
An Analytic Model for Time Efficient Personal
Hierarchies

William Delamare∗
Kochi University of

Technology
Kochi, Japan

University of Manitoba
Winnipeg, Canada

William.Delamare@acm.
org

Ali Neshati
University of Manitoba
Winnipeg, Canada

neshatia@cs.umanitoba.ca

Pourang Irani
University of Manitoba
Winnipeg, Canada
pourang.irani@cs.
umanitoba.ca

Xiangshi Ren
Kochi University of

Technology
Kochi, Japan

ren.xiangshi@kochi-tech.
ac.jp

ABSTRACT
Hierarchy structures such as file systems are widespread
interfaces for item retrieval and selection tasks. Some hier-
archies can be modified by end-users, such as application
launchers on smartphones or pictures in a file folder. These
modifiable hierarchies cannot benefit from an optimization
made beforehand as their content, unknown during the de-
sign process, is constantly evolving. We hence propose an
analytic model which designers can integrate in their sys-
tem to recommend a range of local structure modifications
(e.g., creating new folders) to end-users. Proposing a range
of modifications gives flexibility to end-users regarding their
own meaningful grouping and labeling choices to follow
a recommendation. A first experiment confirms that the
recommendations built on our model can lead to modified
hierarchies resulting in faster theoretical selection times. A
second experiment confirms that the theoretical selection
times fit empirical selection times in different hierarchy vi-
sual layouts: linear, radial, and grid.

CCS CONCEPTS
•Human-centered computing→HCI theory, concepts
and models; Graphical user interfaces;

KEYWORDS
Hierarchy; Recommendation; Predictive Model; Modifiable
∗JSPS International Research Fellows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300598

ACM Reference Format:
William Delamare, Ali Neshati, Pourang Irani, and Xiangshi Ren.
2019. An Analytic Model for Time Efficient Personal Hierarchies.
In CHI Conference on Human Factors in Computing Systems Proceed-
ings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New
York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/3290605.
3300598

1 INTRODUCTION
From audio menus with telephone services to application
launchers on wearable devices, file folders and software
menus, hierarchical organizations are now widespread to
allow for item retrieval and selection. In a hierarchy, the
top-level gives access to lower-level groups, which in turn
also give access to lower-level groups, and so on until a final
option is reached. Hierarchy navigation is still users’ pre-
ferred information retrieval method, which is consistent, and
relies on a recognition task instead of a recall process such
as with a search engine [7].
Some hierarchies, such as software menus, have a static

content that can be optimized during the design process for
fast item selection [6, 23], a critical factor for any retrieval
method [13, 15, 19]. Despite the omnipresence of hierarchies
with modifiable content, such as digital files and folders, no
help is provided to enhance selection times while creating
personal hierarchical organizations. This results in end-users
having to deal with potentially inefficient hierarchies, or to
rely on external features only, such as the ‘most frequent
items’ feature on Microsoft Windows OS for instance.
Let’s consider a concrete example. Jane just legally got a

new set of digital comical movies (Figure 1). Current opti-
mization approaches mostly consider hierarchies with static
content [13, 16, 23]. They can hence assume known con-
straints, such as item selection frequencies [15, 22, 23] and
groupings [12, 13]. This is not the case with modifiable hier-
archies and in Jane’s situation. Modifying a hierarchy also
implies that a familiar structure is already in place [7, 9].
Thus, current approaches involving the complete hierarchy
can interfere with any existing mental model and habits of

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 1

https://doi.org/10.1145/3290605.3300598
https://doi.org/10.1145/3290605.3300598
https://doi.org/10.1145/3290605.3300598

Figure 1: Approach’s workflow. The user adds new movies
in the ’Comical’ folder (left), which increases the average
selection time of items in the folder. Our model considers
this specific group of items to propose a range of recommen-
dations regarding the number of folders to create and/or
the number of files to transfer to reduce this selection time
(center). If the user has a grouping and labeling structure
in mind that fits a recommendation, the resulting hierarchy
(right) will lead to a faster average selection time.

end-users. For Jane, this means that she might want to add
these new movies in the existing ’Comical’ sub-folder with-
out changing the complete structure of the ’Movie’ folder
and the other sub-folders. Our model can help end-users op-
timize their modifiable hierarchies without interfering with
their already existing hierarchy structure. For instance, if
a designer integrates our model in her interface, it can ad-
vise Jane to create between two and four new sub-folders
in the ’Comical’ folder. She then might be able to find two
categories in order to follow this recommendation according
to her decision (e.g., ’Dark Humor’ and ’Satyr’, or ’Cringe’
and ’Absurd’), giving Jane flexibility regarding grouping and
semantic constraints.
Our approach suggests local recommendations to help

users organize a part of the hierarchywith newly added items.
We focus on modifications following new items addition as
it does not interfere with already existing hierarchy parts,
and fits with the storing and growing of information content
trend [8].

We propose amodel to optimize a group of items anywhere
in a hierarchy. We then validate two practical aspects of our
theoretical approach: its usefulness during hierarchy cre-
ation, and its prediction accuracy during item selection. The
first experiment confirms that the flexible recommendations
built on the model can help users create more time-efficient
hierarchies than without recommendations. Participants also
expressed their wish to have such recommendations for their
personal hierarchies. The second experiment confirms that
our theoretical approach fits empirical selection times with
different visual hierarchical layouts: linear, radial, and grid.

Designers and practitioners offering tools dealing with hier-
archies to end-users can now also propose efficient recom-
mendations by integrating our model to their platform. Pre-
vious approaches consider the complete hierarchy structure,
with static content. Our model can help for local structure
reorganizations of personal hierarchies with evolving con-
tent. In addition, our model allows a system to propose not
only one (i.e., the optimum), but a range of recommendations
to give end-users flexibility regarding the new structure to
create. End-users are still in control of the grouping and la-
beling of the modified hierarchy. This ensures meaningful
choices for future item retrieval.

2 RELATEDWORK
Wepresent algorithmic and analytic optimization approaches
designed for static menus as none considered modifiable
hierarchies.

Algorithmic Approach
Early work proposed a recursive algorithm to determine an
optimized hierarchy according to a priori defined hierarchies
to constrain automatic tree transformations [13]. Matsui et al.
proposed a genetic algorithm to optimize hierarchical menus
[23]. Their optimization function considers the frequencies of
items selection in order to propose item rearrangement. Their
model also takes into account the semantic relationships be-
tween items and favors balanced hierarchies. Another avenue
is to propose design tools based on multi-objective optimiza-
tion function [6, 22]. The optimization algorithm can then
consider several factors such as item position in the menu,
groupings, items size, users’ expertise, menu learnability, and
semantics constraints [22].

