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Figure 1. Steps of PinchList: (a) two pinched-in fingers starts browsing a list; (b) pinching-out the fingers reveals a sub-list; 
(c) move the fingers to explore another sub-list; (d) finger flicking to move the current view to the top and bottom edges of 
the screen; (e) start to explore the next two layers; (f) flicking with multiple fingers to navigate back to the previous layer.

ABSTRACT 

Intensive exploration and navigation of hierarchical lists 
on smartphones can be tedious and time-consuming as it 
often requires users to frequently switch between multiple 
views. To overcome this limitation, we present PinchList, 
a novel interaction design that leverages pinch gestures to 
support seamless exploration of multi-level list items in 
hierarchical views. With PinchList, sub-lists are accessed 
with a pinch-out gesture whereas a pinch-in gesture 
navigates back to the previous level. Additionally, pinch 
and flick gestures are used to navigate lists consisting of 
more than two levels. We conduct a user study to refine 
the design parameters of PinchList such as a suitable item 
size, and quantitatively evaluate the target acquisition 
performance using pinch-in/out gestures in both scrolling 

and non-scrolling conditions. In a second study, we 
compare the performance of PinchList in a hierarchal 
navigation task with two commonly used touch interfaces 
for list browsing: pagination and expand-and-collapse 
interfaces. The results reveal that PinchList is significantly 
faster than other two interfaces in accessing items located 
in hierarchical list views. Finally, we demonstrate that 
PinchList enables a host of novel applications in list-based 
interaction. 
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1 INTRODUCTION 

List view is a common and popular UI component for 
content presentation on smartphones. In a list view, items 
are aligned vertically in a list to support homogeneous 
data browsing and reading. It has been widely applied in 
mobile applications such as phonebook, setting, itinerary, 
email, notes and music playlist. In many cases, it follows 
hierarchical organizations to present multi-level 
structured information. Such list interfaces typically either 
use “expand-and-collapse” design to show/hide details of 
existing items in the same page, or use page transitions 
(i.e., pagination) to switch views of different layers [17]. 

Currently, users navigate lists on mobile devices via 
tap and swipe gestures. Although intuitive and easy to 
use, the gestures may not work efficiently on hierarchical 
list views [21]. Specifically, exploring items in the list 
views with tap and swipe gestures often demands 
intensive exploration while navigating ups and downs to 
access items in the hierarchy (theoretically analyzed cases 
are summarized in [4], e.g., comparing itinerary details 
when booking a flight, or searching for a setting option 
without knowing its exact position). In such cases, 
repeated tap and swipe operations could be tedious and 
time-consuming. 

We propose PinchList, a novel interaction design that 
leverages pinch gestures to support quick and easy 
transitions in hierarchical lists on smartphones. PinchList 
allows users to examine an item’s details or sub-list by 
splitting the list view with pinch-out gesture and return to 
a previous level with pinch-in gesture. PinchList supports 
two operation modes: (i) Pinch-and-Hold to navigate back 
and forth between two sequential layers in a list, and (ii) 
Pinch-and-Flick to switch among more than two levels. 
These two modes work coherently to enable efficient list 
exploration/browsing. 

PinchList walkthrough: Figure 1 illustrates how 
PinchList works. A user starts exploring a list by touching 
the screen with two fingers pinched together (Figure 1a). 
An invisible line cursor is activated, in the middle of the 
fingers, upon the touch and consequently highlights an 
item located underneath it. Pinching-out the fingers splits 
the current view and reveals a window containing the 
item’s child list (Figure 1b).  The user explores the list by 
moving the fingers up and down. The user may also 
quickly switch to a different child list by pinching-in to 
close the current view, moving the fingers to another 
item, and pinching-out on the item to open the new child 
list (Figure 1c). We called this style of exploration as 
“Pinch-and-Hold” which works with a typical two-layer 

structure. If a list has more than two layers, “Pinch-and-
Flick” operations are used to switch the views. 
Specifically, instead of holding the fingers, the user 
performs a flick gesture, which moves the top layer to 
edges and promotes the child layer to the front view 
(Figure 1d). The user may repeat steps a-c on the current 
layer (Figure 1e). To resume previous layers, the user 
makes a flick or pinch-in gesture with multi-fingers 
(Figure 1f), where the number of fingers indicates how 
many layers the operation applies to. For instance, two 
fingers resume one layer and three fingers resume two. 

Benefits of PinchList: On mobile interactions, pinch 
gestures are commonly used for zoom in and zoom out 
operations (aka pinch-to-zoom). PinchList informs a new 
viable way to use pinch gestures for navigating lists on 
mobile UIs. It offers the following benefits: i) it minimizes 
the need for tap and swipe operations for list view 
switching, which often poses efficiency challenges with 
roundabout navigations [4]. ii) PinchList supports 
seamless multi-level list navigation via pinch and flick 
gestures, making PinchList applications scalable. iii) 
PinchList enables novel user experiences on list-based 
interaction. To show this, we designed several list 
applications to demonstrate that with PinchList, users can 
intuitively re-order files across folders, efficiently apply 
repetitive operations on multiple list items, and make list 
command and value selection in one step. These 
applications are not well supported with traditional list UI 
on smartphones. 

