
PinchList: Leveraging Pinch Gestures for Hierarchical
List Navigation on Smartphones

Teng Han∗1, Jie Liu∗2, Khalad Hasan3, Mingming Fan4, Junhyeok Kim1, Jiannan Li4, Xiangmin Fan2,
Feng Tian†2, Edward Lank5, Pourang Irani1

1University of
Manitoba

2Institute of Software,
Chinese Academy of Science

3University of British
Columbia - Okanagan

4University of
Toronto

5University of
Waterloo

{hanteng, kimj3415, pourang.irani}@cs.manitoba.ca, {liujie2016, xiangmin, tianfeng}@iscas.ac.cn, khalad.hasan@ubc.ca,
{mfan, jiannanli}@cs.toronto.edu, lank@uwaterloo.ca

Figure 1. Steps of PinchList: (a) two pinched-in fingers starts browsing a list; (b) pinching-out the fingers reveals a sub-list;
(c) move the fingers to explore another sub-list; (d) finger flicking to move the current view to the top and bottom edges of
the screen; (e) start to explore the next two layers; (f) flicking with multiple fingers to navigate back to the previous layer.

ABSTRACT

Intensive exploration and navigation of hierarchical lists
on smartphones can be tedious and time-consuming as it
often requires users to frequently switch between multiple
views. To overcome this limitation, we present PinchList,
a novel interaction design that leverages pinch gestures to
support seamless exploration of multi-level list items in
hierarchical views. With PinchList, sub-lists are accessed
with a pinch-out gesture whereas a pinch-in gesture
navigates back to the previous level. Additionally, pinch
and flick gestures are used to navigate lists consisting of
more than two levels. We conduct a user study to refine
the design parameters of PinchList such as a suitable item
size, and quantitatively evaluate the target acquisition
performance using pinch-in/out gestures in both scrolling

and non-scrolling conditions. In a second study, we
compare the performance of PinchList in a hierarchal
navigation task with two commonly used touch interfaces
for list browsing: pagination and expand-and-collapse
interfaces. The results reveal that PinchList is significantly
faster than other two interfaces in accessing items located
in hierarchical list views. Finally, we demonstrate that
PinchList enables a host of novel applications in list-based
interaction.

CCS CONCEPTS
• Human-centered computing → Human computer
interaction; Gestural input; User interface design.

KEYWORDS
Pinch gesture; Hierarchical list navigation; touchscreen;

ACM Reference format:
Teng Han, Jie Liu, Khalad Hasan, Mingming Fan, Junhyeok Kim, Jiannan
Li, Xiangmin Fan, Feng Tian, Edward Lank, and Pourang Irani. 2019.
PinchList: Leveraging Pinch Gestures for Hierarchical List Navigation on
Smartphones. In Proceedings of CHI Conference on Human Factors in
Computing Systems Proceedings (CHI 2019). ACM, New York, NY, USA.
Paper 501, 13 pages. https://doi.org/10.1145/3290605.3300731

∗Both authors contributed equally to the paper
†Contact author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4-9, 2019, Glasgow, Scotland, UK.
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5970-2/19/05...$15.00.
DOI: https://doi.org/10.1145/3290605.3300731

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 1

1 INTRODUCTION

List view is a common and popular UI component for
content presentation on smartphones. In a list view, items
are aligned vertically in a list to support homogeneous
data browsing and reading. It has been widely applied in
mobile applications such as phonebook, setting, itinerary,
email, notes and music playlist. In many cases, it follows
hierarchical organizations to present multi-level
structured information. Such list interfaces typically either
use “expand-and-collapse” design to show/hide details of
existing items in the same page, or use page transitions
(i.e., pagination) to switch views of different layers [17].

Currently, users navigate lists on mobile devices via
tap and swipe gestures. Although intuitive and easy to
use, the gestures may not work efficiently on hierarchical
list views [21]. Specifically, exploring items in the list
views with tap and swipe gestures often demands
intensive exploration while navigating ups and downs to
access items in the hierarchy (theoretically analyzed cases
are summarized in [4], e.g., comparing itinerary details
when booking a flight, or searching for a setting option
without knowing its exact position). In such cases,
repeated tap and swipe operations could be tedious and
time-consuming.

We propose PinchList, a novel interaction design that
leverages pinch gestures to support quick and easy
transitions in hierarchical lists on smartphones. PinchList
allows users to examine an item’s details or sub-list by
splitting the list view with pinch-out gesture and return to
a previous level with pinch-in gesture. PinchList supports
two operation modes: (i) Pinch-and-Hold to navigate back
and forth between two sequential layers in a list, and (ii)
Pinch-and-Flick to switch among more than two levels.
These two modes work coherently to enable efficient list
exploration/browsing.

PinchList walkthrough: Figure 1 illustrates how
PinchList works. A user starts exploring a list by touching
the screen with two fingers pinched together (Figure 1a).
An invisible line cursor is activated, in the middle of the
fingers, upon the touch and consequently highlights an
item located underneath it. Pinching-out the fingers splits
the current view and reveals a window containing the
item’s child list (Figure 1b). The user explores the list by
moving the fingers up and down. The user may also
quickly switch to a different child list by pinching-in to
close the current view, moving the fingers to another
item, and pinching-out on the item to open the new child
list (Figure 1c). We called this style of exploration as
“Pinch-and-Hold” which works with a typical two-layer

structure. If a list has more than two layers, “Pinch-and-
Flick” operations are used to switch the views.
Specifically, instead of holding the fingers, the user
performs a flick gesture, which moves the top layer to
edges and promotes the child layer to the front view
(Figure 1d). The user may repeat steps a-c on the current
layer (Figure 1e). To resume previous layers, the user
makes a flick or pinch-in gesture with multi-fingers
(Figure 1f), where the number of fingers indicates how
many layers the operation applies to. For instance, two
fingers resume one layer and three fingers resume two.

Benefits of PinchList: On mobile interactions, pinch
gestures are commonly used for zoom in and zoom out
operations (aka pinch-to-zoom). PinchList informs a new
viable way to use pinch gestures for navigating lists on
mobile UIs. It offers the following benefits: i) it minimizes
the need for tap and swipe operations for list view
switching, which often poses efficiency challenges with
roundabout navigations [4]. ii) PinchList supports
seamless multi-level list navigation via pinch and flick
gestures, making PinchList applications scalable. iii)
PinchList enables novel user experiences on list-based
interaction. To show this, we designed several list
applications to demonstrate that with PinchList, users can
intuitively re-order files across folders, efficiently apply
repetitive operations on multiple list items, and make list
command and value selection in one step. These
applications are not well supported with traditional list UI
on smartphones.