These approaches require pre-supposed knowledge, such
as example hierarchies [13], or aim to help knowledgeable
designers create established software menus [6], allowing
control of optimization parameters [27]. These approaches
are hence best suited for creating static hierarchies and en-
hancing menu designs via visual features (e.g., grouping and
labeling).

Analytic Approach
Analyticmodels can help understand the depth/breadth trade-
off of hierarchies highlighted by a broad range of empirical
work [10, 18, 19, 25, 28, 33]. The first analytic model con-
cerned hierarchies with homogeneous tree structures, i.e.
having a constant breadth, hence the same number of items
in each group [19]. The mathematical simulation revealed
that groups should contain between 4 and 8 items for ideal
selection time. The model has been later revised by consid-
ering users experience and menu learnability [28], showing
ideal groupings of 16 to 78 items depending on simulation
values (e.g. reading time). Further analytic models consider

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 2

item selection frequencies [15] or semantic constraints [12].
However, these works are also restricted to uniform trees,
i.e. groupings with the same number of children leading to
the same frequency distributions.

These models are restricted to specific hierarchy types and
concern the whole hierarchical tree structure. In addition,
they focus on menus and their broad range of design factors
[4]. Finally, and importantly, analytic approaches have not
been evaluated to show that the theoretical performance
gain fits actual empirical time selection or if end-users would
choose these new hierarchies.

Instead, our approach involves local part(s) of modifiable
hierarchies, without limitations regarding the hierarchy type
(e.g., homogeneous trees). In addition, we empirically vali-
date our approach by demonstrating its usefulness (recom-
mendations) and its generalization (predictions).

3 APPROACH OVERVIEW
For readers not interested in the mathematical aspects of
this work, a plain text explanation of our approach is neces-
sary. We consider a node (e.g., a folder) and its children (e.g.,
movie files) (Figure 2, left). We then simulate the creation of
new sub-folders (e.g., ’Satyr’) in which some children will
be transferred (Figure 2, center). To simplify mathematical
manipulations, we consider the number of transferred chil-
dren constant across sub-folders (e.g., ’Satyr’ and ’Absurd’)
in a given folder (e.g., ’Comical’). We can then compute the
difference between the new average selection time and the
previous one (without considering errors). This results in an
equation depending on 6 parameters: 3 delays (search, select,
and transition times), and 3 hierarchy structure values (the
original number of children, the number of new sub-folder(s),
and their corresponding children). Delays can be obtained
via previous work [11]. For instance, pointing selection time
can be modeled using Fitts’ law [14]. We can then formally
analyze when the new structure can lead to faster selection
times and propose these options to the user (Figure 2, right) -
and not only the theoretical optimum. Users can then choose
the solution which corresponds to their own grouping and
labeling preferences (Figure 2, highlighted row), and proceed
to the reorganization of their hierarchy. With this flexibility,
Jane has several options to choose from depending on her
own grouping and labeling preferences, hence meaningful
to her, and potentially helping further browsing [24]. In ad-
dition, folders are modeled independently from each other,
potentially resulting in specific optimized structures for each
of them. For instance, Janemight watch ’Action’ movies more
often than ’Comical’ movies. Thus, the system can consider
the expert search time prediction for the ’Action’ movies,
and the novice one for ’Comical’ movies.

Figure 2: Illustrative example. The model considers a group
of nodes (left). The model then simulates and predict the se-
lection time of modified groupings (center). Groupings with
a faster selection time can then be proposed to the user
(right) for her to make a decision (highlighted row).

4 ANALYTIC APPROACH ANDMODEL
This section introduces the main mathematical aspects rele-
vant to recommendations the system can provide. We pro-
vide supplementary materials for reader interested in the
mathematical details of equations derivations.

Definitions
We consider any node at a level j − 1 in the hierarchy with nj
children at level j representing items to select, i.e. leaves in
the tree. We define three different delays potentially required
to browse a hierarchy (Figure 3, left):

• D1: the delay to search a node while browsing. This
can be the time to read file names in a directory for
instance.

• D2: the delay to select a node. This can be the time
to move the cursor and click on the desired file for
instance.

• D3: the delay to proceed from the current level to the
next one. This can be the steering time (i.e. the time
to navigate through a constrained trajectory such as
nested-menu levels) between two folders’ names when
displayed as lists for instance.

Our approach is flexible regarding these delays. For instance,
D1 is related to the time to browse the current hierarchy
level. Novice users will perform a visual search, with a time
linear with the number of items [31]. Expert users will take
a decision, with a time modeled by the Hick-Hyman law,
logarithmic with the number of items [11]. Our model can
then be adapted to every specific situations. In addition, these
delays could also embed additional information. For instance,
if Jane does not like to go through a lot a sub-folders to
reach an item (i.e. Jane prefers breadth over depth in the

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 3

hierarchy), she could define a cost factor αD3 > 1 applied to
the transition time, leading to D ′

3 = αD3 × D3. The system
would then consider Jane’s preferences when proposing to
create new sub-folders.

Model
A group of nj leaves (Figure 3, state 1) will lead to an average
selection time of:

T1(j) = T (j − 1) +
nj + 1

2
D1 + D2 (1)

If this average selection time of nj leaves can be reduced,
themodified level j will haven′j nodes, withn

′
j1 newly created

nodes with ci children each (Figure 3, state 2). The new
average selection time is then:

T2(j) = T (j − 1) +
1
nj

n′
j∑

i=1

[
max(ci , 1)(i .D1 + D2)+

max(ci , 0)D3 +

ci∑
k=1

(k .D1 + D2)

] (2)

To simplify computations, we consider the number of chil-
dren ci constant: ci = c,∀i = 1..n′j1 . This is obviously not
the case in real situations. However, we simplify our com-
putations in one group of nodes only. Individual groups can
still have a different number of children from each other,
thus allowing completely unconstrained tree structures. In
addition, with unbalanced node groups, a simple heuristic
consists in positioning more frequent groups of nodes before
less frequent groups in the hierarchy. If frequencies are un-
known - such as with newly added movies - we can assume
all items as being equiprobable, and just focus on the num-
ber of nodes in each group. Thus, positioning larger groups
at the top of the current level reduces the overall selection
time. Frequencies can still be represented in our model. For
instance, if an item is twice as likely to be selected than oth-
ers, we can then represent this item with two distinct nodes
in its current sub-group, without including any additional
mathematical variable. Ordering based on the number of
nodes then becomes equivalent to ordering based on item
frequencies.

