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Abstract

The creation of interactive worlds, such as those in video games, often include a set of computer
controlled characters that must intelligently act and react in response to dynamic input from the
user. Thesednteractive behavioursusually require authorsotprogrammatically define each
behavior, reaction, and interaction the character should take in response to user input across a range
of scenarios, a process that can take significant time. While this method can successfully create
robust characters, thare development overhead is not conducive to the exploration, prototyping,

and testing of new character ideas.

We designed and developd®hintBoard, a system that enables usergafndly prototype
interactive character movemefity digitally painting a ®ryboard PaintBoard promotes
prototyping by facilitating quick, visuauthoring and by enabling immediate testing by allowing
the user to interact in reime with a behaviour generated from a painted storybdardenerate
the interactivebehavior we developed novel algorithm thaanalyzes a painted stdryard and

uses machingarning to generalize the painted examples to siavations Our algorithm uses



this generalized behaviour to control the computer character duringnneahteraction wh the

user character.

To help ground our design decisions in how real designers approach the problem of creating
interactive behaviours, we conducted two preliminary exploratory studies with industry
professionals and programmers. We further conductptbaf-of-concept workshop with our
prototype to investigate how real developers may use PaintBoantlugtigted the initial sccess

of our paintingstoryboards authoring metaphBinally, we performed an initial evaluation of the
behaviour generatioalgorithm which informed us of directions for future work to improve

PaintBoardds performance.

Contributions of this work include the design and evaluation of both a new interaction mé&taphor
digitally painting storyboards for interactive behaviour adutigédr and a novel behaviour
generation algorithm (for generating réahe interactive behaviours from storyboards). Our
results demonstrate that the PaintBoard approach can be useful to developers as an exploratory
prototyping tool due to its fast and unsi@andable painting metaphor, and that PaintBoard itself

can quickly (in reatime) generate an interactive behavior.
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Li st of FiI gures

Figure 1.1: A paintedtoryboard showing thacomputercontrolled interactive character (CPU)
should approach yellow squares (the treasure) while staying out of the red squares (user
controlled characterodés sight). Paint Board e
of Asneakismug et ovhteme tthreeasser 64 character i s

Figure 3.1: The scenario provided to the programmers of the programming workshop. The grey
stone areas are notawersable (characters cannot move onto the same space), and the
programmers were told the user and computer characters cannot see through the stones either.
The programmers created behaviours for the red character (CPU) while users controlled the
blue chaacter (User) with the arrow keys on the keyboadd.

Figure 4.1: The PaintBoard interface: (a) sandbox area, (b) storyboard, (c) paint palette, (d) point
of interest (chest) and characters, (e) play and pause, (f) save and load behaviour, (g) debug
mode, (h) new storyboard fran’

Figure 4.2: A sample twpart storyboardor a behaviourof a computer character (CPtHat
sneaks up on the user character (Udanhis case, the computer character should not enter
the sights of the user character, (red squares) and should stay close to and behind the user
(gold).29

Figure 4.3: How state features are calculated, e.g., for the bolde87cell.

Figure 5.1: Astoryboard authored by a participant during our workshop, showing how a computer
character should sneak around a user to get treéauhede by the only entrance to the room
(b)when the player is not looking, sneak into the raomd stay out of sight (c) when the
player is not looking at the inner hallway, run to the treasure (d) if the player is in the hallway,
sneak around the other way (e) when at the treasure, stay there, out of sight (f) take the open
route to the treasurdut in a different context than d (g) if the player is watching both
hallways, get as close to the treasure as possible (h) if spotted by the player, run out of the
room and (i) another example, similar ta1b.

Figure 5.2aA single-snapshot storyboard from our workshop for a behavior that attempts to teach
the computer character to stay between the user and the trdd&sure.

Figure 5.3bThe synthetic snapshot, shown through debug modeadkbsquares are generated
in thesame contex#6

Figure 6.1 How we created our evaluation dataset. Each of nine participants made 10 storyboards
with a length at least one panel for each of three behavhilrs.



Figure 6.2: Accuracy of each algorithm for our dataset. Error bars are standard error. From the top:
Support Vector Machine (SVM) with a polynomial kernel, SVM with a radial basis function
kernel, Random Forest, Naive Bayes, antll&arest Neighbour§6
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I.Il ntroducti on

Interactive nedia has bcome a part of our everyday lives, and is being used in applications such
as video games, art, and training simulations. Computer controlled chavattessthat havean
artificial intelligence and move around and interact with the player and the envirénarenan
important element ofmany of these interactive world¥he geaton of thesecharacters is a
complex task thatat the professional levetan require a broadange of specialized and
collaborating expertsncludingartists for authoring 3D models and animations, writers and voice
actors for dialogue, and programmers to implement artificial intelligence and system logic. When
the computecontrolled characterare highly interactive, the artificial intelligence component
becomes particularly challenging as the characters must asgbsgeract appropriately in real

time to dynamidnput from users and their environment. Téreation ofinteractive behaviours

can demand significant amountstmhe even from expert programmers. For example, inle
playing gamea designer may want a computemtrolledthief charactetoi s ne a k 0 : avoid
usercontrolled character when they are nearby while simultaneopphpaching a treasure box,

all without being seen. Such behaviours usually require the designer to logically

(programmatically) define the details of the computer chaciamtions for multiple situations



based on t he pastsand potenhahctivayc This pvereead slows developmt
however, the ability to quickly create and explore multiple ideas is important for creative tasks

[34].