We conducted two user studies to explore the design 
and performance of PinchList. In the first study, we 
quantitatively evaluated the performance of item 
acquisition with pinch-in and pinch-out gestures. Results 
revealed that item selection time with pinch gestures can 
be predicted with Fitts’ law, in both scrolling and non-
scrolling conditions. It was also suggested using the pinch 
gestures can accurately and efficiently select items at the 
height of 6mm, comparatively smaller than the industrial 
guideline (e.g., 8-10mm) for smartphone [17]. This allows 
more items to be shown on one screen, reducing the need 
for scrolling. The second study confirmed that PinchList 
outperforms traditional view-switch and expand-collapse 
lists in task completion time when users need to navigate 
back and forth to access information in a hierarchical list.  

We make the following contributions: i) PinchList, a 
novel smartphone interface design that leverages pinch 
gestures for efficient navigation with hierarchical list 
view; ii) design of parameter and evaluation of PinchList’s 
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performance on smartphone touchscreen; iii) application 
design that leverages PinchList for novel list interactions. 

2 RELATED WORK 

PinchList enables seamless and efficient list view 
manipulations via adopting pinch gestures. We first 
review related work on touch input paradigms that 
improve UI performance, which is also the design goal of 
PinchList, then we look at scrolling performance modeling 
and use of pinch gesture in other interactions. 

2.1 Efficient Touch Input Paradigms 

Touch input becomes prominent on modern computing 
devices but suffers from the fat finger and occlusion 
problems. Besides providing theoretical perspectives to 
help us understand human touch input [7, 15], a large 
body of work have been done to propose alternative UI 
designs and presentations to improve the touch input 
efficiency [24, 42]. The explorations include the design of 
multi-touch gestures that are considered promising for 
intuitively and efficiently manipulating UI elements. 
Researchers were interested in using multi-touch to 
emulate mouse functions for precise item selection [6, 36]. 
Two fingers are used to control a cursor that appears in 
the middle. A benefit of this metaphor is adding a tracking 
state layer between non-selection and selection on 
touchscreens [9], which enables functions like hover-to-
preview. PinchList also takes benefits from such input 
metaphor on mobile touchscreens. 

Other than this, a rich set of projects demonstrated 
benefits of novel input paradigms deploying the 
dexterities of fingers. For instances, Kin et al. [27] 
designed a multi-stroke two-handed marking menu for 
simultaneous menu and sub-menu selections tasks. 
Lepinski et al. [33] designed a marking menu based on 
simultaneous finger touches. Pin-and-Cross [35] requires 
users to use one finger to pin an object and another finger 
to select a target from a pre-activated menu. FastTap [19], 
built on users’ spatial memory, is another touch-based 
interface for rapid access to menu items. In contrast, our 
work is not proposing a new gesture set, but looks into 
the use of pinch gestures in the context of list view 
manipulations.  

Mobile and wearable devices have smaller touchscreens 
that are normally under 6 inches [16]. Under this 
constraint, using stroke gestures showed benefits in text 
input [11], command search [34] and item access [20]. 
Besides, to expand the vocabulary of touch input on 
miniature touchscreens, derivatives of simple gestures are 

used, e.g., touch/tap, double touch/tap, long touch/press, 
and sequences of taps [30, 39] and swipes [29]. Pinch 
gesture is also popular on smartphones, but to our 
knowledge, it has not been applied for menu or list 
selection. 

2.2 List Scroll and Navigation Performance 

Scrolling is a common task in content browsing UI, e.g., 
on list view. On desktop, typical scrolling techniques 
include using a mouse wheel, joystick, scroll bar, and 
multi-finger gesture on trackpad. On mobile devices, 
scrolling is often carried out with scroll gestures (e.g., 
finger swiping or flicking). Scrolling is considered more 
suitable than pagination on continuous and lengthy 
content [3].  

To quantify the scrolling performance on desktop, 
Hinckley et al. [22] tested four scrolling techniques and 
found that the movement time (MT) had a good fit to the 
index of difficulty (ID), and thus the scrolling performance 
can be modeled with Fitts’ law. The experiment was based 
on the case that target’s position was known. Anderson 
[1] later reported that the scrolling movement time (T) is 
linear to the target distance (D) if users did not have prior 
knowledge of the target’s position. Cockburn and Gutwin 
[12] clarified that the scrolling model is either logarithmic 
or linear, depending on “whether users can employ an 
open-loop ballistic phase of motion toward the target”. For 
example, linear regression models fit to random ordered 
lists. In contrast, alphabetically or numerically ordered 
lists fit better with logarithmic models. The paper also 
stated that scrolling and non-scrolling tasks resulted in 
substantial differences among parameters, considering the 
fact that users could not visually locate the target quickly 
if scrolling action was required.  

Navigating hierarchical lists involves a series of 
scrolling and selection, each of which depends on the 
layout manner of the corresponding layer [12]. In this 
paper, we rely on the previous findings to gain the prior 
understanding of PinchList’s scrolling performance. 
However, using pinch gestures and a dual finger mid-line 
metaphor to select in a list on mobile touchscreens has not 
been formally studied. 