We can now analyze ∆T = T2(j) −T1(j):

∆T =
D1

2
n′j1

2c

nj
(c − 1)

+
n′j1
nj

(
c
D1

2
+ D2 + D3 +

D1

2
c2 + njD1(1 − c)

) (3)

First, we explore the theoretical optimum of equation 3.
However, the theoretical optimum might not be feasible -
nor even be desirable. We hence describe additional recom-
mendations based on different scenarios.

Figure 3: Original (left) and modified (right) hierarchies.

Theoretical Optimum
Jane just added nj new movies and wants to organize them.
The system can suggest what is the best option in this situation.
D1, D2, and D3 are constants defined by the hierarchy

layout and interface in use. For a given node to process, the
number of children nj is also constant. Thus, Equation 3 can
be seen as a function of only two variables:n′j1 and c , defining
a surface. The theoretical optimum is hence obtained when:

∂∆T
∂c
= 0 and

∂∆T
∂n′j1

= 0 (4)

To propose an optimal solution to the user, equation 4 has
to have a solution (c0,n

′
j10), with c0 > 1, and n′j10 ≥ 1.

Validating an Idea
Jane wants to move N movies into n′j1 new sub-folders. The
system can tell if it is worth it.
In this case, we can simply replace c (with c ≈ N /n′j1)

and n′j1 in equation 3: if the resulting value is negative (i.e.
T2 < T1), the current idea is validated.

In case of a positive value (T2 > T1), we can go one step
further by providing insight to the user about why the idea is
not worth it given the current number of nodes considered in
the group. This extra-information is possible if we consider
the current number of nodes nj flexible [6, 28]. Indeed, some
nodes could be categorized in more than one group (e.g., a
movie can be in ’Action’ and ’Comical’). If one or more extra
nodes could have been part of the current group, the user
knows that she can revise her current categorization. With c
and n′j1 set as constant in equation 3, we can now determine
what would be the minimum number of nodes nj that the
level should have for the idea to be validated:

nj >
c

1 − c

(
n′j1
2
(1 − c) −

c

2
−

D1
2 + D2 + D3

D1

)
(5)

Finding the Number of Children
Jane wants to createn′j1 new sub-folders to organize some of her
newly added movies. The system can suggest a range regarding
how many movies should be in each one.

By fixing n′j1 in Equation 4, we can find the theoretical best
option for c as we did for the theoretical optimum, defined

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 4

by:

c0 =
nj

n′j1 + 1

(
n′j1
2nj
+ 1 −

D1
2 + D2 + D3

D1nj

)
(6)

We can go one step further and propose a range of values for
the number of children the newly created nodes should have
to make the new hierarchy more time efficient. By re-writing
equation 3 as a second degree polynomial function, we can
then compute the roots c1 and c2 of the polynomial function
to find a range of values for which ∆T < 0.

Finding the Number of Groups
Jane wants to move N movies from the current folder. The
system can suggest a range regarding how many new sub-
folders should be created.
Let k ∈ [0; 1], so that N = n′j1c = knj . In this case, the

optimum number of groups is obtained for:

n′j1 = k

√
nj

2 − k
giving: c =

√
(2 − k)nj (7)

It has been previously shown that the optimal number of
groups to divide nj nodes is to create n′j1 =

√
nj new nodes

[28]. This is true only if we consider that users want to send
all nj nodes to the next level, i.e. when k = 1. Our analysis
provides more flexibility to users by considering only a sub-
sample of nodes, i.e. 0 < k ≤ 1. In other words, in a given
folder, sub-folders can co-exist with files.
We can go one step further if we consider the number

of nodes nj flexible again [6, 28]. We can then find njn for
which ∆T < 0:

njn =
©­­«
D1 +

√
D1

2 + 2D1(
D1
2 + D2 + D3)

D1
√
2 − k

ª®®¬
2

(8)

This is again motivated by potentially flexible semantic con-
straints. Thus, we can give further suggestions regarding the
number of nodes in the current group to ensure the proposed
modification will lead to time efficient selections.

5 VALIDATION 1: RECOMMENDATIONS
We want to know if our approach can be applied with restric-
tions such as semantic constraints and personal preferences:
can users follow recommendations, and if so, to which ex-
tent?

We provided two interfaces: with and without help. With
both interfaces, participants had to create hierarchies repre-
sented in a tree-like structure with node displayed as circles
and labels, and the hierarchy by links between nodes. Partic-
ipants were able to create and to name new nodes, to delete
created nodes (not the nodes from the data sets), to move
node, and to transfer nodes as children using drag-and-drop
mouse interactions. A red link indicated that either (i) a
group node had no children, or (ii) a node containing a word

from the data set had a child. Participants could not validate
a design with red links. Both interfaces displayed a legend,
the average selection time of the current hierarchy, a button
to sort the tree (large groups positioned first), a button to re-
set the tree, and links directing users to the definition of the
words used in the experiment. The only difference between
with and without help concerned recommendations. With
help, groups of nodes that could be optimized had green
links, and recommendations involved:

• Theoretical optimum (label based on equation 4).
The system displays how many new nodes should be
created and how many existing nodes should be trans-
ferred on each of them to obtain the ideal hierarchy.

• Idea validation (form based on equations 3 and 5).
Users can input the number of node(s) they want to
create and the number of children. If the idea is not val-
idated (i.e. longer selection time than with the current
hierarchy), the system displays the minimum number
of nodes the group should have for the idea to be worth
it.

• Number of children (form based on equation 6).
Users can input the number of groups they think about
creating. The system displays the optimal number of
children each new group should have and the range
of valid solutions.

• Number of groups (form based on equations 7 and 8).
Users can input the number of nodes they consider
sending to a new level. The system displays the optimal
number of group to create or the number of nodes the
current level should have for this idea to be worth it.

• Overall performance (table based on equation 2).
A color-coded table showed users all combination of
number of groups/children and expected gain of time.
The table was sync to results from input forms to ease
the navigation.

Task
We asked participants to create hierarchies with and without
help. We proposed two data sets of words by considering 170
animals, 100 house items, 70 movies, and 126 famous people,
which explicitly enforced unbalanced hierarchies. We then
randomly generated 2 data sets of 60 unique words each and
random delays. Recommendations would help participants
to recursively optimize newly created group of nodes until
no group could be optimized anymore, or until participants
decided to not follow the remaining recommendations.