We conducted two user studies to explore the design
and performance of PinchList. In the first study, we
quantitatively evaluated the performance of item
acquisition with pinch-in and pinch-out gestures. Results
revealed that item selection time with pinch gestures can
be predicted with Fitts’ law, in both scrolling and non-
scrolling conditions. It was also suggested using the pinch
gestures can accurately and efficiently select items at the
height of 6mm, comparatively smaller than the industrial
guideline (e.g., 8-10mm) for smartphone [17]. This allows
more items to be shown on one screen, reducing the need
for scrolling. The second study confirmed that PinchList
outperforms traditional view-switch and expand-collapse
lists in task completion time when users need to navigate
back and forth to access information in a hierarchical list.

We make the following contributions: i) PinchList, a
novel smartphone interface design that leverages pinch
gestures for efficient navigation with hierarchical list
view; ii) design of parameter and evaluation of PinchList’s

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 2

performance on smartphone touchscreen; iii) application
design that leverages PinchList for novel list interactions.

2 RELATED WORK

PinchList enables seamless and efficient list view
manipulations via adopting pinch gestures. We first
review related work on touch input paradigms that
improve UI performance, which is also the design goal of
PinchList, then we look at scrolling performance modeling
and use of pinch gesture in other interactions.

2.1 Efficient Touch Input Paradigms

Touch input becomes prominent on modern computing
devices but suffers from the fat finger and occlusion
problems. Besides providing theoretical perspectives to
help us understand human touch input [7, 15], a large
body of work have been done to propose alternative UI
designs and presentations to improve the touch input
efficiency [24, 42]. The explorations include the design of
multi-touch gestures that are considered promising for
intuitively and efficiently manipulating UI elements.
Researchers were interested in using multi-touch to
emulate mouse functions for precise item selection [6, 36].
Two fingers are used to control a cursor that appears in
the middle. A benefit of this metaphor is adding a tracking
state layer between non-selection and selection on
touchscreens [9], which enables functions like hover-to-
preview. PinchList also takes benefits from such input
metaphor on mobile touchscreens.

Other than this, a rich set of projects demonstrated
benefits of novel input paradigms deploying the
dexterities of fingers. For instances, Kin et al. [27]
designed a multi-stroke two-handed marking menu for
simultaneous menu and sub-menu selections tasks.
Lepinski et al. [33] designed a marking menu based on
simultaneous finger touches. Pin-and-Cross [35] requires
users to use one finger to pin an object and another finger
to select a target from a pre-activated menu. FastTap [19],
built on users’ spatial memory, is another touch-based
interface for rapid access to menu items. In contrast, our
work is not proposing a new gesture set, but looks into
the use of pinch gestures in the context of list view
manipulations.

Mobile and wearable devices have smaller touchscreens
that are normally under 6 inches [16]. Under this
constraint, using stroke gestures showed benefits in text
input [11], command search [34] and item access [20].
Besides, to expand the vocabulary of touch input on
miniature touchscreens, derivatives of simple gestures are

used, e.g., touch/tap, double touch/tap, long touch/press,
and sequences of taps [30, 39] and swipes [29]. Pinch
gesture is also popular on smartphones, but to our
knowledge, it has not been applied for menu or list
selection.

2.2 List Scroll and Navigation Performance

Scrolling is a common task in content browsing UI, e.g.,
on list view. On desktop, typical scrolling techniques
include using a mouse wheel, joystick, scroll bar, and
multi-finger gesture on trackpad. On mobile devices,
scrolling is often carried out with scroll gestures (e.g.,
finger swiping or flicking). Scrolling is considered more
suitable than pagination on continuous and lengthy
content [3].

To quantify the scrolling performance on desktop,
Hinckley et al. [22] tested four scrolling techniques and
found that the movement time (MT) had a good fit to the
index of difficulty (ID), and thus the scrolling performance
can be modeled with Fitts’ law. The experiment was based
on the case that target’s position was known. Anderson
[1] later reported that the scrolling movement time (T) is
linear to the target distance (D) if users did not have prior
knowledge of the target’s position. Cockburn and Gutwin
[12] clarified that the scrolling model is either logarithmic
or linear, depending on “whether users can employ an
open-loop ballistic phase of motion toward the target”. For
example, linear regression models fit to random ordered
lists. In contrast, alphabetically or numerically ordered
lists fit better with logarithmic models. The paper also
stated that scrolling and non-scrolling tasks resulted in
substantial differences among parameters, considering the
fact that users could not visually locate the target quickly
if scrolling action was required.

Navigating hierarchical lists involves a series of
scrolling and selection, each of which depends on the
layout manner of the corresponding layer [12]. In this
paper, we rely on the previous findings to gain the prior
understanding of PinchList’s scrolling performance.
However, using pinch gestures and a dual finger mid-line
metaphor to select in a list on mobile touchscreens has not
been formally studied.

2.3 Pinch Gestures in Interactions

The use of pinch gestures for interactions could be traced
back to the 1980s [10]. Krueger [28] demonstrated a
vision- based tracking system that allowed users to use
index and thumbs of both hands to scale graphical objects.
Wellner’s [43] projected tabletop demonstrated pinch

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 3

gestures for scaling and panning operations. This revealed
the basic attributes of pinch gesture: pulling two fingers
apart to scale and dragging both fingers to translate. Pinch
gestures have since been widely explored [23] and applied
to support interactive tasks, such as pinch-to-zoom [25],
context + focus data visualization [38], and parameter
control [13]. Negulescu et al. [37] explored bi-manual
pinch-to-zoom gestures. FingerGlass [26] used pinch
gestures to define an area of interest and use the other
hand to select in a magnified view. WritLarge [44] frames
a selection portion on canvas and adjusts its size and
orientation with pinch gestures. Such selection
mechanism integrates pinch-to-zoom and better supports
actions with the other hands. Pinch-to-Zoom-Plus [2]
empirically examined designs that reduce clutching and
panning required with current pinch-to-zoom technique.
On a Macbook touchpad, Multi-finger pinch is used to
display desktop or Launchpad [25].

Pinch gestures have been widely used on mobile phones
since the announcement of iPhone in 2007 [40]. An iconic
function of the gesture is zooming in and out while
browsing a photo, webpage and map etc. Tran et al. [41]
systematically examined how users pinch and spread on
mobile phones. Designers have been exploring alternative
use of pinch gestures on mobile phones, such as
performing pinch gestures to close and open photo
browser, or as a shortcut to “return” command [14]. In this
paper, we incorporate pinch gestures to support seamless
list view manipulations on mobile devices.