2.3 Pinch Gestures in Interactions 

The use of pinch gestures for interactions could be traced 
back to the 1980s [10]. Krueger [28] demonstrated a 
vision- based tracking system that allowed users to use 
index and thumbs of both hands to scale graphical objects. 
Wellner’s [43] projected tabletop demonstrated pinch 
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gestures for scaling and panning operations. This revealed 
the basic attributes of pinch gesture: pulling two fingers 
apart to scale and dragging both fingers to translate. Pinch 
gestures have since been widely explored [23] and applied 
to support interactive tasks, such as pinch-to-zoom [25], 
context + focus data visualization [38], and parameter 
control [13]. Negulescu et al. [37] explored bi-manual 
pinch-to-zoom gestures. FingerGlass [26] used pinch 
gestures to define an area of interest and use the other 
hand to select in a magnified view. WritLarge [44] frames 
a selection portion on canvas and adjusts its size and 
orientation with pinch gestures. Such selection 
mechanism integrates pinch-to-zoom and better supports 
actions with the other hands. Pinch-to-Zoom-Plus [2] 
empirically examined designs that reduce clutching and 
panning required with current pinch-to-zoom technique. 
On a Macbook touchpad, Multi-finger pinch is used to 
display desktop or Launchpad [25]. 

Pinch gestures have been widely used on mobile phones 
since the announcement of iPhone in 2007 [40]. An iconic 
function of the gesture is zooming in and out while 
browsing a photo, webpage and map etc. Tran et al. [41] 
systematically examined how users pinch and spread on 
mobile phones. Designers have been exploring alternative 
use of pinch gestures on mobile phones, such as 
performing pinch gestures to close and open photo 
browser, or as a shortcut to “return” command [14]. In this 
paper, we incorporate pinch gestures to support seamless 
list view manipulations on mobile devices. 

3 STUDY 1: SELECTION PERFORMANCE  

PinchList uses a dual finger mid-line metaphor to select in 
a list. Prior similar work [6, 36] were neither designed for 
list navigation nor formally evaluated. We considered key 
parameters such as item size and item visibility while 
designing PinchList. In particular, we hypothesized that 
item size could be smaller than conventional requirements 
as items are selected by a line cursor instead of a finger, 
and users’ performance would be affected by the visibility 
of the item (e.g., on-screen vs. off-screen). Consequently, 
Study 1 was designed to quantitatively evaluate the 
performance and to identify suitable design parameters 
for PinchList.  

The list could be static or scrolling (i.e., dynamic) when 
fingers move, depending on the number of list items and 
its length compared to the screen height. We use a 
scrolling design that is akin to scrollbar on desktop. 
Specifically, the vertical position of the cursor on the 
screen is mapped to the portion of the list view that is 

displayed. This scrolling method is straightforward and 
simplifies training users on how to use it. The evaluation 
of the performance of such list item selection technique 
under both the static and scrolling conditions is required 
to optimize design parameters such as item size and list 
length. 

We made the following analysis before designing the 
study. First, the selection performance is expected to 
follow the results of Cockburn and Gutwin’s [12], that the 
selection time will be linear or logarithmic with distance, 
depending on whether users are able to employ a 
feedback-free ballistic phase of motion towards the target. 
If they can, the performance will be logarithmic. This 
requires users to have a mental model of the list contents, 
e.g., the list is alphabetically or numerically ordered. 
Second, different from tapping to select, the item selection 
in PinchList is not constrained by the contact area of the 
fingertip, thus the items could be smaller in size than the 
regular requirement (i.e., 8-10mm) from design guidelines 
[17]. This would allow more items to be displayed on the 
screen at a time, reducing the need for scrolling. Third, 
scrolling with pinch gestures is not expected to be 
efficient on a long list, where the CD gain (= length of the 
list / length of the screen) would be too large for practical 
operation. With these considerations, we followed 
Hinckley et al.’s [22] approach, designed and conducted 
this study using the Fitts’ task paradigm. 

3.1 Experiment Conditions 

This study used 1D Fitts’ reciprocal tasks to investigate 
how the target size and target distance affects the target 
acquisition time using PinchList, under both scrolling and 
non-scrolling conditions. The standard tap technique was 
included as a baseline. 

 

Figure 2: Examples of Study 1 interfaces. (a-c) static tasks 
with PinchIn; (d-e) dynamic tasks with PinchOut. 

3.1.1 Techniques. Three techniques were evaluated: 
PinchIn, PinchOut and Tap. With PinchIn, a user acquires a 
target with thumb and index fingers pinched-in (Figure 
2a-c). PinchOut is similar to PinchIn, whereas the two 

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 501 Page 4



 
 

 

fingers are kept apart at distances of users’ choice (Figure 
2d-e). We did not add any restrictions, but simply 
instructed participants to naturally and comfortably 
pinch-in/out their fingers. Tap is akin to the standard tap 
gesture.  

3.1.2 Target Size. The target size was defined by the height 
of an item in the list view. We included target sizes of 2, 4, 
6, 8 and 10mm. These target sizes were chosen to reflect 
the sizes of common UI elements on smartphones (e.g., 
2.5mm for a hyperlink of a website; 4mm for the size of a 
key on a soft keyboard, or 10mm for a button).  