Participants and Apparatus
We recruited 16 participants (8 females), aged 18 to 56 (M =
26.7, SD = 9.3). We gave participants $15 gift cards. All
had experience with hierarchical organization on desktop
computer - the example we used to describe the task. The

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 5

Figure 4: Left: Average item selection time (s). Right: Total
number of nodes. Error bars show 95% CI (N=16).

online tool ran on a 3.6 GHz Intel Core i7 computer via
Chrome Web Browser on a 24′′ desktop screen.

Procedure
The experiment lasted between 45min and 1h30 depending
on the participant’s knowledge of the words used in the data
sets, after which participants filled a questionnaire for qual-
itative results. The session started with an introduction to
hierarchies (e.g., menu and file folders) and both tools. With-
out recommendation, we instructed participants to create
hierarchies as they would do on their own. With recom-
mendations, we instructed participants to try to follow the
recommendations while considering meaningful grouping.

Experimental Design
The task used a within-participants design with System (No
Help, Help) as an independent variable and counterbalanced
across participants. Each participant used one version of
the system with only one dataset once. To fully control the
learning effect, we also counterbalanced the presentation of
the pairs System/Dataset. The experiment was divided into 2
blocks: one for each pair System/Dataset. Each block started
with a 8-item data set practice trial. The 60 words were sorted
alphabetically in order to avoid any explicit grouping.

Results
Our data did not satisfy both the normality and the homo-
geneity of variances assumptions.We performed our analysis
with Wilcoxon non-parametric tests. We made sure there
was no significant effect of Dataset [W = 58, Z = −0.52,
p = 0.63] on the average selection time. We hence aggre-
gated the data by System and participants to complete our
statistical analysis.

Average Selection Time. We found a significant effect of
System on the average selection time with a large effect size
[W = 133, Z = 3.36, p < 0.001, r = 0.59]: Without rec-
ommendation, the resulting average selection time is 9.9%
slower than with recommendations (Figure 4, left). This indi-
cates that participants could benefit from recommendations
even with practical constraints.

Hierarchy Structure. Participants created significantlymore
nodes with recommendations than without [W = 17, Z =

−2.45, p < 0.05, r = 0.45] (Figure 4, right). This was to be
expected, as we built the theoretical model to help create new
nodes. Note that participants also chose to sometimes not
to follow recommendations. The average gain of time not
followed by participants was 0.89s without help (unknown),
and 0.03s with help (known).

12 out 16 participants created hierarchies in which leaves
cohabited with sub-groups of nodes at various depth levels.
This validates that providing a flexible way to arrange nodes
(k , 1 in Equation 7) is actually useful in scenarios with
semantic constraints.

Qualitative Results. 11/16 participants would like such a
recommendation system to organize their files. 12 partic-
ipants still realized the recommendation system could be
"useful" and "helpful" (P4, P5, P6, P13), and the experimental
tool "easy to use" (P3, P14), even if some participants felt
the recommendation system was "slowing them down" (P5)
or interfering with their own categorization scheme (P4, P6,
P14).

6 VALIDATION 2: PREDICTION
We showed that our approach can successfully reduce the
theoretical selection time. We next want to investigate if our
approach is conform to real empirical selection times. More
specifically, we are interested in (1) validating the selection
time prediction of the model with different common item
layouts (i.e. linear, radial, and grid), and (2) investigating the
feasibility of our heuristic to overcome unbalanced nodes
groups. We hence collect pointing and gaze data while users
perform item selections.

Item Layouts
We consider three common item layouts: linear, radial, and
grid (Figure 5). Linear layouts are widespread in software
applications (e.g., menus) [5, 6, 21]. Radial layouts are also
a well-known layout (e.g., pie-menus) [29, 33]. Grid layouts
are also common [3], especially on mobile devices [9].

We focus on 2-levels hierarchies, as our approach consid-
ers only a level and its children (equation 3). The sub-level
(i) appears on the right of the selected item with the linear
layout, the top of the sub-level aligned with the previously
selected item, (ii) appears centered around the cursor posi-
tion with the radial layout, and (iii) replaces the previous
level with the 2 by 2 grid layout. Users can navigate between
panels by clicking on arrows at the top and bottom of the
screen.

Calibration: Delay Parameters
Recall that our model requires the delays associated with
visual search (D1), selection (D2), and transition between lev-
els (D3). Fortunately, previous works provide several models

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 6

Figure 5: Linear (2 levels of 8 items each), radial, and grid
layouts. Blue elements indicate mouse cursor hover states.

to do so [5, 11, 18, 20]. We chose to determine D1, D2, and
D3 using the Search, Decision, and Pointing model (SDP) [11],
which has been proven effective to model selection times in
different menu types [3, 10]. The SDP model is built on other
low-level models, such as Fitts’ Law to predict the pointing
time [14], the Hick-Hyman law to predict the decision time
[17], and the steering law to predict the navigation time be-
tween menu levels [1]. OnceD1,D2, andD3 are calibrated via
the SDP model, we can assess how well equation 2, the core
basis of our approach, fits empirical data based on structural
parameters: the original number of children, the number of
new sub-folder(s), and their corresponding children.

D1: Delay to Process a Node. D1 is related to the time to
browse the current hierarchy level while looking for the de-
sired item. For novice users, this browsing time corresponds
to a visual search time, linear with the number of items [31].
For expert users, this browsing time corresponds to a deci-
sion time modeled by the Hick-Hyman law, logarithmic with
the number of items [11]. In our experiment, participants
will be novices. We hence use the novice linear relationship
between the visual search time Tvis and the number of items
Nk in the kth level: Tvis = avis + bvis × Nk , with avis and bvis
empirically determined constants. Since D1 is the time to
process one item, we define D1 =

Tvis
Nk

. However, we want D1
to be specific to a layout type, not a hierarchy level k . We
hence chose to approximate D1 - the delay to process any
node in the hierarchy - by considering the average number
of nodes Navg:

D1 =
avis
Navg

+ bvis (9)

Note that this approximation might lead to over- and under-
estimation in case a level has less / more nodes than Navg.