To aidin the prototypingof digital contentfor interactive systemsgsearcherfiaveaimed to
reduce the amount of expertise and time requwadake themThis approach includes enabling
people to createl3models simply by sketching in 2[21], author advanced animations through
simple mouse or touch manipulatiof#2,23], or to create complex interactive stories through
pointandclick visual logic programming28]. Simplifying the creative process provides experts
with prototyping tools for quickly testing, visualizing, and shgiiheir idea$34]. These methods
also have the added advantage of improwmegaccessibilitypf content creatiorand prototyping

to potential authors who may not have the required expertise. For example, they can help non
technical artists program logior programmers cage 3D models. We extend this body of work
by introducing RintBoard: asystenthatenables authors tapidly prototype interactiveomputer
controlledcharacteibehaviourswithout programmingsimply by digitally painting a storyboard

of a behaviour.

Low-fidelity iterative desigriechniques such as paper sketching and storyboardingvaest,
fast, easyto-use tools that support creativity and exploraf®27,34]by enabling rapid iteration
of ideas[5], and by providing immediate visual feedback of those id&d&7,34] These
approachesilsoinherently support stytelling, communicationand discussion of design ideas
with otherg18]. Because of their utilitysuchlow-fidelity techniques are found in standard toolkits
across a wide range of fieldsathincludes humanomputer interactiorj21,27,41] film [17],

animation [22,42], and software developmef®,27]. Our PaintBoardsystem and approach



leverages these ebgpation techniques to enabkuthorsto create interactive behaviours by
roughly painting ideas odligital storyboardsa processimilar to sketching, and hynmediately

generating results that people can interact with, test, réfmnate overand slow to others.

In this work, we preserdur PaintBoardorototype that provides a simple storyboarding interface
for painting interactive behavio(B our case, discrete charaaeovemenbn a 2D grid) as seen

in Figure 1.1 below. To better understand possible roadblocks encountered when creating
interactive behaviours, we conducted interviews with industry professiahatt informed us

that expbring and prototyping behaviours, as well as communicating desired behaviours to
colleagues wre important bottleneckin the creation process$n addition, © guide both the
PaintBoard interface and algorithm design,oerducted a behavigarogranming wakshop with

a group ofexperienced programmeaad analyzedommon approa@s todesigning and creating
interactive behaviourg-rom this analysisve developed a feature set for representing interactive
behaviors, and a machuhearning algorithm that usethese features to generate -teéak
interactive behaviors from the usmuthored storyboards.sAan initial investigation of the
approachability of the paintirgtoryboards method, we conducted a pmaeéoncept handsn
PaintBoard workshop that higghted the potential of our techniques. Finally, to better understand
the strengths and weaknesses of our algorithmic approach, we conduatethlaevaluation
where we compaed o u r a | g perfarntaihcen &veen used with different underlying

configurations and parameters
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Figurel.1l: A paintedstoryboard shoimg thata computercontrolled interactive character (CPU) should
approach yellow squares (the treasure) while staying out oftheradsqus (user controll ed chée
PaintBoard extrapolates and generates the interactive behaftomoé a ki ng t o t he treasure \
character is not looking.

1.1.Met hodol ogy

Our approach to the creation of PaintBoard follows a-csetered design approafdj where we

first ground our work in the nes@f potential users, use this information to build a prototype, and
have potential users evaluate that prototyipe help guide our interface and algorithm design
choices we conducted two initial exploratory studies: interviews with industry professionals
discover possible difficulties during the design of interactive behaviamrd a behaviour

programming workshop with experienced programrteemyvestigate how some programmers are



already creating interactive behaviou@ur findings aided our protgie design, for which we
developed both a novel interface technique for authoring interactive behaviours and an algorithm
that can generate an interactive behaviomm a painted storyboard amdntest itin reattime.

We evaluated our prototype in twdases: we conducted a hamts PaintBoard workshop to
evaluate our storyboafghinting authoring technique, amee performedan evaluation of our

algorithm by comparing thlieehaviours generated biyfferent configuration®f our system

1.1.1Exp !l or atiograyt ilonnvse s t

To investigate problemthat may occur wheareating interactive behaviouanid theworkflows

usal to create themwe conducted interviews with professionals from the video game industry.
Interview questiongocused on general approaches to im@etation (e.g. programming and
design) and workflows (e.g. design process of interactive behaviours, communication between
designers and developers) used when creating interactive behavioueudWgeecorded the
interviews, and manually transcribed theananalysis ouranalysianethod was inspired by open
coding technique$2l wher e we i1 teratively grouped dat a
interview answers and let salient themes emerge from theS#atizon3.1 describes the interew

design, analysis, and results of the interviews.