3 STUDY 1: SELECTION PERFORMANCE

PinchList uses a dual finger mid-line metaphor to select in
a list. Prior similar work [6, 36] were neither designed for
list navigation nor formally evaluated. We considered key
parameters such as item size and item visibility while
designing PinchList. In particular, we hypothesized that
item size could be smaller than conventional requirements
as items are selected by a line cursor instead of a finger,
and users’ performance would be affected by the visibility
of the item (e.g., on-screen vs. off-screen). Consequently,
Study 1 was designed to quantitatively evaluate the
performance and to identify suitable design parameters
for PinchList.

The list could be static or scrolling (i.e., dynamic) when
fingers move, depending on the number of list items and
its length compared to the screen height. We use a
scrolling design that is akin to scrollbar on desktop.
Specifically, the vertical position of the cursor on the
screen is mapped to the portion of the list view that is

displayed. This scrolling method is straightforward and
simplifies training users on how to use it. The evaluation
of the performance of such list item selection technique
under both the static and scrolling conditions is required
to optimize design parameters such as item size and list
length.

We made the following analysis before designing the
study. First, the selection performance is expected to
follow the results of Cockburn and Gutwin’s [12], that the
selection time will be linear or logarithmic with distance,
depending on whether users are able to employ a
feedback-free ballistic phase of motion towards the target.
If they can, the performance will be logarithmic. This
requires users to have a mental model of the list contents,
e.g., the list is alphabetically or numerically ordered.
Second, different from tapping to select, the item selection
in PinchList is not constrained by the contact area of the
fingertip, thus the items could be smaller in size than the
regular requirement (i.e., 8-10mm) from design guidelines
[17]. This would allow more items to be displayed on the
screen at a time, reducing the need for scrolling. Third,
scrolling with pinch gestures is not expected to be
efficient on a long list, where the CD gain (= length of the
list / length of the screen) would be too large for practical
operation. With these considerations, we followed
Hinckley et al.’s [22] approach, designed and conducted
this study using the Fitts’ task paradigm.

3.1 Experiment Conditions

This study used 1D Fitts’ reciprocal tasks to investigate
how the target size and target distance affects the target
acquisition time using PinchList, under both scrolling and
non-scrolling conditions. The standard tap technique was
included as a baseline.

Figure 2: Examples of Study 1 interfaces. (a-c) static tasks
with PinchIn; (d-e) dynamic tasks with PinchOut.

3.1.1 Techniques. Three techniques were evaluated:
PinchIn, PinchOut and Tap. With PinchIn, a user acquires a
target with thumb and index fingers pinched-in (Figure
2a-c). PinchOut is similar to PinchIn, whereas the two

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 4

fingers are kept apart at distances of users’ choice (Figure
2d-e). We did not add any restrictions, but simply
instructed participants to naturally and comfortably
pinch-in/out their fingers. Tap is akin to the standard tap
gesture.

3.1.2 Target Size. The target size was defined by the height
of an item in the list view. We included target sizes of 2, 4,
6, 8 and 10mm. These target sizes were chosen to reflect
the sizes of common UI elements on smartphones (e.g.,
2.5mm for a hyperlink of a website; 4mm for the size of a
key on a soft keyboard, or 10mm for a button).

3.1.3 Target Distance. We explored users’ performance on
selecting both on-screen and off-screen items in static and
dynamic conditions, respectively. For Static condition,
targets were placed 30, 60 and 90mm apart, making them
always visible on the screen (Figure 2a-c) and participants
did not need to scroll the view. For Dynamic condition,
targets were placed 150, 180, and 210mm apart, making
the targets invisible to participants initially (Figure 2d-e).
Participants had to scroll the view to see the targets. To
avoid potential impact of different CD gains resulting
from different list length, we set a fixed CD gain of 2 for
the dynamic selections. In case of Tap, participants swipe
the view and tap on the target when it becomes visible.

3.2 Tasks and Procedure

For each condition, trials start with rendering two targets
symmetrically about the screen center, colored in red. A
participant moves their fingers up and down to select the
targets until they complete all the repetitions of the
condition. A line cursor is visualized to indicate current
position. For PinchIn and PinchOut, once the cursor is
moved within the target, the target turns to green, and the
participant holds it (i.e., dwell) for 500 milliseconds to
confirm the selection. For off-screen targets, the interface
draws a seekbar to indicate the targets’ position. The
participants were instructed to select the targets as
quickly and accurately as possible. The trial time was
calculated from the time when a target was displayed
on/off the screen to the time when they successfully
selected the target.

We used a 3 (techniques) × 5 (target sizes) × 6 (target
distances) within-subject design for this study. Each
condition was repeated 11 times, and the first trial was
excluded as users were asked to start from the screen
center on the first trial. These yield 900 trials per
participant. We counterbalanced the techniques across the
participants and randomized the order of target sizes and
distances.

A Huawei P9 Plus smartphone was used in the study.
The phone has a screen size of 5.5 inches with a resolution
of 1080×1920 pixels. The software was implemented with
HTML5 + Javascript that ran on Chrome in full-screen
mode. We used the same device for the other studies.

12 participants (4 females) with ages between 22 and 37
(M = 24.6, SD=3.9) participated in the study. All of them
were right-handed and used smartphones frequently in
their daily activities. Participants were seated while
holding the device in their left hand, and performing the
tasks using their right hand. They were first introduced
the gestures and tasks, and had a few practice trials. The
participants could take a short break after each condition.
The study took about 40 mins for each participant.

3.3 Results

In Study 1, the participants had to successfully select each
target before proceeding to the next trial. As such, there
was no error data. The same protocol was used in prior
evaluations [12, 18]. We removed 155 outliers (1.44%) from
the data where the trial times were 3 standard deviation
away from the mean. For PinchIn and PinchOut, average
trial time increased drastically (10mm  8mm: 5%, 8mm
 6mm: 6%, 6mm  4 mm: 11%, 4mm  2mm: 21%)
when the target size was smaller than 6mm (Figure 3b).

We then performed repeated measures ANOVA (RM-
ANOVA) and Bonferroni adjusted post-hoc pairwise
comparisons to rest of the trials. As suggested by [12],
users can rapidly visually locate the target and move to
the data in the static condition, while in the dynamic
condition, users have to scroll the list as the precursor to
visual inspection. These make substantial differences, and
as a result, the two conditions were analyzed separately.

RM-ANOVA showed a significant effect for the
technique in static condition (F2,22 = 19.49, p < 0.001). Post-
hoc pairwise comparisons showed that Tap (M = 674ms)
was the fastest, followed by PinchIn (M = 1311ms) and
PinchOut (M = 1356ms) (all p < 0.05). We also observed a
significant effect in the dynamic condition (F2,22 = 26.39, p
< 0.001). Post-hoc pairwise comparisons showed that Tap
(M = 1682ms) was significantly faster than other two
techniques, PinchIn (M = 2210ms) and PinchOut (M =
2160ms) (all p < 0.05). This is understandable as tapping
can be done with no delay, while PinchIn and PinchOut
require a need to slow down finger movement in order to
prepare to stop in place.