D2: Delay to Select a Node. In our case, users select an item
by pointing and clicking at it. The pointing task is commonly
modeled using Fitts’ Law, stating that the timeTp required to
point at a target is linear with the Index of Difficulty ID:Tp =
ap+bp×ID, with ap andbp empirically determined constants.
For most layouts, ID depends upon the target width W and
the movement amplitude A: ID = log(AW + 1). However, for

radial layouts, the pointing time follows a linear function
of the number of items Nk in the kth level [3]: ID = Nk . Tp
represents the average pointing selection time, but depends
upon W and A, or k. We want D2 to be independent of any
other factors than the empirically determined factors ap and
bp to characterize the layout. We hence approximate D2 - the
delay to select any node - by:

D2 = ap + bp ×mean(ID) (10)
As for D1, this can also lead to over- and under-estimation.

D3: Delay to Transition Between Hierarchy Levels. Navigat-
ing through multiple levels in linear layouts is often modeled
via the steering law, which predicts the transition time Ttr
of a movement of amplitude At in a tunnel of widthWt as
Ttr = atr + btr ×

At
Wt

, with atr and btr empirically determined
constants. For radial layouts, we consider the transition time
to beTtr = 0, as the next level appears centered on the cursor
position, removing the need for any steering movement. This
illustrates how different layout properties are reflected in
our model. For our grid layout, the sub-level replaces the cur-
rent level. We hypothesize that the average transition cursor
movement can be approximated by an average pointing time
Ttr = atr + btr ×mean(ID). For all layouts, we approximate
the steering task with the pointing parameters (i.e. atr = ap ,
btr = bp), and then consider:

D3 = Ttr (11)

Participants and Apparatus
We recruited 21 participants (10 females), aged 18 to 56
(M=25.3, SD=7.8). We gave participants $15 gift cards. We
carried out our experiment on a 3.6GHz Intel Core i7 desk-
top computer, with a 24” (1920 × 1080) screen. We used an
Eye Tribe eye tracker, with a 60Hz sampling rate and a gaze
estimation error between 0.5° and 1° according to the man-
ufacturer. The software was implemented in C# with the
Unity3D 5.3 game engine.

Procedure
The experiment lasted around 1h per participant. The session
started with a 9-points calibration for the eye tracker. Each
participant was assigned to one layout (linear, radial, or grid).
The session was divided into two blocks: one for a Fitts

task, and one for an item selection task. The Fitts task en-
sured we captured data to derive the pointing selection delay
D2 without visual search. Participants started a Fitts trial
by clicking a grey ’start’ button to make the green target
appear. Participants had to select the green target as fast and
as accurately as possible. The trial stopped when the target
was clicked. The item selection task consisted in two consec-
utive selections in a specific layout. Participants could read
the sequence of items to find and select in the menu (e.g.,
"plant > chinchilla", Figure 5-left) as long as they wanted.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 7

They could then press the start button to display the first
hierarchy level. If participants clicked the correct first item
(e.g., ’plant’), the second level appeared. If participants se-
lected an incorrect item, the trial stopped and was counted
as an error. If the eye tracker lost the gaze for more than 2.5s,
the cursor disappeared and participants had to re-position
themselves.

Layout Parameters
The linear layout used 230px × 35px labels. For both Fitts
and the item selection tasks, the start button was positioned
at the top-left of the invisible first level. For the Fitts task,
participants selected the first, middle and last items of both
levels, creating 6 IDs: 2.93, 3.46, 3.83, 4.02, 4.21, and 4.45.
The radial layout used labels centered in 220px radius

slices. For both Fitts and the item selection tasks, the start
button was positioned at the center of the circular layout. For
the Fitts task, we were primarily interested in the number
of slices instead of the actual Fitts ID [3]. Thus, participants
had to select 6 targets, i.e. a random single slice in a layout
corresponding to a discretization of 4, 6, 8, 10, 12, and 16
slices.
The grid layout used 275px × 275px labels and 110px ×

110px navigation arrows buttons. For the Fitts task, we con-
sidered the 6 combinations of movement between the four
layout elements, an extra center button (184px × 60px), and
the bottom navigation arrow, leading to the IDs 1.14, 1.16,
1.59, 1.72, 1.77, and 2.17. For the item selection task, the start
button was in the center of the screen.
For all layouts, we considered first levels of 8, 12, and 16

items. We randomly generated two second levels for each
first levels, leading to 6 different instances of each layout.
Each first level node could have 4, 8, or 12 children. We chose
multiple of 4 to avoid any side-effect due to potential gap
in the grid layout. We used labels from the first experiment
categories (animals, etc), but only considered single words,
which were ±2 letters from the average word length to avoid
any side-effect due to potential salience.

Experimental Design
Data from each layout (Linear, Radial, Grid) were analyzed
separately. Fitts’ Law parameters (for D2 and D3) were cali-
brated using Fitts’ block data. The dependent pointing time
variable Tp corresponds to the time between the start button
click and the green target click. Visual search time param-
eters (for D1) were calibrated using the item selection task
block data. The dependent visual search time variable Tvis
corresponds to the time between the level appearance and
the time the gaze reached the item (averaged across all gaze
hits on the item during the trial). We then used the deter-
mined D1, D2, and D3 to estimate how well our approach

Table 1: Regression analysis results for both point-
ing (Fitts) and visual search (Search) calibrations, the
resulting delays, and regression analysis results for
the model absolute prediction (Pred.) and the visual
search ordering of items (Order).

Layout a b adj. R2 F-Stat. p

Linear
Search 0.33 0.11 .99 2782 < .001
Fitts 0.25 0.14 .61 8.88 < .05

Delays D1 = 0.12 , D2 = 0.76, D3 = 0.95
Pred. -3.33 1.9 .91 53.07 < .01
Order 58.25 11.32 .98 879.9 < .001

Radial
Search 0.45 0.09 .98 174.2 < .01
Fitts 0.44 0.01 .86 32.21 < .001

Delays D1 = 0.11 , D2 = 0.53, D3 = 0.0
Pred. -0.22 1.93 .93 68.62 < .001
Order 105.72 0.35 -.05 0.29 0.60

Grid
Search 0.0 0.23 .99 13690 < .001
Fitts 0.24 0.2 .77 17.49 < .05

Delays D1 = 0.25 , D2 = 0.53, D3 = 0.53
Pred. -1.69. 1.77 .98 231.3 < .001
Order 31.95 22.5 .96 385.8 < .001

can model item selection times via regression analyses of
Equation 2 across layout instances.
During the Fitts block, participants had to perform 15

selections of each target, leading to 6 targets× 15 selections×
21 participants = 1890 acquisitions. During the item selection
block, participants had to perform 50 correct selections in
each layout instance, leading to 50 selections × 6 instances
× 21 participants = 6300 acquisitions.