As programmers are already able to create compelling interactive behaviours(focegample,
the video game serigss s a s s i hivnetedGar iseedlistic crowds of computer controlled

character$29]), in addition to our interviews/e decided t@xplore programmatiapproachgin

! http://assassinscreed.com/



orde r to help i1 nform our PdasignandBatgerithm depignoRoro t y p e ¢
example, investigating how programmers conceptually frame behaviours could improve our
interface design; investigating how programmers defined their behaviour in coldeicform

how our algorithm analyzes an-game sceneTo this end, we conducted a programming
workshop where we recruited experienced programmers to create interactive behaviours in

computer code, which we analyzed to identify common implementationi¢ees.

We analyzed the implementations themselves, aifbloration and groupintgchniques inspired

by open coding?2] in order to better understand conceaptiteracive behaviourghat could be
included in our authoring interface. Additionally, weoked for common approaches for
computationally describing behavioumsorder to inspir@ur behaviour generation algorithm. We
analyzed the types of behaviours we reagilog iteratively grouping similar behaviours together

to better understand the variety of possible behaviours, as well as to build a set of target behaviours
we could test during development. The details of the study, analysis, and results of the

programming workshop can be found 8ection3.2

1.1.2Pai nt Board Prototype Desi

We usedthe knowledge from our exploratory investigatidosground the development of our
PaintBoard prototype. Our prototype had the following design goal: PaintBoard shabldthe
rapid prototyping of interactive behaviours. We decidedaliow users to digitally paint
storyboards of the behaviotarleveaagethe benefits of lowidelity technique$5,27,34} painting
allows contentto be created in quick strokeStoryboarding was chosen to allavemplex

behaviour§ such as sneaking around a castleile staying out of sight and trying to find



treasuré to be expressed piegése as framesinastoryboaRlai nt Boar ddés behavi o
algorithm was designed to analyze a painted storyboard as training data by calculating a set of

training featuresand output an interactive behaviour.

The development of PaintBoard presentedrface problent how the painting metaphor can be
leveraged to enable users to define interactive behadiand algorithmic problends how our
algorithm analyzes the paintedstboard, and how it generates the behaviour from this .input

Details of these components apglained inSection4.

1.1.33Eval uati on -$tfontynige &mad sng u &

We conducted an exploratory workshop with professional and hobbyist game developers to
investigatetheir ability to use PaintBoardas well as to elicit freéorm feedback on our overall
approach,interface, and interaction desigspecifically we explored if our users think
PaintBoarddés approach to painting and storyb:¢
behaviours, collected sample behaviours that our users reported were easy or hard to create with
PaintBoardand inquiredas tohow users think PaintBoard may fit into their workflows. The goal

of the study was to be a preof-concept with a sample user satd to provide initial insight into

our chosen approach.

In the workshopour participantsised PaintBoard to create interactilsehaviours of their choice
The behaviour storyboardBeld notesby the onsite researcher, anabststudy questionnaire
responses from each participant were analyzezxpdore heir experience with our systefhe

gualitative analysis method was@men-codinginspired[2] techniquavhere we iteratively tagged



data to let themes emerd@ur analysis helped us understand some of the possibilities of using
painting storybards as an interactive behaviour creation tool, where its limitations lie, and how

we may improve it in future work. Full details are giversection5.

l14Eval uating the Accuracy o

We compared the behaviour output of different underlying machine learning classifiers and
training feature sets to understand how our algorithmic choices impacted the accuracy of
behaviours generated by P&oard. For this comparison, we required datasebf painted
storyboards that allowed us to train and test our algorithm in an ecologically valid way. It was also
necessary talevise a performance metric for measuriing accuracy of a predicted behaviour.
With the dataset and accuracy measure, we performed our compaisbosir analysis revealed

how we may i mprove the PaintBoardos behaviour

From our initial investigations (Sectioh.1.1), we knew that the interpretation of a single
behaviour type, such as fisneak to the user, o
to create a dataset where each behavioursh#gtient storyboard examples from one author to

both train our algorithm, and to test the results. Recrydicipantseach authoed many

storyboards of a behaviowVe chose the test and training sets fribrese storyboardssinga

variant ofk-fold cross validatiorj26]. For each algorithm, vanalyzed the performance results

acioss authors and behaviourstoget measur e of the algorithmds ac

In a separatanalysis we varied the feature set used to analyze the storyboard data. This was to

better understand the impact of eacining feature, and if modifying feature setvas a useful



direction to i mprove PaintBoardds behaviour ¢

selection, which helped us arrive at a smaller feature set with similar performance to our full set.