3.1.3 Target Distance. We explored users’ performance on 
selecting both on-screen and off-screen items in static and 
dynamic conditions, respectively. For Static condition, 
targets were placed 30, 60 and 90mm apart, making them 
always visible on the screen (Figure 2a-c) and participants 
did not need to scroll the view. For Dynamic condition, 
targets were placed 150, 180, and 210mm apart, making 
the targets invisible to participants initially (Figure 2d-e). 
Participants had to scroll the view to see the targets. To 
avoid potential impact of different CD gains resulting 
from different list length, we set a fixed CD gain of 2 for 
the dynamic selections. In case of Tap, participants swipe 
the view and tap on the target when it becomes visible. 

3.2 Tasks and Procedure 

For each condition, trials start with rendering two targets 
symmetrically about the screen center, colored in red. A 
participant moves their fingers up and down to select the 
targets until they complete all the repetitions of the 
condition. A line cursor is visualized to indicate current 
position. For PinchIn and PinchOut, once the cursor is 
moved within the target, the target turns to green, and the 
participant holds it (i.e., dwell) for 500 milliseconds to 
confirm the selection. For off-screen targets, the interface 
draws a seekbar to indicate the targets’ position. The 
participants were instructed to select the targets as 
quickly and accurately as possible. The trial time was 
calculated from the time when a target was displayed 
on/off the screen to the time when they successfully 
selected the target. 

We used a 3 (techniques) × 5 (target sizes) × 6 (target 
distances) within-subject design for this study. Each 
condition was repeated 11 times, and the first trial was 
excluded as users were asked to start from the screen 
center on the first trial. These yield 900 trials per 
participant. We counterbalanced the techniques across the 
participants and randomized the order of target sizes and 
distances. 

A Huawei P9 Plus smartphone was used in the study. 
The phone has a screen size of 5.5 inches with a resolution 
of 1080×1920 pixels. The software was implemented with 
HTML5 + Javascript that ran on Chrome in full-screen 
mode. We used the same device for the other studies. 

12 participants (4 females) with ages between 22 and 37 
(M = 24.6, SD=3.9) participated in the study. All of them 
were right-handed and used smartphones frequently in 
their daily activities. Participants were seated while 
holding the device in their left hand, and performing the 
tasks using their right hand. They were first introduced 
the gestures and tasks, and had a few practice trials. The 
participants could take a short break after each condition. 
The study took about 40 mins for each participant. 

3.3 Results 

In Study 1, the participants had to successfully select each 
target before proceeding to the next trial. As such, there 
was no error data. The same protocol was used in prior 
evaluations [12, 18]. We removed 155 outliers (1.44%) from 
the data where the trial times were 3 standard deviation 
away from the mean. For PinchIn and PinchOut, average 
trial time increased drastically (10mm  8mm: 5%, 8mm 
 6mm: 6%, 6mm  4 mm: 11%, 4mm  2mm: 21%) 
when the target size was smaller than 6mm (Figure 3b).  

We then performed repeated measures ANOVA (RM-
ANOVA) and Bonferroni adjusted post-hoc pairwise 
comparisons to rest of the trials. As suggested by [12], 
users can rapidly visually locate the target and move to 
the data in the static condition, while in the dynamic 
condition, users have to scroll the list as the precursor to 
visual inspection. These make substantial differences, and 
as a result, the two conditions were analyzed separately. 

RM-ANOVA showed a significant effect for the 
technique in static condition (F2,22 = 19.49, p < 0.001). Post-
hoc pairwise comparisons showed that Tap (M = 674ms) 
was the fastest, followed by PinchIn (M = 1311ms) and 
PinchOut (M = 1356ms) (all p < 0.05). We also observed a 
significant effect in the dynamic condition (F2,22 = 26.39, p 
<  0.001). Post-hoc pairwise comparisons showed that Tap 
(M = 1682ms) was significantly faster than other two 
techniques, PinchIn (M = 2210ms) and PinchOut (M = 
2160ms) (all p < 0.05). This is understandable as tapping 
can be done with no delay, while PinchIn and PinchOut 
require a need to slow down finger movement in order to 
prepare to stop in place.   

For both conditions, significant differences were 
observed on target size (static: F4,44 = 342.80, p < 0.001, 
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dynamic: F4,44 = 193.12, p < 0.001) and target distance 
(static: F2,22 = 130.45, p < 0.001, dynamic: F2,22 = 44.68, p < 
0.001). Post-hoc pairwise comparisons of the target sizes 
revealed statistically significant difference between all the 
pairs (all p < 0.05). The average trial time increased with 
target size: the average time for 10mm, 8mm, 6mm, 4mm 
and 2mm were 906ms, 955ms, 1020ms, 1184ms, 1504ms in 
static condition, and 1740ms, 1813ms, 1922ms, 2097ms and 
2514ms in dynamic condition, respectively. Additionally, 
post-hoc pairwise comparisons of target distance showed 
significant difference between 30mm (999ms), 60mm 
(1112ms) and 90mm (1230ms) in static condition, and 
between 150mm (1920ms), 180mm (1992ms) and 210mm 
(2139ms) in dynamic condition (all p < 0.05). As expected, 
targets at a closer distance was always faster than the 
targets that are located at a further distance. 