Results
We first discuss the visual search and pointing times calibra-
tions, and the resulting delays associated with each layout.
We then focus on the accuracy of the model prediction, and
the visual search ordering. We removed 694 trials for which
the system lost the gaze and froze the mouse cursor. Numer-
ical data can be found in Table 1.

Calibration. Visual search results hold a strong linear
correlation between the visual search time and the number
of items (all adjusted R2 > .98), which is in line with previous
work [3, 11, 30]. Pointing results are not as strong as in
previous work for the Linear layout [11] (adjusted R2 = .61),
compared to the grid layout (adjusted R2 = .77). However,
results confirm the linear relationship between the pointing
selection time and the number of slices in the radial layout
(adjusted R2 = .86) [3]. Results for the linear layout might
be explained by the fact that we considered only the targets
height [2], or the fact that we did not apply any adjustment
for accuracy [32] to name a few. However, the delays of our
model are based on approximations of human-motor models,

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 8

Figure 6: Top to bottom: Linear, Radial, Grid. Left to right: Visual search, pointing, absolute prediction, and visual search
ordering.

themselves approximations of the reality. We hence want to
validate our model even with rough empirical parameters
estimates.

Delays reveal differences between layouts. D1 shows that
the Grid layout imposes a longer processing time than others.
This can be explained by the navigation through different
panels limited to 4 items per panel. D2 shows that the linear
layout imposes a slower selection time than the others. This
results is most likely due to the fact that the linear layout uses
smaller labels compared to the others, combined to the fact
that other layouts appear centered around the cursor. Note
that although we found a correlation between eye-movement
and cursor movements - confirming that the cursor moves as
participants look for a label [5] - this selection time remains
slower for the Linear layout. D3 shows that the transition
time between hierarchy levels is higher for Linear than Grid,
most likely because of the tunneling action of the cursor.

Prediction. Our model successfully predicts performance
trends across hierarchy instances, with an adjusted R2 of 0.95
for Linear, 0.82 for Radial, and 0.98 for Grid (Table 1, Figure 6).
This validates the fact that Equation 2 can be used to predict
the selection time of items in a two-levels hierarchy. Thus,
the root of other equations (such as Equation 3) is empirically
validated. Prediction made from these equations are then in
line with empirical data.
However, the absolute prediction is not perfect: Linear

regressions show that Treal = a + b × Tpred, with a , 0
and b , 1. We discuss this underestimation of empirical
data in the next section, but we note that our model is used

to compare hierarchies relatively to each other, not in an
absolute way.

Visual Search Ordering. Our model uses a simplification
by considering the number of children constant. A simple
heuristic - assuming equiprobable item selection - consists
in positioning larger groups of nodes ’at the top’ of the hi-
erarchy level. We hence want to verify if such ’top’ concept
exists for our hierarchy layouts.
We found a strong linear correlation between item posi-

tion and gaze path for the Linear (adjusted R2 = .98) and
Grid (adjusted R2 = .96) layouts, with the gaze going from
top-to-bottom, left-to-right. However, we did not find any
correlation for the Radial layout (adjusted R2 = −.05) when
considering a clockwise order of slices, 0 starting at 12h. Pre-
vious work found a correlation with a succession of left/right
alternations. However, we could not replicate this result (ad-
justed R2 = −.06). We found a pattern which consisted in a
broad exploration of the left side, followed by sequences of 2
items on the right / 1 item on the left, but this result remains
to be further explored.

7 LIMITATIONS AND FUTUREWORK
We showed that our model could effectively lead to time-
efficient hierarchies (experiment 1). We further validated our
approach by showing that predicted trends in theoretical
selection times between hierarchies had a strong correlation
to actual empirical data with different hierarchy layouts
(linear, radial, and grid) (experiment 2). We now discuss
findings and implications of the present work.

Recommendations: We provide evidence that recom-
mendations can be useful, but several interesting questions

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 9

still remain. For instance, we did not evaluate how recom-
mendations could be presented or how would users adapt
their behavior to such system. In-vivo longitudinal studies
could provide answers regarding the actual impact of recom-
mendations and their presentation.

Predictions: We showed that our model could provide
a good prediction of selection time performances in hier-
archies relatively to each other. This was the goal of our
approach in order to provide recommendations to end-users
when modifying these hierarchies. However, the absolute
prediction is off by approximately 1s, like in previous work
[3], which hypothesized that this absolute underestimation
could be attributed to their experimental protocol and/or
their use of a timeout trigger method. The fact that our work
also shows an offset of ∼1s makes us think that the problem
might be reproducible, and hence investigated and explained.

Frequency and visual ordering: We considered sub-
groups with a constant number of children for a given group
of nodes. These sub-groups have different selection frequency.
In our experiments with equiprobable items, this frequency
was determined by the number of nodes in the sub-group.
If frequencies are available, the model can include this as-
pect by duplicating each node according to their frequency.
We hypothesized that more frequent sub-groups should be
positioned ’first’ in the hierarchy. However, we could de-
termine such ordering concept only for the linear and grid
layouts, not for the radial one. Although this does not pre-
vent accurate relative predictions, users still need to position
frequently accessed sub-groups ’first’ by themselves (e.g., to
not scroll every time to access a frequent sub-folder).

Delays (reverse approach): We showed that calibrating
our model and the delays via SDP could induce comparisons
between hierarchy layouts. We could reverse our approach.
In this work, we empirically determine delays to analyze
our equation based on our three parameters of interests re-
garding the hierarchy structure (namely the original number
of children, the number of new sub-folder(s), and their cor-
responding children). Instead, we could fix the hierarchy
structure, and analyze our model according to the delays.
For instance, the system could determine which delays (and
hence which corresponding layout) better fits a given hier-
archy structure.

Errors: There is still no clear model regarding errors prob-
abilities during a selection task in a hierarchy [15, 26]. In
addition, some works consider the probability of performing
selection errors as level-independent [19], i.e. the same error
probabilities in every levels of the hierarchy, while some
other works consider it level-dependent [28]. If the later is
true, then integrating extra cost time due to errors in our
level-agnostic model will be difficult. We hence envision a
modular approach: a module based on our model for time
selections, and a module based on an error model - which

remains to be derived and experimentally validated. Both
modules could then be combined to also anticipate delays
due to memory errors after a modification of a hierarchy.
These modules could both be added as a complementary part
to previous work approaches, which focus on before-hand
optimization of the complete hierarchy.