Measuring each al g o rnotttviaclsallemye wefneedeth a metree thata s a
enabled us to compare generated output (the behaviour) to a ground truth. With painted storyboards,

no such trivial comparison point exists; for example, there is no stfaigirird distance function
thatcalrbe applied to a behaviour (PaintBoardds o1
our evaluation involved the development of such a metric that could be used to calculate the

accuracy of an algorithm variafiull detailsof the analysisire providd in Section6.

1.2.Contri buti ons

Contributions of our research include:

1. A novelinteraction methodl digitally painting storyboards thatenables thelescription

and re&time testingof interactive behaviouf®r computer controlled characters.
2. An original interface that enables 1.

3. A behaviour generatioralgorithm that canquickly generate a redime interactive

behaviour from a painted stdoard.

4. A workshop with deviepers and interviews with professionals in the game industry that
grounded our design and development of 1, 2, and 3, and provide a baseline understanding

of some approaches of creating interactive behaviours.
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5. AnevaluatioofPai nt B o a ragpiosach of pagnting $tdryboards

6. An evaluation of PaintBoardds behaviour ge

Our research explored how to apply digital painting and storyboarding to aid the rapid design and
prototyping of interactive behavioursrfcomputer controlled characters. Through this research,

we created a novel interface prototype thatves as a proof of concept for hasers can paint
storyboards of i nteractive behaviours, and a
generge interactive behaviours in reine. We evaluated our approach and interface with a
workshop study, and compared how several different machine learning techniques generalize user
storyboard data to create interactive behavioWs. believe our esultswill be of interest to
designers of interactive systems such as training programs, public art instaliabois, ovideo

games.
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2. Rel aMo e &

The field ofHumanrComputer interactionrHCI) has many focuses, includingderstandingpow
people use technafjy and designing new software and hardware interfdé€dsOne particular
tradtion is the development afovel interaction techniquekat decrease the complexity of tasks
that require computers. Decreasing complexity allowséaglerts to be faster and more efficient,
and often enables naxpert users to perform similar tagke]. One areaf complex tasks that
use softwarés the creation of digital conté and of particular interest to this workgamerelated

content such a3D character and environment models, and programmed game logic.

Creating complex content such as 3D worlds, virtual characters, or creating stories for the
characters in these worldsften requires skilled designers with a variety of skills. For example,
writers could write the story and dialogue for characters whDsappearance and movement is
created by animators, and a user could interact with these characters through logic written by a
programmer Researchers have simplified the creation of such digital content by redbeing
amount of experience and skill reqqdito create them, asaditional mediumsuch as powerful

3D modelling applications or writing computer code can take hundreds of hours of training to

reach professional proficienclyor example, current research aids authors in exploring storylines
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[30], enables 3D mode&nd animations to be created in minutes instead of hours without complex
tools [21,22,23] and the game worlds and the logic that rtlmam can be specified without
knowing a programming languaf##8]. By reducing the required skilbuch researatnablsfaster
authoring as creatocsinfocus more orwontent instead of technique. This faster authoring in turn
increases the pace of itation and the ability to explore different idg&s34] by freeing up the

aut hor so6 t i niaadditodal benefg a thesecappsoaches is the lower barrier of entry:
it is easier for nofexperts to author contewe employ this overall approach in PaintBoar@ to
problem that has not yet been addressed: lowering the complexity of authoring interactive

behaviours for computer characters in interactive systems.

One way researchers have been able to simplify the design of complex content is to perform low
fidelity prototyping. This techniqueenable the rapid creation of content at the expe of a
detailed and precise final res{f. Such a tradeff is useful forthe initial explorationof ideas,

where refined details are not as import@34]; these techniques have been successfully
leveraged by many researchers in various don@jhg,18,21,22,274nd are accessible as design

and prototyping tools for both professional and amateur designers. PaintBoard extends this body
of work to a new domain by applying lefidelity prototyping techniques to the design of

interactivebehaviours for computerontrolled characters.

Storyboarding and sketching arewtfidelity prototyping techniqueshat have been used to
successfully simplify the design of other forms of digital cont8keétchingfor examplehas been
used tocreate 3Dcharacter modelsy sketching simpler 2D representatigdd], and sketched
user interfaces for desktop computer software can be turned into working protf2ypes

Traditional papebased storyboarding is useful for planning out long, complex sequences of
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actions and has been used to aid interface d¢$&]nvideo editing[17], animation[11], and
software systemd 7]. Painting similar to sketchingyas been used as a rate control method
for nonrinteractive computeanimated characte[37]. Another key element of these works is that
they keep their interfaces relatively simple, for example, oneteasse 3D modelling tool, even
with extra features added, has far less options than modern professional tools sucl? §20jlaya
Our proposed methodhnifies these approaches and applies them for the firsttdirtie creation

of interactive motion behaviours.