For the static conditions, our results showed an 
interaction effect between technique and target distance (p 
< 0.05) (Figure 3c). It appears that the poor performance of 
PinchOut at a longer target distance is mainly caused by the 
fact that users have difficulty controlling the PinchOut 
when the targets are located at the screen edge.  

Trial times across the techniques were further analyzed 
to see whether it can be modelled with the Fitts’ law. 
Pairing the target size and target distance yielded 15 
conditions with the index difficulty (ID) ranging from 2 to 
5.52 bits for the static condition and between 4 and 6.73 for 
the dynamic condition. Linear regression analysis on the 
data revealed a strong correlation between the trial time 
and ID, with all R2 values above 0.89 (Figure 3d and 3e). 
These findings confirm that target selection with PinchIn 
and PinchOut can be modelled with Fitts’ law. Interestingly, 
we observed lower R2 values for Tap compare to both 
PinchIn and PinchOut. It could possibly be due to the finger 

switching between touchscreen and mid-air for target 
selections with Tap, which was not required for the other 
two techniques. 

3.4 Discussion 

The results suggested that using PinchIn and PinchOut can 
select list items efficiently at a size of 6mm, comparatively 
smaller than regular guideline (i.e., 8-10mm) [17]. This 
potentially allows more items to be displayed at one screen, 
reducing the necessity of scrolling. It was found that 
selection performance with pinch gestures can be modelled 
with Fitts' law, providing further guidance on determining 
item size and list length of PinchList. 

The results showed that Tap is faster than the two pinch 
gestures for both static and dynamic conditions. We believe 
that the results are primarily due to the extra dwell time 
added to the two pinch gestures. When scrolling is needed, 
manipulating the scroll as a precursor for visual inspection 
becomes a key limiting factor [12], and this weakens the 
impact of the dwell action. More importantly, the result 
delivers the message that using pinch gestures for a single 
layer list item selection may not be as efficient as tapping. 
This motivates us to investigate how the pinch gestures 
could benefit the hierarchical list navigations, which is the 
essential goal of designing PinchList. 

The dwell time was included in the trial time to avoid 
biased analysis. However, dwell is not an ideal choice for 
item selection as it might interfere with task performance 
[22]. Selection can be made with other methods, e.g., force 
press, finger lift-off, depending on the tasks and 
applications. Meanwhile, selection actions are only needed 
to invoke an item and there are cases where invocation is 
not needed, such as when browsing items in a list. 

 

Figure 3: Study 1 results. 
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One limitation of the study design is that we did not 
investigate the pinch gestures' performance on lists of 
various length. We suspect that there exists a tradeoff 
between the performance and the list length / number of 
items. When scrolling is required, using the pinch gestures 
takes benefits from being able to quickly locate the target 
with a small movement of fingers. However, if the list is too 
long, the scrolling speed will be too fast for users to visually 
search the target, and accurately position the line cursor 
onto the target. It is not recommended to use the pinch 
gestures in such cases. 

4 STUDY 2: HIERACHICAL NAVIGATION 
PERFOMANCE 

PinchList supports users to perform Pinch-and-Hold to 
navigate back and forth between two layers, and Pinch-
and-Flick to switch views among more than two layers in 
list hierarchy. To validate this design, we compared the 
performance of PinchList with two traditional list view 
interfaces: Expand-and-Collapse and View-Switch, in a 
mockup navigating task that requires users to explore items 
under a hierarchical list. 

4.1 Pinch-and-Hold, and Pinch-and-Flick 

We incorporate pinch gestures with the use of multi-fingers 
to design the following two techniques. 

4.1.1 Pinch-and-Hold. This is to enable seamless transitions 
between two layers. With Pinch-and-Hold, users start by 
touching the screen with two pinched-in fingers (normally 
index and thumb) and move them up and down to select 
items on a layer, e.g., layer 1 (Figure 4a). Pinching out the 
fingers splits the view, and shows a sub-list under a 
previously selected item. Users may keep the fingers apart 
and move them up and down to examine the sub-list, e.g., 
layer 2 (Figure 4b). If users do not find targets of interest, 
they could pinch-in the fingers to close the sub-list view, 
and continue exploring other items on layer 1 (Figure 4c-e). 

 

Figure 4: Use Pinch-and-Hold gestures to navigate between 
two layers. 

4.1.2 Pinch-and-Flick. Users may need to explore lists with 
many layers. However, due to the binary states of pinch-in 
and pinch-out operations, Pinch-and-Hold imposes 

challenges while accessing more than two layers. To solve 
this issue, we design Pinch-and-Flick that combines pinch 
gestures with finger flicking. Instead of performing pinch-in 
gesture to resume a parent layer, a user can flick the fingers 
outwards (Figure 5a). This action moves and anchors the 
current layer to the top and bottom edges on the screen, 
and sends the child layer into the foreground (Figure 5b). 
The user is now able to perform the Pinch-and-Hold 
gestures on the next two layers in the hierarchy. 

 

Figure 5: Pinch-and-Flick gestures. 