For both conditions, significant differences were
observed on target size (static: F4,44 = 342.80, p < 0.001,

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 5

dynamic: F4,44 = 193.12, p < 0.001) and target distance
(static: F2,22 = 130.45, p < 0.001, dynamic: F2,22 = 44.68, p <
0.001). Post-hoc pairwise comparisons of the target sizes
revealed statistically significant difference between all the
pairs (all p < 0.05). The average trial time increased with
target size: the average time for 10mm, 8mm, 6mm, 4mm
and 2mm were 906ms, 955ms, 1020ms, 1184ms, 1504ms in
static condition, and 1740ms, 1813ms, 1922ms, 2097ms and
2514ms in dynamic condition, respectively. Additionally,
post-hoc pairwise comparisons of target distance showed
significant difference between 30mm (999ms), 60mm
(1112ms) and 90mm (1230ms) in static condition, and
between 150mm (1920ms), 180mm (1992ms) and 210mm
(2139ms) in dynamic condition (all p < 0.05). As expected,
targets at a closer distance was always faster than the
targets that are located at a further distance.

For the static conditions, our results showed an
interaction effect between technique and target distance (p
< 0.05) (Figure 3c). It appears that the poor performance of
PinchOut at a longer target distance is mainly caused by the
fact that users have difficulty controlling the PinchOut
when the targets are located at the screen edge.

Trial times across the techniques were further analyzed
to see whether it can be modelled with the Fitts’ law.
Pairing the target size and target distance yielded 15
conditions with the index difficulty (ID) ranging from 2 to
5.52 bits for the static condition and between 4 and 6.73 for
the dynamic condition. Linear regression analysis on the
data revealed a strong correlation between the trial time
and ID, with all R2 values above 0.89 (Figure 3d and 3e).
These findings confirm that target selection with PinchIn
and PinchOut can be modelled with Fitts’ law. Interestingly,
we observed lower R2 values for Tap compare to both
PinchIn and PinchOut. It could possibly be due to the finger

switching between touchscreen and mid-air for target
selections with Tap, which was not required for the other
two techniques.

3.4 Discussion

The results suggested that using PinchIn and PinchOut can
select list items efficiently at a size of 6mm, comparatively
smaller than regular guideline (i.e., 8-10mm) [17]. This
potentially allows more items to be displayed at one screen,
reducing the necessity of scrolling. It was found that
selection performance with pinch gestures can be modelled
with Fitts' law, providing further guidance on determining
item size and list length of PinchList.

The results showed that Tap is faster than the two pinch
gestures for both static and dynamic conditions. We believe
that the results are primarily due to the extra dwell time
added to the two pinch gestures. When scrolling is needed,
manipulating the scroll as a precursor for visual inspection
becomes a key limiting factor [12], and this weakens the
impact of the dwell action. More importantly, the result
delivers the message that using pinch gestures for a single
layer list item selection may not be as efficient as tapping.
This motivates us to investigate how the pinch gestures
could benefit the hierarchical list navigations, which is the
essential goal of designing PinchList.

The dwell time was included in the trial time to avoid
biased analysis. However, dwell is not an ideal choice for
item selection as it might interfere with task performance
[22]. Selection can be made with other methods, e.g., force
press, finger lift-off, depending on the tasks and
applications. Meanwhile, selection actions are only needed
to invoke an item and there are cases where invocation is
not needed, such as when browsing items in a list.

Figure 3: Study 1 results.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 6

One limitation of the study design is that we did not
investigate the pinch gestures' performance on lists of
various length. We suspect that there exists a tradeoff
between the performance and the list length / number of
items. When scrolling is required, using the pinch gestures
takes benefits from being able to quickly locate the target
with a small movement of fingers. However, if the list is too
long, the scrolling speed will be too fast for users to visually
search the target, and accurately position the line cursor
onto the target. It is not recommended to use the pinch
gestures in such cases.

4 STUDY 2: HIERACHICAL NAVIGATION
PERFOMANCE

PinchList supports users to perform Pinch-and-Hold to
navigate back and forth between two layers, and Pinch-
and-Flick to switch views among more than two layers in
list hierarchy. To validate this design, we compared the
performance of PinchList with two traditional list view
interfaces: Expand-and-Collapse and View-Switch, in a
mockup navigating task that requires users to explore items
under a hierarchical list.

4.1 Pinch-and-Hold, and Pinch-and-Flick

We incorporate pinch gestures with the use of multi-fingers
to design the following two techniques.

4.1.1 Pinch-and-Hold. This is to enable seamless transitions
between two layers. With Pinch-and-Hold, users start by
touching the screen with two pinched-in fingers (normally
index and thumb) and move them up and down to select
items on a layer, e.g., layer 1 (Figure 4a). Pinching out the
fingers splits the view, and shows a sub-list under a
previously selected item. Users may keep the fingers apart
and move them up and down to examine the sub-list, e.g.,
layer 2 (Figure 4b). If users do not find targets of interest,
they could pinch-in the fingers to close the sub-list view,
and continue exploring other items on layer 1 (Figure 4c-e).

Figure 4: Use Pinch-and-Hold gestures to navigate between
two layers.

4.1.2 Pinch-and-Flick. Users may need to explore lists with
many layers. However, due to the binary states of pinch-in
and pinch-out operations, Pinch-and-Hold imposes

challenges while accessing more than two layers. To solve
this issue, we design Pinch-and-Flick that combines pinch
gestures with finger flicking. Instead of performing pinch-in
gesture to resume a parent layer, a user can flick the fingers
outwards (Figure 5a). This action moves and anchors the
current layer to the top and bottom edges on the screen,
and sends the child layer into the foreground (Figure 5b).
The user is now able to perform the Pinch-and-Hold
gestures on the next two layers in the hierarchy.

Figure 5: Pinch-and-Flick gestures.

To navigate back to previous layers, the user performs
flick-inwards gesture (Figure 5c). This is analogous to the
pinch-in expect that (i) the user shall move fingers faster,
and (ii) the fingers may get off the screen when the gesture
is completed. The user may also use multiple fingers to
indicate the number of previous layers to resume, e.g., 2-
finger flicking resumes one previous layer, and 3-finger
flicking resumes two previous layers (Figure 5d). This
setting also applies to the pinch-in gestures, such that users
can navigate back to a certain previous layer directly
without going through intermediate layers (Figure 5e).