Existing research that simplifies the creation of interactiveadters and systems has aimed to

reduce the programming requirements typical to such t&hs.approach for simplifying the

creation of interactive behaviours focuses on programagsigstance tools, such as tools in
software development environments thatomatically generate computer code from programmer
specified relationships between game elem@®k A related approach is to create programming
languaes specifically for programming behavio[{#5,38]. These approaches succeed in reducing

the difficulty of programming, but still require logical, stefse specification of behaviours.

Visual programming, where designers use géaagdrop, visualrepresentations of game objects

combined with programmintike elementshas been usdd simplify the creation ointeractive
worldsand the ways users can interact wi[28h t he \
(their focus wasot on interactive behaviour movement). Another work allows authors to explore

and create complex and varying narratives for interactive stories after specifying the details about

the characters and the world they agtinsuch as char aalst ad Iso&% thep sy c ho

characterscan change their worl®@0]. Other research has found tatail-orientedthinking like

2 http://www.autodesk.com/products/autodeslya/overview
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many programming techniquesay slow down prototyping and exploratif86]. Thus,in our
work, we aim to avoid the requirement for users to explain their behaviour logacallgnable

them to create it in a less detariented and storlike way.

Research has discovered thatsitu authoring an interbce design technique where content
authors can create, preview, and edit their content, all in the same environment, helps speed up
content creatiof8]. The speed up is thought to be because authors do not have to mentally translate
from their creation medium to the final result. For example, it might be difficult for a programmer

to imagine how an interactive behaviour may fed teser in the game if the programmer makes

a change to textual programming code. Researchers have successfully-sisedesign to aid

visual interactive behaviour authorif83]; their approach, however, requires users tate
behaviours by entering commands in a valid sequences (a state machine), similar to programming.
With PaintBoard, we aim to use ansitu authoring approach by having authors create, edit, and
test the behaviour in the environment that the-@sel ofthe interactive system will view it in.
Additionally, in contrast to previous woill83], we designed PaintBoard to avoid strict linear
behaviour authoring techniques: research has suggested that linear thinking holds inhibits
creativity [36]. PaintBoard enables this ndinear authoring by allowing users to paint, create
environments, edit behaviour storyboards and intexdttt their behaviour in any ordet any

time.

Programming by demonstration, where a designer can author a behaviour by simply providing a
performance demonstration, is mherently insitu techniquehat does not require programming
like thinking Although thisapproachis well established, most of this work has been for the

creation of static behaviours without an interactive element. For example, researchers have enabled
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users to create behaviours for robots whensthgle goal and action to be perfoed are well
defined for example, picking up certain types of objects out of a gj@&ipin animation, authors
haveusal interactive, demonstratidmasedechniques to animate characters interacting with other
characters in order to produce static vgldd ,22] Interactive work has focused on, for example,
learning eactive body language by recording movement with expensiedon-cagure
equipmen{12], orlearningwell-defined sequences of actions that fit into a staehine model
[15,33] PaintBoard extersthis work bytargeting the design of characteovementhatresponils

to a dynamic user laracter in the context of an environment (buildings, objects), without

expensive equipment such as motion capture devices.

Further, a common problem encountered wigitogramming by demonstratiois that the
techniquescan often require large numbers epetitive demonstrations (e.d.3]). Often it is
important to useeal world data of many types démonstrationge.g.[24]), which can take time
to acquire. Other worlstill uses programmingfter the demonstration, which may require
programming expertise to use effectivgb.g. [40]). To enable its use as a low cost, rapid
prototyping tool, we desigrd PaintBoard to work with as little as one exam@ad avoided

includingcomputer programming in the authoring process.

Perhaps closest to our work is the Puppet Master prograogidgmonstration proje¢d1], which

enables authors to rapidly prototype interactive animation or robotic motion behaviors similar to
the ones targeted by PaintBoard. While Puppet
(texture) of two interacting characters, PaintBoard Isuiddon their results to cover mygtart

behaviors (e.g., hide when seen, get some treasure when guards are not looking), and enable

characters to interact witheenvironment (e.g., walls, important objects such as treasure chests).
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Further, PuppetMaste6 s eval uations indicated that wusers
would result from their performance demonstration due to the mental load from Puppet Master
requiring the user to successfully author the whole behavior wimealin one attemt. To avoid

such issueswe purposefully avoid direct performance demonstration and propose a novel
approaclby enabling more complex interactive behaviour authoring (with an environment, objects

in the scene, etc.), that allows the behaviourto be cfeatet t he aut hor&®s pace

frame storyboards.