To navigate back to previous layers, the user performs 
flick-inwards gesture (Figure 5c). This is analogous to the 
pinch-in expect that (i) the user shall move fingers faster, 
and (ii) the fingers may get off the screen when the gesture 
is completed. The user may also use multiple fingers to 
indicate the number of previous layers to resume, e.g., 2-
finger flicking resumes one previous layer, and 3-finger 
flicking resumes two previous layers (Figure 5d). This 
setting also applies to the pinch-in gestures, such that users 
can navigate back to a certain previous layer directly 
without going through intermediate layers (Figure 5e). 

4.2 Experiment Tasks and Conditions 

Study 2 aims to evaluate the performance of the described 
gestures in accessing items in a hierarchical list. To mimic 
real usage scenarios, an analytic decision-making task was 
designed that asked users to explore and compare fruit 
prices at different markets, on different dates and find the 
minimum price. We used a three-layer hierarchical list in 
the study, with 10 items on each layer (i.e., no scrolling 
needed, 1st layer – dates, 2nd layer – markets, 3rd layer – 
fruits with prices). To minimize the visual search effort and 
examine the transition efficiency among layers, the items 
on each layer were either numerically or alphabetically 
ordered, and the target items were highlighted. In each trial, 
participants followed given target path(s) to find the 
information needed for comparing the prices. 

4.2.1 Navigation Techniques. Participants are able to use 
Pinch-and-Hold and Pinch-and-Flick on the PinchList 
interface (Figure 6-top). Besides, we implemented an 
Expand-and-Collapse and a View-Switch list interface as 
baselines. These are two commonly used interface 
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paradigms to support list navigations that are operated with 
tap and swipe gestures. Expand-and-Collapse shows and 
hides details of existing list items by expanding and 
collapsing list content vertically upon a finger tap (Figure 6-
middle). View-Switch paginates list layers into separate 
views (Figure 6-bottom). Navigation among the views is 
done by tapping an item to open a view containing the sub-
lists or tap on a back button to return to a previous view. 

To eliminate the potential effects of item size on 
navigating efficiency of the techniques, we set the item size 
to 8mm according to [17] in the study for all conditions. 

4.2.2 Task Types. Two types of tasks are set. One asks 
participants to “Type 1 - find the lowest price of a fruit, in a 
market, on x dates”, and the other asks users to “Type 2 - 
find the lowest price of a fruit, in x markets, on a date”. This 
is to examine efficiencies when users need to navigate 
among 3 layers (Type 1) and among 2 layers (Type 2). 

4.2.3 Task Complexities. This condition defines the value of x 
in Task Types. Here in this study, we set x = 1, 3, 5, which 
means in a trial, participants need to compare 1, 3, 5 prices 
before they can find the lowest one. In case of 1, they just 
need to report the observed price, while in cases of 3 and 5, 
they need to navigate to the prices sequentially and report 
the lowest price. This is to examine the multi-layer 
navigation efficiencies using different techniques.  

 

Figure 6: The three techniques used in Study 2. 

4.3  Procedure 

We used a 3 (techniques) × 2 (task types) × 3 (task 
complexities) within-subject design, with each condition 
repeated 10 times, resulting in a total of 180 trials per 
participant. The techniques were counter-balanced across 
the participants and the presentation orders of the task 
types and task complexities were randomized. The tasks of 
each Type-Complexity group were pre-defined with 
randomly generated sequences. For example, Type 1 and 
Complexity 3 always returned the same set of 10 tasks, no 
matter which technique was being tested. This was to 
make sure the same tasks were performed with each of 
the techniques. Participants had to complete the 10 tasks 
before moving to the next Type-Complexity group. To 
avoid leveraging memories of previous task sequences and 
results, the order of the 10 tasks was randomized, and the 
prices to check were randomly generated in real time. 

At the beginning of each trial, a prompt of the trial task 
was shown on the top of the screen. Participants spent a 
short time reading the task and pressed a “start” button on 
the screen to start the trial. The prompt was always shown 
during the test. After browsing the items, participants 
pressed the “back” button on the device to end the trial 
and typed the answer. If the answer was not correct, a 
trial with the same task was shown at the end of the 10 
original trials. 

We instructed the participants to perform the tasks as 
quickly and accurately as possible. The trial time was 
measured by the time span between the presses on the 
“start” and “back” buttons. The errors count was 
incremented by 1 if an incorrect answer was entered. 

 

Figure 7: (a) A participant in Study 2; (b) Study 2 interface. 

We recruited a different group of 12 participants (4 
females) with ages between 21 and 33 (M = 26.6, SD = 3.7). 
All of them were right-handed and used smartphones 
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frequently in their daily activities. Like Study 1, the 
participants were seated while holding the device in their 
left hand, and performed the tasks using their right hand 
(Figure 7). They were given practice trials to get familiar 
with the three techniques and tasks. The study started 
when the participants felt comfortable using the 
navigation techniques. The study lasted ~1 hour for each 
participant. 

4.4 Results 

In total, data from 2375 trials were collected, among which 
215 trials were marked as errors because the participants 
typed wrong answers. We observed that the errors were 
distributed equally across the techniques. In specific, for 
PinchList, Expand-and-Collapse, and View-Switch, 9.9%, 
7.5% and 9.8% error rates were observed, respectively. 

