11.3 (.94) 1.756 0.188 

Physical demand 4.5 (1.0) 4.9 (.94) 4.0 (.81) 1.125 0.336 

Temporal demand 10.8 (1.3) 10.8 (1.1) 9.7 (1.1) 0.98 0.386 

Success 6.2 (1.1) 4.6 (.95) 4.8 (1.0) 1.717 0.195 

Hard work 14.3 (1.0) 12.9 (1.0) 10.4 (1.2) 3.754 0.034 

Frustration 10.9 (.86) 9.4 (1.1) 7.1 (1.0) 5.251 0.01 

Table 3. Mean (st. err.) NASA-TLX values (1=low, 20=high). 
Rows in bold indicate significant differences. 
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lower levels of frustration. Further exploration is needed 
to determine the sensitivity of these results to factors such 
as the number of recommendations, their distribution 
across the menus, etc.   

While our results show initial promise for an in-place 
presentation technique, there are a number of open 
questions concerning how to present recommendations in 
a way that will eventually lead to their adoption. For 
example, with the palette approach, it would be easier to 
provide rich supplemental information on why the 
command is recommended and how it might be used in 
practice. In a palette, the system could display its 
confidence in each recommended command, the list of 
tasks to which the command relates, and links to 
documentation that illustrate how to use the command. 
Such information could also potentially be integrated 
within the main interface (available, for example, on 
mouse over), but at the risk of impacting immediate task 
performance.  A palette-based approach could also 
potentially do more to promote command location 
awareness than simply displaying the command path on 
mouse over. For example, users could be provided with 
an animated location cue when they select a command in 
the palette.  

Understanding the above types of presentation-level 
tradeoffs will be important to the ultimate success of all 
approaches to command recommendation, not just ones 
based on Web documentation. It is also possible that a 
more static presentation technique is desirable. For 
example, the system could recommend entire task-centric 
interface that corresponds to the user’s most probable 
high-level tasks [28].   

Generalizability 
Finally, it would be interesting to explore the 
generalizability of the QF-based approach to command 
recommendations to feature-rich applications other than 
GIMP. Fourney et al.’s original QF-Graph graph results 
suggest that the technique will extend to other 
applications with a large Web presence [13]. Exploring 
generalizability to other applications, however, could 
provide insight on how properties of the graphs 
themselves affect their abilities to generate useful 
recommendations, such as the range of high-level tasks 
present, and the connectedness of the graphs. 

In addition to exploring the generalizability of our 
approach to other feature-rich applications, it will also be 
important moving forward to explore the generalizability 
of our study results to a more diverse user population. 

SUMMARY 
In this paper we have created a prototype recommender 
system that leverages a new form of information on 
command relevance: command-to-task mappings mined 
from Web documentation. Our offline evaluation suggests 
that this technique has the potential to expose users to a 

number of new and relevant commands, while our online 
evaluation suggests value in integrating the 
recommendations within the main interface. Our work 
also suggests a number of promising avenues for future 
research, included developing a more detailed 
understanding of the design space for recommendation 
presentation and exploring ways to tailor the system’s 
recommendations according to user feedback. Long-term 
evaluations of deployed technologies are also needed to 
assess the impact of these document-based 
recommendations on command use. 
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