4.2 Experiment Tasks and Conditions

Study 2 aims to evaluate the performance of the described
gestures in accessing items in a hierarchical list. To mimic
real usage scenarios, an analytic decision-making task was
designed that asked users to explore and compare fruit
prices at different markets, on different dates and find the
minimum price. We used a three-layer hierarchical list in
the study, with 10 items on each layer (i.e., no scrolling
needed, 1st layer – dates, 2nd layer – markets, 3rd layer –
fruits with prices). To minimize the visual search effort and
examine the transition efficiency among layers, the items
on each layer were either numerically or alphabetically
ordered, and the target items were highlighted. In each trial,
participants followed given target path(s) to find the
information needed for comparing the prices.

4.2.1 Navigation Techniques. Participants are able to use
Pinch-and-Hold and Pinch-and-Flick on the PinchList
interface (Figure 6-top). Besides, we implemented an
Expand-and-Collapse and a View-Switch list interface as
baselines. These are two commonly used interface

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 7

paradigms to support list navigations that are operated with
tap and swipe gestures. Expand-and-Collapse shows and
hides details of existing list items by expanding and
collapsing list content vertically upon a finger tap (Figure 6-
middle). View-Switch paginates list layers into separate
views (Figure 6-bottom). Navigation among the views is
done by tapping an item to open a view containing the sub-
lists or tap on a back button to return to a previous view.

To eliminate the potential effects of item size on
navigating efficiency of the techniques, we set the item size
to 8mm according to [17] in the study for all conditions.

4.2.2 Task Types. Two types of tasks are set. One asks
participants to “Type 1 - find the lowest price of a fruit, in a
market, on x dates”, and the other asks users to “Type 2 -
find the lowest price of a fruit, in x markets, on a date”. This
is to examine efficiencies when users need to navigate
among 3 layers (Type 1) and among 2 layers (Type 2).

4.2.3 Task Complexities. This condition defines the value of x
in Task Types. Here in this study, we set x = 1, 3, 5, which
means in a trial, participants need to compare 1, 3, 5 prices
before they can find the lowest one. In case of 1, they just
need to report the observed price, while in cases of 3 and 5,
they need to navigate to the prices sequentially and report
the lowest price. This is to examine the multi-layer
navigation efficiencies using different techniques.

Figure 6: The three techniques used in Study 2.

4.3 Procedure

We used a 3 (techniques) × 2 (task types) × 3 (task
complexities) within-subject design, with each condition
repeated 10 times, resulting in a total of 180 trials per
participant. The techniques were counter-balanced across
the participants and the presentation orders of the task
types and task complexities were randomized. The tasks of
each Type-Complexity group were pre-defined with
randomly generated sequences. For example, Type 1 and
Complexity 3 always returned the same set of 10 tasks, no
matter which technique was being tested. This was to
make sure the same tasks were performed with each of
the techniques. Participants had to complete the 10 tasks
before moving to the next Type-Complexity group. To
avoid leveraging memories of previous task sequences and
results, the order of the 10 tasks was randomized, and the
prices to check were randomly generated in real time.

At the beginning of each trial, a prompt of the trial task
was shown on the top of the screen. Participants spent a
short time reading the task and pressed a “start” button on
the screen to start the trial. The prompt was always shown
during the test. After browsing the items, participants
pressed the “back” button on the device to end the trial
and typed the answer. If the answer was not correct, a
trial with the same task was shown at the end of the 10
original trials.

We instructed the participants to perform the tasks as
quickly and accurately as possible. The trial time was
measured by the time span between the presses on the
“start” and “back” buttons. The errors count was
incremented by 1 if an incorrect answer was entered.

Figure 7: (a) A participant in Study 2; (b) Study 2 interface.

We recruited a different group of 12 participants (4
females) with ages between 21 and 33 (M = 26.6, SD = 3.7).
All of them were right-handed and used smartphones

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 8

frequently in their daily activities. Like Study 1, the
participants were seated while holding the device in their
left hand, and performed the tasks using their right hand
(Figure 7). They were given practice trials to get familiar
with the three techniques and tasks. The study started
when the participants felt comfortable using the
navigation techniques. The study lasted ~1 hour for each
participant.

4.4 Results

In total, data from 2375 trials were collected, among which
215 trials were marked as errors because the participants
typed wrong answers. We observed that the errors were
distributed equally across the techniques. In specific, for
PinchList, Expand-and-Collapse, and View-Switch, 9.9%,
7.5% and 9.8% error rates were observed, respectively.

We excluded these trials for the rest of our analysis.
The trial time was analyzed using RM-ANOVA and
Bonferroni adjusted post-hoc pairwise comparisons. The
results revealed that PinchList with a mean trial time of
5.99s was significantly faster (F2,22 = 383.21, p < 0.001) than
View Switch (M = 7.13s) and Expand-and-Collapse (M =
9.53s) (Figure 8a). Both Task Type and Task Complexity
were found to have interaction effects with Technique.
First, an interaction effect was found on Technique and
Task Type (F2,22 = 27.64, p < 0.001) (Figure 8b). As
expected, the participants used different strategies for
different task types. With PinchList, they mainly
performed pinch-in and pinch-out gestures for the Type 2
tasks, and more flick gestures are required when
performing Type 1 tasks. The frequent switch between the
pinch and flick gestures made the task completion time
longer. Meanwhile, an interaction effect was found on
Technique and Task Complexity (F4,44 = 78.16, p < 0.001)
(Figure 8c). When users need to browse more items to
make a decision, using PinchList was faster compared to
the other techniques.

Figure 8: Study 2 results.

Besides, in total, the finger lift-up (from the screen)

happened 3528, 8704, and 8614 times for the techniques.

While using PinchList, 1262 out of 1409 times (89.6%) the

participants used the three finger flicking gesture to

navigate back to the 1st layer from the 3rd layer.

4.5 Discussion

Compared to the Expand-and-Collapse and View-Switch
list interfaces, PinchList showed advantages in browsing
information located in different levels of a hierarchy. It
was shown to be faster in both types of the tasks, and for
different levels of complexity. This makes it a promising
list navigation technique when users need to frequently
navigate up and down in multiple layers. We anticipate
that the more layers users need to browse in the
hierarchy, the more efficiency benefit PinchList could
bring. This is due to the following two reasons. First, the
layer transitions with pinch-in and pinch-out gestures do
not require users to leave the fingers off the screen, nor
moving the fingers to reach a “back” button. Second,
PinchList provides an efficient way to navigate back to
previous layers, i.e., using multiple fingers to indicate the
number of layers to resume, and users can start right
away to explore the next item as fingers remained on the
list.