We excluded these trials for the rest of our analysis. 
The trial time was analyzed using RM-ANOVA and 
Bonferroni adjusted post-hoc pairwise comparisons. The 
results revealed that PinchList with a mean trial time of 
5.99s was significantly faster (F2,22 = 383.21, p < 0.001) than 
View Switch (M = 7.13s) and Expand-and-Collapse (M = 
9.53s) (Figure 8a). Both Task Type and Task Complexity 
were found to have interaction effects with Technique. 
First, an interaction effect was found on Technique and 
Task Type (F2,22 = 27.64, p < 0.001) (Figure 8b). As 
expected, the participants used different strategies for 
different task types. With PinchList, they mainly 
performed pinch-in and pinch-out gestures for the Type 2 
tasks, and more flick gestures are required when 
performing Type 1 tasks. The frequent switch between the 
pinch and flick gestures made the task completion time 
longer. Meanwhile, an interaction effect was found on 
Technique and Task Complexity (F4,44 = 78.16, p < 0.001) 
(Figure 8c). When users need to browse more items to 
make a decision, using PinchList was faster compared to 
the other techniques. 

 
Figure 8: Study 2 results. 

Besides, in total, the finger lift-up (from the screen) 

happened 3528, 8704, and 8614 times for the techniques. 

While using PinchList, 1262 out of 1409 times (89.6%) the 

participants used the three finger flicking gesture to 

navigate back to the 1st layer from the 3rd layer.  

4.5 Discussion 

Compared to the Expand-and-Collapse and View-Switch 
list interfaces, PinchList showed advantages in browsing 
information located in different levels of a hierarchy. It 
was shown to be faster in both types of the tasks, and for 
different levels of complexity. This makes it a promising 
list navigation technique when users need to frequently 
navigate up and down in multiple layers. We anticipate 
that the more layers users need to browse in the 
hierarchy, the more efficiency benefit PinchList could 
bring. This is due to the following two reasons. First, the 
layer transitions with pinch-in and pinch-out gestures do 
not require users to leave the fingers off the screen, nor 
moving the fingers to reach a “back” button. Second, 
PinchList provides an efficient way to navigate back to 
previous layers, i.e., using multiple fingers to indicate the 
number of layers to resume, and users can start right 
away to explore the next item as fingers remained on the 
list. 

User feedback on PinchList was generally positive. 
Most participants appreciated the simple design of 
PinchList. However, some found it challenging when 
frequent switch between pinch and flick gestures was 
needed. They felt the pinch gestures were intuitive to 
operate a two-layer hierarchy, but the mixed use with 
flick gestures was not that straightforward. Unlike the 
pinch gestures, flick gestures do not require users to keep 
fingers on the screen when the action is completed. 
Besides, flick gestures are normally performed in a faster 
way, without the need for examining or locating targets. 
Users may get confused while using the two gestures 
together. We expect this confusion will diminish when 
users get more training and become more familiar with 
the interface. 

In the study, we did not consider long lists, where 
scrolling on each layer is required and more visual 
inspection is needed. Involving more factors will make the 
study conditions hard to control and the study procedure 
redundant. Specifically, for View-Switch and Expand-and-
Collapse, more swiping gestures are expected. For 
PinchList, users need to move fingers up and down more 
often to bring the targets into view. It is expected that 
with a long list, the height of the sub-window view 
created with the pinch-out gesture shall be considered as a 
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factor, which affects how fast users can visually locate the 
targets.  

5 APPLICATIONS 

Besides improving the navigating efficiency, PinchList 
enables novel interaction opportunities on mobile list UI.  

5.1 List Reorder 

Users may want to re-order a list, such as when managing 
their agenda, or photo albums. The current interface 
supports users reordering items by dragging them on non-
hierarchical lists (i.e., single layer) [17], which is simple 
and intuitive. This action, however, is not applicable to 
multi-layer lists, where users often have to select the item, 
invoke “transfer to” command, and select a target folder.  

 
Figure 9: Using pinch gestures to re-order a music list. 

PinchList supports the intuitive “drag” action to move 
an item across different folders. For example, a user wants 
to move a song in folder “Jazz” to “Piano”. She first moves 
to the song with a pinch-out gesture and makes a harder 
force press to select the item (Figure 9a-b). When she 
pinches-in and closes the folder, the song item is visually 
docked to the side of the fingers while not affecting the 
fingers’ operations (Figure 9c). She then opens the “Piano” 
folder with the pinch gestures and moves the fingers up 
and down to put the item to a desired position in the list 
(Figure 9d). Releasing the fingers completes the task. 

 

Figure 10: Using pinch gestures to add multiple shopping 
items under different categories. 

5.2 Subview Menu 

PinchList can be used to support quick multi-selections 
with sub-view menus. When a user needs to apply 
repetitive operations to multiple list items, e.g., adding 
items to cart when browsing a shopping app, she normally 
has to navigate back and forth from the list views. With 
PinchList, such efforts could be alleviated. For instance, 
the user wants to purchase several books which are 
located under different categories. She could use pinch-in 
and pinch-out gestures to quickly navigate to a book and 
add it to the shopping cart with a force press (Figure 10a-
c). She can then continue the browsing and add another 
book following the same procedure. 