8 CONCLUSION
We propose a model to help end-users optimize the selection
time when adding new content such as new files in a direc-
tory. Despite the predominance of modifiable hierarchies in
our everyday lives, no work considered a localized approach
that could help end-users to optimize the newly added con-
tent only, without interfering with their existing hierarchy
structure.

Our model allows to recommend if, when, and how users
can optimize any hierarchy in different scenarios. We vali-
date our approach with two user experiments. The first one
confirms that our flexible recommendations can effectively
be used to design time-efficient hierarchies. In addition, such
recommendation system is well-accepted by end-users. The
second experiment confirms that our model can effectively
predict the difference in selection time between hierarchies.
The advantage of our approach compared to previous an-
alytic models is that we do not constrain the overall tree
structure to a specific type. The advantage of our approach
compared to previous algorithmic approaches is that users
are still in charge of the grouping and labeling process. This
can enhance memorability for future browsing of the newly
modified structure. Our model can be a complementary solu-
tion to previous approaches that consider the whole hierar-
chical structure at first. Designers can embed our model in
their system to help end-users when the original hierarchy
content is altered.

9 ACKNOWLEDGMENTS
We acknowledge the support from the NSERC CRC program,
the NSERC Discovery grant, as well as the JSPS fellowship
program. We also thank Antti Oulasvirta for his valuable
comments, and Wang Chen for the video.

REFERENCES
[1] Johnny Accot and Shumin Zhai. 1997. Beyond Fitts’ law: models for

trajectory-based HCI tasks. In Proceedings of the SIGCHI conference on
Human factors in computing systems - CHI ’97. ACM Press, New York,
New York, USA, 295–302. https://doi.org/10.1145/258549.258760

[2] Johnny Accot and Shumin Zhai. 2003. Refining Fitts’ law models for
bivariate pointing. In Proceedings of the conference on Human factors in
computing systems - CHI ’03. ACM Press, New York, New York, USA,
193–200. https://doi.org/10.1145/642611.642646

[3] David Ahlström, Andy Cockburn, Carl Gutwin, and Pourang Irani.
2010. Why it’s quick to be square: Modelling new and existing hierar-
chical menu designs. In Proceedings of the 28th international conference

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 10

https://doi.org/10.1145/258549.258760
https://doi.org/10.1145/642611.642646

on Human factors in computing systems - CHI ’10. ACM Press, New York,
New York, USA, 1371–1380. https://doi.org/10.1145/1753326.1753534

[4] Gilles Bailly and Antti Oulasvirta. 2014. Toward Optimal Menu Design.
ACM Interactions (2014), 40–45. https://doi.org/10.1145/2617814

[5] Gilles Bailly, Antti Oulasvirta, Duncan P Brumby, and Andrew Howes.
2014. Model of visual search and selection time in linear menus. In
Proceedings of the 32nd annual ACM conference on Human factors in
computing systems - CHI ’14. ACM Press, New York, New York, USA,
3865–3874. https://doi.org/10.1145/2556288.2557093

[6] Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and Sabrina Hoppe. 2013.
MenuOptimizer: Interactive Optimization of Menu Systems. In Pro-
ceedings of the 26th annual ACM symposium on User interface software
and technology - UIST ’13. ACM Press, New York, New York, USA,
331–342. https://doi.org/10.1145/2501988.2502024

[7] Ofer Bergman, Ruth Beyth-Marom, Rafi Nachmias, Noa Gradovitch,
and Steve Whittaker. 2008. Improved search engines and navigation
preference in personal information management. ACM Transactions
on Information Systems 26, 4 (sep 2008), 1–24. https://doi.org/10.1145/
1402256.1402259

[8] Richard Boardman and M Angela Sasse. 2004. "Stuff goes into the
computer and doesn’t come out" A Cross-tool Study of Personal Infor-
mation Management. In Proceedings of the 2004 conference on Human
factors in computing systems - CHI ’04, Vol. 6. ACM Press, New York,
New York, USA, 583–590. https://doi.org/10.1145/985692.985766

[9] Matthias Böhmer and Antonio Krüger. 2013. A study on icon arrange-
ment by smartphone users. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems - CHI ’13. ACM Press, New York,
New York, USA, 2137–2146. https://doi.org/10.1145/2470654.2481294

[10] Andy Cockburn and Carl Gutwin. 2009. A Predictive Model of Hu-
man Performance With Scrolling and Hierarchical Lists. Human-
Computer Interaction 24, 3 (jul 2009), 273–314. https://doi.org/10.1080/
07370020902990402

[11] Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A predictive
model of menu performance. In Proceedings of the SIGCHI conference on
Human factors in computing systems - CHI ’07. ACM Press, New York,
New York, USA, 627–636. https://doi.org/10.1145/1240624.1240723

[12] A I Danilenko and M V Goubko. 2013. Semantic-aware optimization
of user interface menus. Automation and Remote Control 74, 8 (aug
2013), 1399–1411. https://doi.org/10.1134/S000511791308016X

[13] Donald L Fisher, Erika J Yungkurth, and Stanley MMoss. 1990. Optimal
Menu Hierarchy Design: Syntax and Semantics. Human Factors: The
Journal of the Human Factors and Ergonomics Society 32, 6 (dec 1990),
665–683. https://doi.org/10.1177/001872089003200605

[14] P M Fitts. 1954. The information capacity of the human motor system
in controlling the amplitude of movement. Journal of experimental
psychology 47 (sep 1954), 381 – 391. https://doi.org/10.1037/h0055392

[15] Mikhail V Goubko and Alexander I Danilenko. 2010. An automated
routine for menu structure optimization. In Proceedings of the 2nd ACM
SIGCHI symposium on Engineering interactive computing systems - EICS
’10. ACM Press, New York, New York, USA, 67–76. https://doi.org/10.
1145/1822018.1822030

[16] M V Goubko and A I Danilenko. 2012. Mathematical model of hierar-
chical menu structure optimization. Automation and Remote Control 73,
8 (aug 2012), 1410–1423. https://doi.org/10.1134/S0005117912080140

[17] Ray Hyman. 1953. Stimulus information as a determinant of reaction
time. Journal of Experimental Psychology 45, 3 (1953), 188–196. https:
//doi.org/10.1037/h0056940

[18] T K Landauer and D W Nachbar. 1985. Selection from alphabetic
and numeric menu trees using a touch screen. In Proceedings of the
SIGCHI conference on Human factors in computing systems - CHI ’85.
ACM Press, New York, New York, USA, 73–78. https://doi.org/10.1145/

317456.317470
[19] Eric Lee and James Macgregor. 1985. Minimizing User Search Time in

Menu Retrieval Systems. Human Factors: The Journal of the Human
Factors and Ergonomics Society 27, 2 (apr 1985), 157–162. https://doi.
org/10.1177/001872088502700203

[20] Baili Liu, Gregory Francis, and Gavriel Salvendy. 2002. Applying mod-
els of visual search to menu design. International Journal of Human-
Computer Studies 56, 3 (mar 2002), 307–330. https://doi.org/10.1006/
ijhc.2002.0527

[21] Wanyu Liu, Gilles Bailly, and Andrew Howes. 2017. Effects of Fre-
quency Distribution on Linear Menu Performance. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Sys-
tems - CHI ’17. ACM Press, New York, New York, USA, 1307–1312.
https://doi.org/10.1145/3025453.3025707

[22] Zhengwu Lu. 2017. Optimization Approaches to Adaptive Menus. May
(2017).