User feedback on PinchList was generally positive.
Most participants appreciated the simple design of
PinchList. However, some found it challenging when
frequent switch between pinch and flick gestures was
needed. They felt the pinch gestures were intuitive to
operate a two-layer hierarchy, but the mixed use with
flick gestures was not that straightforward. Unlike the
pinch gestures, flick gestures do not require users to keep
fingers on the screen when the action is completed.
Besides, flick gestures are normally performed in a faster
way, without the need for examining or locating targets.
Users may get confused while using the two gestures
together. We expect this confusion will diminish when
users get more training and become more familiar with
the interface.

In the study, we did not consider long lists, where
scrolling on each layer is required and more visual
inspection is needed. Involving more factors will make the
study conditions hard to control and the study procedure
redundant. Specifically, for View-Switch and Expand-and-
Collapse, more swiping gestures are expected. For
PinchList, users need to move fingers up and down more
often to bring the targets into view. It is expected that
with a long list, the height of the sub-window view
created with the pinch-out gesture shall be considered as a

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 9

factor, which affects how fast users can visually locate the
targets.

5 APPLICATIONS

Besides improving the navigating efficiency, PinchList
enables novel interaction opportunities on mobile list UI.

5.1 List Reorder

Users may want to re-order a list, such as when managing
their agenda, or photo albums. The current interface
supports users reordering items by dragging them on non-
hierarchical lists (i.e., single layer) [17], which is simple
and intuitive. This action, however, is not applicable to
multi-layer lists, where users often have to select the item,
invoke “transfer to” command, and select a target folder.

Figure 9: Using pinch gestures to re-order a music list.

PinchList supports the intuitive “drag” action to move
an item across different folders. For example, a user wants
to move a song in folder “Jazz” to “Piano”. She first moves
to the song with a pinch-out gesture and makes a harder
force press to select the item (Figure 9a-b). When she
pinches-in and closes the folder, the song item is visually
docked to the side of the fingers while not affecting the
fingers’ operations (Figure 9c). She then opens the “Piano”
folder with the pinch gestures and moves the fingers up
and down to put the item to a desired position in the list
(Figure 9d). Releasing the fingers completes the task.

Figure 10: Using pinch gestures to add multiple shopping
items under different categories.

5.2 Subview Menu

PinchList can be used to support quick multi-selections
with sub-view menus. When a user needs to apply
repetitive operations to multiple list items, e.g., adding
items to cart when browsing a shopping app, she normally
has to navigate back and forth from the list views. With
PinchList, such efforts could be alleviated. For instance,
the user wants to purchase several books which are
located under different categories. She could use pinch-in
and pinch-out gestures to quickly navigate to a book and
add it to the shopping cart with a force press (Figure 10a-
c). She can then continue the browsing and add another
book following the same procedure.

5.3 Simultaneous Command and Value Selection

A benefit of using PinchList interface is that it supports
command invocation and value selection in a single action
(i.e., no need to leave fingers off the screen before an
operation is completed). Upon making a selection of a
command item with pinch gestures, a user can choose a
value from the sub-view with fingers moving up and
down. Releasing the fingers confirms the selection. The
user can also cancel the value selection by pinching-in and
leaving the fingers off the screen. This command
invocation mechanism not only applies to selection of
discrete values, but also applies to the selection of
continuous values. For instance, the user can adjust music
volume by first invocating the command, and moving the
fingers up and down to adjust the volume (Figure 11).

Figure 11: Using pinch gestures to select volume command
and adjust the value.

6 DISCUSSION AND FUTURE WORK

Study 1 results showed that users can select list item
efficiently at size 6mm, allowing more items to be
displayed at one screen and reducing the necessity of
scrolling. Using pinching gestures to select list item in
both scrolling and non-scrolling conditions can be
modeled with Fitts' Law. The pinch gestures were slower

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 10

than Tap for both scrolling and non-scrolling conditions,
suggesting that using pinch gestures may not be best
suited for single layer list selections. Study 2 investigated
PinchList's performance in navigating hierarchical layers.
The results clearly indicated that PinchList was faster in
browsing information located in different levels of a
hierarchy. PinchList can be efficient for hierarchical list
exploration when users need to navigate up and down
frequently. In both studies, we used a visible line to
provide visual cues on the fingers’ position and selected
item. In real applications, other visual cues can be used
(e.g., item highlight, fisheye effect [5, 32]). It is also
possible to provide no visual cues, but further studies are
required to evaluate the performance.

We did not observe fat finger problems from the
studies and nor were they mentioned in the participants'
feedback. This might be due to the indirect nature of
selection actions with the line cursor. In real applications,
contents can be placed to avoid potential finger occlusions
(e.g., weighted towards the left to allow the fingers to
operate on the right side). Nonetheless, we have found
several limitations of PinchList:

 Screen Edges: It becomes difficult for users to move
fingers when an item is located close to top or bottom
screen edges, especially when using pinch-out gestures.
One solution could be extending the length of the list,
such that the list is always in scrolling mode when users
move the fingers up and down, and they do not need to
reach the screen edges to acquire the items. Designers
could also decrease the item height (e.g., 6mm based on
Study 1), and make more buffer space on the edges.

View Displacement: With PinchList, users could
conveniently examine a sub-list via moving the pinched-
out fingers up and down. This may sometimes scroll the
parent list’s position when users pinch in and return to
the previous layer. Designers should be careful on the
possible view displacement which may cause confusion to
users.

Learnability and Discoverability: Although users are
familiar with pinch gestures, applying them to operate list
view is still new. We found that PinchList has learnability
challenges. The study participants spent more time to get
used to the PinchList gestures. Meanwhile, some
participants expressed that they felt more mental
workload when using PinchList, as they have to memorize
the new gestures and recall how the list would behave
with the gestures. Some other participants felt
uncomfortable when they had to keep the fingers on the

screen for a longer period with pinch-in/out gestures. In
addition, new users may not know such unconventional
gestures are available. These problems can be alleviated by
providing sufficient tutorial and cues, e.g. video
instructions and reminding the users of the availability of
PinchList gestures when the tasks require frequent up and
down navigations.

Usage: Like other multi-touch interactions, PinchList is
limited as it requires a typical two-handed interaction
scenario, with one hand holding the device and the other
hand performing the tasks. Nonetheless, one-handed
version of PinchList could be explored via deploying more
expressive dimensions of single touch input [8], or
incorporating finger aware interactions on the device [31].

Future works include carrying out studies on real lists,
to quantify PinchList's pros and cons on exploring lists
with greater lengths and deeper hierarchies, as well as on
different data types. We will further investigate how
PinchList can be used in combination with tap and swipe
gestures. This will make it more adaptive to current
interfaces that users are already familiar with.
Furthermore, it is also worth exploring new use scenarios
with PinchList that could make list view more interactive
and more expressive in functions.