5.3 Simultaneous Command and Value Selection 

A benefit of using PinchList interface is that it supports 
command invocation and value selection in a single action 
(i.e., no need to leave fingers off the screen before an 
operation is completed). Upon making a selection of a 
command item with pinch gestures, a user can choose a 
value from the sub-view with fingers moving up and 
down. Releasing the fingers confirms the selection. The 
user can also cancel the value selection by pinching-in and 
leaving the fingers off the screen. This command 
invocation mechanism not only applies to selection of 
discrete values, but also applies to the selection of 
continuous values. For instance, the user can adjust music 
volume by first invocating the command, and moving the 
fingers up and down to adjust the volume (Figure 11). 

 

Figure 11: Using pinch gestures to select volume command 
and adjust the value. 

6 DISCUSSION AND FUTURE WORK 

Study 1 results showed that users can select list item 
efficiently at size 6mm, allowing more items to be 
displayed at one screen and reducing the necessity of 
scrolling. Using pinching gestures to select list item in 
both scrolling and non-scrolling conditions can be 
modeled with Fitts' Law. The pinch gestures were slower 
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than Tap for both scrolling and non-scrolling conditions, 
suggesting that using pinch gestures may not be best 
suited for single layer list selections. Study 2 investigated 
PinchList's performance in navigating hierarchical layers. 
The results clearly indicated that PinchList was faster in 
browsing information located in different levels of a 
hierarchy. PinchList can be efficient for hierarchical list 
exploration when users need to navigate up and down 
frequently. In both studies, we used a visible line to 
provide visual cues on the fingers’ position and selected 
item. In real applications, other visual cues can be used 
(e.g., item highlight, fisheye effect [5, 32]). It is also 
possible to provide no visual cues, but further studies are 
required to evaluate the performance. 

We did not observe fat finger problems from the 
studies and nor were they mentioned in the participants' 
feedback. This might be due to the indirect nature of 
selection actions with the line cursor. In real applications, 
contents can be placed to avoid potential finger occlusions 
(e.g., weighted towards the left to allow the fingers to 
operate on the right side). Nonetheless, we have found 
several limitations of PinchList: 

 Screen Edges: It becomes difficult for users to move 
fingers when an item is located close to top or bottom 
screen edges, especially when using pinch-out gestures. 
One solution could be extending the length of the list, 
such that the list is always in scrolling mode when users 
move the fingers up and down, and they do not need to 
reach the screen edges to acquire the items. Designers 
could also decrease the item height (e.g., 6mm based on 
Study 1), and make more buffer space on the edges.  

View Displacement: With PinchList, users could 
conveniently examine a sub-list via moving the pinched-
out fingers up and down. This may sometimes scroll the 
parent list’s position when users pinch in and return to 
the previous layer. Designers should be careful on the 
possible view displacement which may cause confusion to 
users.  

Learnability and Discoverability: Although users are 
familiar with pinch gestures, applying them to operate list 
view is still new. We found that PinchList has learnability 
challenges. The study participants spent more time to get 
used to the PinchList gestures. Meanwhile, some 
participants expressed that they felt more mental 
workload when using PinchList, as they have to memorize 
the new gestures and recall how the list would behave 
with the gestures. Some other participants felt 
uncomfortable when they had to keep the fingers on the 

screen for a longer period with pinch-in/out gestures. In 
addition, new users may not know such unconventional 
gestures are available. These problems can be alleviated by 
providing sufficient tutorial and cues, e.g. video 
instructions and reminding the users of the availability of 
PinchList gestures when the tasks require frequent up and 
down navigations. 

Usage: Like other multi-touch interactions, PinchList is 
limited as it requires a typical two-handed interaction 
scenario, with one hand holding the device and the other 
hand performing the tasks. Nonetheless, one-handed 
version of PinchList could be explored via deploying more 
expressive dimensions of single touch input [8], or 
incorporating finger aware interactions on the device [31]. 

Future works include carrying out studies on real lists, 
to quantify PinchList's pros and cons on exploring lists 
with greater lengths and deeper hierarchies, as well as on 
different data types. We will further investigate how 
PinchList can be used in combination with tap and swipe 
gestures. This will make it more adaptive to current 
interfaces that users are already familiar with. 
Furthermore, it is also worth exploring new use scenarios 
with PinchList that could make list view more interactive 
and more expressive in functions. 

7 CONCLUSION 

PinchList informs a new viable way to use pinch gestures 
for navigating lists on mobile UIs, enabling a host of new 
applications in list-based interaction. We first conducted a 
user study to evaluate the performance of item selection 
with pinch-in and pinch-out gestures. The results 
confirmed that the performance can be modeled with Fitts’ 
Law under both scrolling and non-scrolling conditions. 
The second study compared PinchList with two standard 
list interfaces: View Switch and Expand-and-Collapse, in 
tasks that involve browsing multiple items before 
reaching a decision in a list hierarchy. The results revealed 
that with PinchList, users can access hierarchical items 
faster than the other two interfaces that we commonly use 
on smartphones. Finally, the paper demonstrates that 
PinchList enables new list UI interaction opportunities. 
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