[23] Shouichi Matsui and Seiji Yamada. 2008. Genetic algorithm can opti-
mize hierarchical menus. In Proceeding of the twenty-sixth annual
CHI conference on Human factors in computing systems - CHI ’08,
Vol. 1. ACM Press, New York, New York, USA, 1385–1388. https:
//doi.org/10.1145/1357054.1357271

[24] Craig S Miller and Roger W Remington. 2004. Modeling Information
Navigation: Implications for Information Architecture. HumanâĂŞ-
Computer Interaction 19, 3 (sep 2004), 225–271. https://doi.org/10.1207/
s15327051hci1903_2

[25] Dwight P. Miller. 1981. The Depth/Breadth Tradeoff in Hierarchi-
cal Computer Menus. Proceedings of the Human Factors Society
Annual Meeting 25, 1 (oct 1981), 296–300. https://doi.org/10.1177/
107118138102500179

[26] Kent Norman. 1992. The Psychology of Menu Selection: Designing
Cognitive Control of the Human/Computer Interface. Displays 13
(1992).

[27] Antti Oulasvirta. 2017. User Interface Design with Combinatorial
Optimization. Computer 50, 1 (jan 2017), 40–47. https://doi.org/10.
1109/MC.2017.6

[28] Kenneth R Paap and Renate J. Roske-Hofstrand. 1986. The Optimal
Number of Menu Options per Panel. Human Factors: The Journal of
the Human Factors and Ergonomics Society 28, 4 (aug 1986), 377–385.
https://doi.org/10.1177/001872088602800401

[29] Krystian Samp and Stefan Decker. 2010. Supporting menu design
with radial layouts. In Proceedings of the International Conference on
Advanced Visual Interfaces - AVI ’10. ACM Press, New York, New York,
USA, 155–162. https://doi.org/10.1145/1842993.1843021

[30] Krystian Samp and Stefan Decker. 2011. Visual search in radial menus.
In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 6949
LNCS. 248–255. https://doi.org/10.1007/978-3-642-23768-3_21

[31] Andrew Sears and Ben Shneiderman. 1994. Split menus: effectively
using selection frequency to organize menus. ACM Transactions on
Computer-Human Interaction 1, 1 (mar 1994), 27–51. https://doi.org/
10.1145/174630.174632

[32] R. William Soukoreff and I. Scott MacKenzie. 2004. Towards a standard
for pointing device evaluation, perspectives on 27 years of Fitts’ law
research in HCI. International Journal of Human-Computer Studies 61,
6 (dec 2004), 751–789. https://doi.org/10.1016/j.ijhcs.2004.09.001

[33] Shengdong Zhao, Maneesh Agrawala, and Ken Hinckley. 2006. Zone
and polygon menus: using relative position to increase the breadth of
multi-strokemarkingmenus. In Proceedings of the SIGCHI conference on
Human Factors in computing systems - CHI ’06. ACM Press, New York,
New York, USA, 1077–1086. https://doi.org/10.1145/1124772.1124933

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 368 Page 11

https://doi.org/10.1145/1753326.1753534
https://doi.org/10.1145/2617814
https://doi.org/10.1145/2556288.2557093
https://doi.org/10.1145/2501988.2502024
https://doi.org/10.1145/1402256.1402259
https://doi.org/10.1145/1402256.1402259
https://doi.org/10.1145/985692.985766
https://doi.org/10.1145/2470654.2481294
https://doi.org/10.1080/07370020902990402
https://doi.org/10.1080/07370020902990402
https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1134/S000511791308016X
https://doi.org/10.1177/001872089003200605
https://doi.org/10.1037/h0055392
https://doi.org/10.1145/1822018.1822030
https://doi.org/10.1145/1822018.1822030
https://doi.org/10.1134/S0005117912080140
https://doi.org/10.1037/h0056940
https://doi.org/10.1037/h0056940
https://doi.org/10.1145/317456.317470
https://doi.org/10.1145/317456.317470
https://doi.org/10.1177/001872088502700203
https://doi.org/10.1177/001872088502700203
https://doi.org/10.1006/ijhc.2002.0527
https://doi.org/10.1006/ijhc.2002.0527
https://doi.org/10.1145/3025453.3025707
https://doi.org/10.1145/1357054.1357271
https://doi.org/10.1145/1357054.1357271
https://doi.org/10.1207/s15327051hci1903_2
https://doi.org/10.1207/s15327051hci1903_2
https://doi.org/10.1177/107118138102500179
https://doi.org/10.1177/107118138102500179
https://doi.org/10.1109/MC.2017.6
https://doi.org/10.1109/MC.2017.6
https://doi.org/10.1177/001872088602800401
https://doi.org/10.1145/1842993.1843021
https://doi.org/10.1007/978-3-642-23768-3_21
https://doi.org/10.1145/174630.174632
https://doi.org/10.1145/174630.174632
https://doi.org/10.1016/j.ijhcs.2004.09.001
https://doi.org/10.1145/1124772.1124933

	Abstract
	1 Introduction
	2 Related Work
	Algorithmic Approach
	Analytic Approach

	3 Approach Overview
	4 Analytic Approach and Model
	Definitions
	Model
	Theoretical Optimum
	Validating an Idea
	Finding the Number of Children
	Finding the Number of Groups

	5 Validation 1: Recommendations
	Task
	Participants and Apparatus
	Procedure
	Experimental Design
	Results

	6 Validation 2: Prediction
	Item Layouts
	Calibration: Delay Parameters
	Participants and Apparatus
	Procedure
	Layout Parameters
	Experimental Design
	Results

	7 Limitations and future work
	8 Conclusion
	9 Acknowledgments
	References