7 CONCLUSION

PinchList informs a new viable way to use pinch gestures
for navigating lists on mobile UIs, enabling a host of new
applications in list-based interaction. We first conducted a
user study to evaluate the performance of item selection
with pinch-in and pinch-out gestures. The results
confirmed that the performance can be modeled with Fitts’
Law under both scrolling and non-scrolling conditions.
The second study compared PinchList with two standard
list interfaces: View Switch and Expand-and-Collapse, in
tasks that involve browsing multiple items before
reaching a decision in a list hierarchy. The results revealed
that with PinchList, users can access hierarchical items
faster than the other two interfaces that we commonly use
on smartphones. Finally, the paper demonstrates that
PinchList enables new list UI interaction opportunities.

ACKNOWLEDGMENTS
We acknowledge the support from the National Key R&D
Program of China (Grant No. 2016YFB1001405), the
National Natural Science Foundation of China (Grant No.
61872349), the Key Research Program of Frontier Sciences,
CAS (Grant No. QYZDY-SSW-JSC041), the CAS Pioneer

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 11

Hundred Talents Program, the NSERC CRC program as
well as the NSERC Discovery grant.

REFERENCES
[1] Tue Haste Andersen. 2005. A simple movement time model for

scrolling. In CHI '05 Extended Abstracts on Human Factors in
Computing Systems (CHI EA '05). ACM, New York, NY, USA, 1180-
1183. http://dx.doi.org/10.1145/1056808.1056871

[2] Jeff Avery, Mark Choi, Daniel Vogel, and Edward Lank. 2014.
Pinch-to-zoom-plus: an enhanced pinch-to-zoom that reduces
clutching and panning. In Proceedings of the 27th annual ACM
symposium on User interface software and technology (UIST '14).
ACM, New York, NY, USA, 595-604.
https://doi.org/10.1145/2642918.2647352

[3] Nick Babich. UX: Infinite Scrolling vs. Pagination. Last retrieved on
Sep 8th, 2018, from https://uxplanet.org/ux-infinite-scrolling-vs-
pagination-1030d29376f1

[4] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2016. Visual Menu
Techniques. ACM Comput. Surv. 49, 4, Article 60 (December 2016),
41 pages. https://doi.org/10.1145/3002171

[5] Benjamin B. Bederson. 2000. Fisheye menus. In Proceedings of the
13th annual ACM symposium on User interface software and
technology (UIST '00). ACM, New York, NY, USA, 217-225.
http://dx.doi.org/10.1145/354401.354782

[6] Hrvoje Benko, Andrew D. Wilson, and Patrick Baudisch. 2006.
Precise selection techniques for multi-touch screens. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems
(CHI '06). ACM, New York, NY, USA, 1263-1272.
http://dx.doi.org/10.1145/1124772.1124963

[7] Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts law: modeling
finger touch with fitts' law. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '13). ACM, New York,
NY, USA, 1363-1372. https://doi.org/10.1145/2470654.2466180

[8] Sebastian Boring, David Ledo, Xiang 'Anthony' Chen, Nicolai
Marquardt, Anthony Tang, and Saul Greenberg. 2012. The fat
thumb: using the thumb's contact size for single-handed mobile
interaction. In Proceedings of the 14th international conference on
Human-computer interaction with mobile devices and services
(MobileHCI '12). ACM, New York, NY, USA, 39-48.
https://doi.org/10.1145/2371574.2371582

[9] William BUXTON. 1990. A three-state model of graphical input. In
Proceedings of the IFIP TC13 Third Interational Conference on
Human-Computer Interaction (1990), North-Holland Publishing Co.,
725582, 449-456.

[10] William Buxton. Multi-Touch Systems that I Have Known and
Loved. Bill Buxton. Microsoft Research. Original: Jan. 12, 2007.
Version: Feb 1, 2009.

[11] Xiang ‘Anthony’ Chen, Tovi Grossman, and George Fitzmaurice.
2014. Swipeboard: a text entry technique for ultra-small interfaces
that supports novice to expert transitions. In Proceedings of the 27th
annual ACM symposium on User interface software and technology
(UIST '14). ACM, New York, NY, USA, 615-620. https://doi-
org/10.1145/2642918.2647354

[12] Andy Cockburn, and Carl Gutwin. 2009. A predictive model of
human performance with scrolling and hierarchical lists. Human-
Computer Interaction 24, 3, 273-314. DOI=
http://dx.doi.org/10.1080/07370020902990402.

[13] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. 2009. A
review of overview+detail, zooming, and focus+context interfaces.
ACM Comput. Surv. 41, 1, Article 2 (January 2009), 31 pages.
http://dx.doi.org/10.1145/1456650.1456652

[14] Sam Costello. 2018. Clear To Do List iPhone App Review. Last
retrieved on Jan 7th, 2019, from https://www.lifewire.com/clear-to-
do-list-app-review-1999157

[15] Paul M. Fitts. 1954. The information capacity of the human motor
system in controlling the amplitude of movement. Journal of
Experimental Psychology, 47(6), 381-391.
http://dx.doi.org/10.1037/h0055392

[16] Media Genesis. Popular Screen Resolutions: Designing for All. Last
retrieved on Sep 8th, 2018, from https://mediag.com/news/popular-
screen-resolutions-designing-for-all/

[17] Google. Material Design - Lists. Last retrieved on Sep 8th, 2018,
from https://material.io/design/components/lists.html

[18] Tovi Grossman and Ravin Balakrishnan. 2005. The bubble cursor:
enhancing target acquisition by dynamic resizing of the cursor's
activation area. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '05). ACM, New York, NY, USA,
281-290. https://doi.org/10.1145/1054972.1055012

[19] Carl Gutwin, Andy Cockburn, Joey Scarr, Sylvain Malacria, and
Scott C. Olson. 2014. Faster command selection on tablets with
FastTap. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '14). ACM, New York, NY, USA, 2617-
2626. http://dx.doi.org/10.1145/2556288.2557136

[20] Teng Han, Jiannan Li, Khalad Hasan, Keisuke Nakamura, Randy
Gomez, Ravin Balakrishnan, and Pourang Irani. 2018. PageFlip:
Leveraging Page-Flipping Gestures for Efficient Command and
Value Selection on Smartwatches. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI '18). ACM,
New York, NY, USA, Paper 529, 12 pages.
https://doi.org/10.1145/3173574.3174103

[21] Khalad Hasan, David Ahlström, Junhyeok Kim, and Pourang Irani.
2017. AirPanes: Two-Handed Around-Device Interaction for Pane
Switching on Smartphones. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI '17). ACM,
New York, NY, USA, 679-691.
https://doi.org/10.1145/3025453.3026029

[22] Ken Hinckley, Edward Cutrell, Steve Bathiche, and Tim Muss. 2002.
Quantitative analysis of scrolling techniques. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'02). ACM, New York, NY, USA, 65-72.
http://dx.doi.org/10.1145/503376.503389