In summary, PaintBoard continues the research theme of reducing the expertise required for
creating digital content (in our case, prototyping interactive behaviours). By comtheihgw

fidelity prototyping techniques painting and storyboarding witkiin authoring, PaintBoard aims

to speed up the exploration process that is important in the early stages of creative work.
PaintBoard is also designed with a goal to enablelimear creation styles by allowing behaviour
editing and testing at any time. We extend previous work in programming demonstration by
designing PaintBoard to produce a prototype interactive behaviour with as little as one behaviour
example, and without reqing a realtime demonstration. Finally, PaintBoard builds upon
previous interactive behaviour work by enabling the creation of behaviours that interact with an

environment (walls, gbcts in the environment, e}c



17

3.Expl oftavesyVyi gati on

Our interfaceand algorithm design &s guided bytwo exploratory studies. First, we performed
semistructured interviews with video game designers and developers to uncover common
problemstheyfacedduring the creation of interactive behaviours, as welvakflows wsedto

overcome them Qualitative analysis of these interviews resulted in Heylel goals for
PaintBoarddés approach to authoring interactiyv

communication.

To inform our interface and algorithm implemendas we conducted programming workshop
through whichwe explored the range of interactive behaviors people may author, and analyzed
implementations (computer code) to extract strategies and techniques used to implement them.
This led to the identificatin of behaviour design patterns, such as-gaahted behaviours (for
example, stay close to the user character), which were included in our interface design.
Additionally, we generalized the set of calculations commonly used by participants to define
behaviours. This helpedform our algorithm designwhich used some of the calculations to

analyze ingame situations.
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3.l nt er vi ews Ganikears il qordaurs

To investigateossible workflows used and problems encountered by professionals when creating
interactive behaviourswe conducted interviews with four professiondldevelopers and
designers)from the video game industry. We focused questions on general approaches to
implementation (e.g. programming and design) and workflows (e.g. design prbogssactive
behaviours, communication between designers and developers) used when creating interactive
behaviours. This information helped ground our design in the problems of real interactive system

designers.

To accomplish this exploration,exconductd semistructured interviews/here weprepare a list

of roughgoals for the intervievand questions to ask the participawligring the interview, when

any of the answers providénteresting or new data, the intervievexplored further investigated

the new aspecby improvising new questiongleviaing from their interview plan39]. The
interviews wereonehourlong, and our participants were fopirofessional game designers and
developersQuestionswaskedi nc | ude f Ho wactive leehavieurs tifficultto creatd, e
specifically because of interactions with the
b e havi The merfi@vs were conducted by phone, angevaudio recorded and then
manually transcribed for analydis explore some problems and workflows that we could target

with PaintBoard; our qualitative analysis medhweas inspired by open coding techniqug2]

where we iteratively grouped data by tagging
broad salient themes emerge from the data. Please see Appendix A for materials used in the study,

as well as proof of approval by the Jekaculty Research Eiis Board.
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In the interviews, articipants reportedpending significant time plannirigow abehaviorwould
act and react to the user character. Participants said they did this planning because planning
beforehand can save time becaaséually implementig behaviourswith programmingtakes

time:

fil spend a lot of time thinking about what kind of rules to use and what kind of system to use

them in to get the results that | want. P1

In addition, participants heavily relied on experiméntaand iteratie prototyping; they would

write programs, interact with the results, tweak parameters or write different solutions, and iterate:

A hat whole process that | like which is just seeing what it's like and then adjustiogsn't
work that well because yointi nJgh. ®o | really want to make this adjustment? Because

then I'm going to have to change 8 differgrghaviour] states and track down bugsi &2

Further, participants reported having difficulty communicatihgir behaviour to othergnd
undersanding how an interactive behaviaescribed by anothehould look. We saw this reported

by both technical developers as well as artistic designers.

A [@signers will oftentims knowinglyork around bugs in the systémh hey é6r e very r e
to bring thingsu p ¥ could be the type of the thing you could &s,a programmer, in 15

mi nutR3s 0O

This developer thought a feature was implemented correctly, but the designer authoring the
behaviour did not collaborate well when things went wrong. The developieedi¢he designers
to better communicate what they wanted. A designer we interviewed did communicate often with

developers, but found it difficult due to behaviours being hard to describe:
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fiBasically | describe the components...in as much detail as seserfios. Then [the developers]
would interpret it and implement it, then I'd play it and give additional feedback from there.

Justverbal feedmmk . . . We do t hiRPR4 back and forth. o

Here again we can see an iterative prototyping process, howettes pat i ci pant 6s ¢
amount of iterations necessary was increased, and this increase wasdwdtén the

mi sinterpretation of the designersod intent.