[23] Eve Hoggan, Miguel Nacenta, Per Ola Kristensson, John
Williamson, Antti Oulasvirta, and Anu Lehtiö. 2013. Multi-touch
pinch gestures: performance and ergonomics. In Proceedings of the
2013 ACM international conference on Interactive tabletops and
surfaces (ITS '13). ACM, New York, NY, USA, 219-222.
https://doi.org/10.1145/2512349.2512817

[24] Christian Holz and Patrick Baudisch. 2010. The generalized
perceived input point model and how to double touch accuracy by
extracting fingerprints. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '10). ACM, New York,
NY, USA, 581-590. https://doi.org/10.1145/1753326.1753413

[25] Apple Inc. Use Multi-Touch gestures on your Mac. Last retrieved
on Sep 8th, 2018, from https://support.apple.com/en-us/HT204895

[26] Dominik P. Käser, Maneesh Agrawala, and Mark Pauly. 2011.
FingerGlass: efficient multiscale interaction on multitouch screens.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '11). ACM, New York, NY, USA, 1601-1610.
https://doi.org/10.1145/1978942.1979175

[27] Kenrich Kin, Björn Hartmann, and Maneesh Agrawala. 2011. Two-
handed marking menus for multitouch devices. ACM Trans.
Comput.-Hum. Interact. 18, 3, Article 16 (August 2011), 23 pages.
https://doi-org/10.1145/1993060.1993066

[28] Myron W. Krueger, Thomas Gionfriddo, and Katrin Hinrichsen.
1985. VIDEOPLACE—an artificial reality. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'85). ACM, New York, NY, USA, 35-40.
http://dx.doi.org/10.1145/317456.317463

[29] Yuki Kubo, Buntarou Shizuki, and Jiro Tanaka. 2016. B2B-Swipe:
Swipe Gesture for Rectangular Smartwatches from a Bezel to a
Bezel. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI '16). ACM, New York, NY, USA, 3852-
3856. https://doi-org/10.1145/2858036.2858216

[30] Benjamin Lafreniere, Carl Gutwin, Andy Cockburn, and Tovi
Grossman. 2016. Faster Command Selection on Touchscreen
Watches. In Proceedings of the 2016 CHI Conference on Human

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 12

Factors in Computing Systems (CHI '16). ACM, New York, NY, USA,
4663-4674. https://doi-org/10.1145/2858036.2858166

[31] Huy Viet Le, Sven Mayer, and Niels Henze. 2018. InfiniTouch:
Finger-Aware Interaction on Fully Touch Sensitive Smartphones. In
Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology (UIST '18). ACM, New York, NY, USA, 779-
792. https://doi.org/10.1145/3242587.3242605

[32] Eric Lecolinet and Duc Nguyen. 2006. Représentation
focus+contexte de listes hiérarchiques zoomables. In Proceedings of
the 18th Conference on l'Interaction Homme-Machine (IHM '06).
ACM, New York, NY, USA, 195-198.
http://dx.doi.org/10.1145/1132736.1132767

[33] G. Julian Lepinski, Tovi Grossman, and George Fitzmaurice. 2010.
The design and evaluation of multitouch marking menus. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '10). ACM, New York, NY, USA, 2233-2242.
https://doi.org/10.1145/1753326.1753663

[34] Yang Li. 2010. Gesture search: a tool for fast mobile data access. In
Proceedings of the 23nd annual ACM symposium on User interface
software and technology (UIST '10). ACM, New York, NY, USA, 87-
96. https://doi.org/10.1145/1866029.1866044

[35] Yuexing Luo and Daniel Vogel. 2015. Pin-and-Cross: A Unimanual
Multitouch Technique Combining Static Touches with Crossing
Selection. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST '15). ACM, New York,
NY, USA, 323-332. https://doi-org/10.1145/2807442.2807444

[36] Justin Matejka, Tovi Grossman, Jessica Lo, and George Fitzmaurice.
2009. The design and evaluation of multi-finger mouse emulation
techniques. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '09). ACM, New York, NY, USA,
1073-1082. https://doi.org/10.1145/1518701.1518865

[37] Matei Negulescu, Jaime Ruiz, and Edward Lank. 2011.
ZoomPointing revisited: supporting mixed-resolution gesturing on
interactive surfaces. In Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS '11). ACM,
New York, NY, USA, 150-153.
https://doi.org/10.1145/2076354.2076382

[38] Dmitry Nekrasovski, Adam Bodnar, Joanna McGrenere, François
Guimbretière, and Tamara Munzner. 2006. An evaluation of pan &

zoom and rubber sheet navigation with and without an overview.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '06), Rebecca Grinter, Thomas Rodden,
Paul Aoki, Ed Cutrell, Robin Jeffries, and Gary Olson (Eds.). ACM,
New York, NY, USA, 11-20.
http://dx.doi.org/10.1145/1124772.1124775

[39] Ian Oakley, DoYoung Lee, MD. Rasel Islam, and Augusto Esteves.
2015. Beats: Tapping Gestures for Smart Watches. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI '15). ACM, New York, NY, USA, 1237-1246.
https://doi-org/10.1145/2702123.2702226

[40] Nilay Patel. 2012. The myth of pinch-to-zoom: how a confused
media gave Apple something it doesn't own. Last retrieved on Sep
8th, 2018, from
https://www.theverge.com/2012/8/30/3279628/apple-pinch-to-
zoom-patent-myth

[41] Jessica J. Tran, Shari Trewin, Calvin Swart, Bonnie E. John, and
John C. Thomas. 2013. Exploring pinch and spread gestures on
mobile devices. In Proceedings of the 15th international conference on
Human-computer interaction with mobile devices and services
(MobileHCI '13). ACM, New York, NY, USA, 151-160.
https://doi.org/10.1145/2493190.2493221

[42] Daniel Vogel and Patrick Baudisch. 2007. Shift: a technique for
operating pen-based interfaces using touch. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI
'07). ACM, New York, NY, USA, 657-666.
https://doi.org/10.1145/1240624.1240727

[43] Pierre Wellner. 1991. The DigitalDesk calculator: tangible
manipulation on a desk top display. In Proceedings of the 4th annual
ACM symposium on User interface software and technology (UIST
'91). ACM, New York, NY, USA, 27-33.
http://dx.doi.org/10.1145/120782.120785

[44] Haijun Xia, Ken Hinckley, Michel Pahud, Xiao Tu, and Bill Buxton.
2017. WritLarge: Ink Unleashed by Unified Scope, Action, & Zoom.
In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI '17). ACM, New York, NY, USA, 3227-3240.
https://doi.org/10.1145/3025453.3025664

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 13