The results of the interviews helped guide our Heylel goals when designing PaintBoard. We
found that peticipants could benefit from quick prototyping tools, as so much time is spent
experimenting in the design phase. According to our participants, this time is not spent exploring,
it is spent mostly on planning, programming, and iterations necessary ®ecdus
miscommunication between designers and developers. Thus, a primary focus of PaintBoard
become allowing designers to create and interact with multiple behaviours in a span of minutes.
The finding alsogroundsour initial rapid prototyping motivation ithe needs of real users
Participants also indicated issues with collaboration, and that they could benefit from better ways
of communication. Exploration of this idea led us to the painting metaphor: painting is visual, and
painted storyboards could bederstood and discussed by both developers and desigrtass.
approach further benefits from existing knowledge that suggests that visual tools improve

communicatiori5,18].

a ¢
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3.2.Pr ogr aWaor knggh o p

We conducted a programming workshop to explore approachesntly used by developers to
implement interactive behaviourBhis is useful for our work for two reasons: we should consider

if our interface should accommodate certain ways of framing behavior descriptions, and we can
learn from how people programmatically analyzegame situations, informing our algorithm
design by implementing similar calculatiof® this endwe aske®6 fourthyear undegraduate
Computer Science students in a Hur@mputer Interaction clagat the University of Tokyo,
spring, 2013}o program a set of behavioWe used a mediev#theme (common within the role
playing video game genre) as a representative sceRariticipants wererovidedwith asimple
graphical game boaithat looked similar to PaintBoard, seigure3.1) anda Javaprogramming

interface thaallowed students to programmatically query areas etttard folits contens, and

Figure3.1: The scenario provided to the programmers of the programming workshop. The grey stone arec
traversabldcharacters cannot move onto the same spandjhe programmers were told the user and compu
charactergannot see throughe stones eithehe programmers created behaviours for the red character (C
while users controlled the blue characterdt)svith the arrow keys on the keyboard
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to provide the next move for the computentrolled character.t&dents were tasked with creating
three behaviors eachndwere encouraged to develop their owiginal behaviorsWe provided

Af oltheosed fApr ot efohthdused aa nd effomthewsgpe as exampl es

We received 78 unique behaviour implementations that we categorized into 19 distinct types of
behaviourghrough opercoding based techniqu§d. The three most common of these were our
suggested Afollow the usero (24 parttihei pasretr D)
(13) behaviors The remaining behaviors had less overlap (16 types over 23 implementatidons)

can be seen in Table 3.Common behaviour typesuch as our top threehowevey had

significant variation For examples o me A f ol | o wementaBonsuewddr stay closep |
behind the user, others would walk side by side yabhdthers would follow from a distancehis

suggests that PaintBoard should accommodate such variation, as opposed to, for instance,

providing premade behaviours

Our postworkshopexploratonof t he devel opersdé behavdomeur i mp
programmingstrategies thabur participants used to define their behavidk& iteratively tagged
implementation strategies in all behaviours, which allowed us to ideatifynon techniques and
approachesParticipants consistentlysed two techniques. The firatsmall set of commonly
calcul ated quantities, such as the characters
character should interact with the usate explored such calculations in our development of our
PaintBoard algorithm (Sectioch3). Another common technique was to specify goal locations or
points of interest, for exampl e, a treasure ¢
abstract Astayi ng i nWeihcladedkthembilityxoispacify suchareasin h e u

Pai nt Boardds interface by enabling users to pa
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3.3.Concl usi on

Our initial investigation informed us not only of the variety of interactive behaviours possible, but

also of some of the common techniques used by our developers to implemerietngeurs.

Initial interviews with professional game designers informed us that iterative prototyping is central

to early explorative work, but this process is often hampered by the slow nature of programming

or difficulties communicating interactive behaur ideas with their colleagues. Our behaviour
programming workshop tolds that a behaviour was envisioned differently by different authors;
PaintBoard will need to accommodate not only a variety of behaviours, but allow variations of
those behaviour8 y expl oring our participantso I mpl eme
behaviours in terms of goal states (be hidden, stay in front of user, etc.) was common, which
motivated us to enable the user to define goal areas with our pamttnigce, ando look at the

context of the goal areas themselves (such as identifying if the goal is to be hidden, rather than to
simply stand behind a certain wall). It also revealed calculations frequently used to define the state

of a behaviour, such as if the cheter can be seen, and how far it is from the uHeus, we
explored these calculatiomsrour al gor it hmés met hod of analyzi

detailed in Sectiod.3.



Behaviour Description of the behaviour N
Name
Follow Follow the player 24
Protect Protect a point in the environment marked b 18
treasure treasure box
Escape Run away from the player 13
Lead Lead the player towards a point ithe 4
environment marked by a treasure box
Block the movement of the player by standi
Block Path in front of them 3
Hide Stay out of the sight of the player 2
Imitate Copy the movement of the player 2
Mirror Copy the movement of the player in reverse 2
. Hide from the player by travelling betwee
Hideouts certain points in the environment 1
. Chase the player away from a certain poin
Drive away the environment 1
Path Follow a preset path 1
Panic Run around the area in quick, large moveme 1
Run back and forth between the player an
Dog P . 1
point in the environment
Boo Move towards the player when the player is 1
facing the computer character
Move along Sneak around the area by staying close to 1
wall walls
Steal treasure | Move thetreasure out of the environment 1
Safe Steal Steal treasure, but Escape if seen 1
L Stay away from the player, preferring to be
Antisocial of sight, but moving far is unnecessary 1
. Stay near a treasure chest whenever the pl
Possessive 1

is near

24

Table3.1: Our classification of the 78 behaviour implementations. N is the number ¢
implementations in the classification. Implementations were given exactly one classific
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4. Pal nt Boantder face an

Our PaintBoard prototype enables peoplprtiotype interactive behaviouby digitally painting

a scene (as seen kigure 4.1). While designing and developing PaintBoard, we had two
challenges: create an interface that enables behaviour authors to quickly describe their desired
behaviours, and create an algorithm that takes the behaviour described by the authitves with
interface and produces an interactive behaviour instance. For the interface, we took advantage of
the benefits of lowidelity prototyping techniques, discussed $ection 2 [18,27,34] and
developed a novel approach that enables users to quickly define a behaviour by digitafig pai
simple scenes, similar sketching. Our approach further draws from the practice of storyboarding

to enableauthors to design behaviours pietse, to focus on one part of the behaviour at a time.

In PaintBoard, this pieewise creation is realized through enabling authors to digitally paint one

or more statisnapshotghat make up a storyboar#igure 4.1b), where the overall storyboard

represents the entire behaviour.

Paint Boarddés al gor i tphimed bt@ayboartd and gendratcragracéve a U S
behaviour resultThe behaviour generation algorithm analyzes an aygthimted storyboard by

extracting information from the storyboards that is relevant to the behaviour; in order to identify
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which elements of a behaviour storyboard proviths important information, we draw on the
results from our programming workshop (SectBB). We then use the extracted information to
learn how the author paed the behaviour. During interaction as the user moves their character,
we extract information about the rdahe situation that enables us to use what we learned from
the authored storyboard to predict how the author would have painted the currerfsmartais
painting, we decide the next move for the computer chardd@téow we address the interface

design in detail before covering the PaintBoard algorithm.

4.1.Pail nt Board I nteracti o

To facilitate rapid and iterative prototypinigj,is importantto enable users to not only quickly

create behavious, but tocontinuously modify them andeasily interact with the prototype

behaviour In PaintBoard, behaviour authors first create a game scene for the behaviour to take
place in by placing bricks that caapresent buildings and walls, and by placing the user and
computer controlled characters in that environment. The authors then paint a behaviour. When
done, they can interact with the behaviour by controlling the user character and seeing how the
compute character reacts with the behaviour gene
storyboard. The author can then update the behaviour, or try a new behaviour, iterating the author

testupdate cycle until they are satisfied.

In PaintBoard, authorsgmt each snapshot of the behaviour storyboard by choosing a colour from
the palette Figure4.1c) and then by clickingagnddragging on screen in the game environment

(Figure4.1a), similar to common computer painting applications. Our paint colours were chosen
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based on trends observed in our programming study (Se&t®n we discovered that
programmers often defined areas that were desirable (goals) or undesirable (areas to be avoided).
Thus, we chose three paint colours: red paint to represent areas that the computer character should
avoid, gold paint to represent areas the computer chashcteld move towards, and an unpainted

Afcol ouro to represent areas that are neither c

detail in Sectiort.2

While painting, users canteract withtheirbehaviouby pr essi ng a skigurgl e but
4.1e), and the system, in reaime (without delay), compiles tHeehaviourand generates a result

that the users can interact with using the keyboard controls (arrow keys). Anhenyhe author

canmodify thebehaviourb y p r e s 6 (Figuge4.l@)swhiohpstops the computeontrolled

pl ayer s movement gditany of hgantingdndhe starybaard, torhceeate a

(a) (h) HELLISCREEHSHOT

(©)

(d)

(€)

(f)

(b)

(9)

Figure4.1: The PaintBoard interface: (a) sandbox area, (b) storyboard, (c) paint palette, (d) p
interest (chest) and characters, (e) play and pause, (f) save ahetasibur (g) debug mode, (h)
new storyboard frame.
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new snapshoto add a new part of the behavioWWwhilei nt er act i ng wi tth t he
mo d eifdhe computer character moves in an unintended waguti@rcanstop the interaction
and usethe current problematicscenario a® new snapshaby paining it to become a new
storyboard frameclarifying how the behaviour should adthus tle author can rapidlghange

between modifying their storyboard and interacting with their results.

PaintBoard has a debug mode that is identicedtmode except that it provides raahe visual
feedbackof the computerontrolledcharacted s b e hnatlveicurrent situationPaintBoard

paints squares to indicate whér the dven situatiod® it believes the character should and
should not gpand does this with the same red, gold, and white paints authors use to describe
behavioursFor example, givethe snapshots iRigure4.2 asthe storyboarahput, Figure4.lais
actually the debugnode paintin§ a visual representation of what PaintBoard has learned.
Authors can use this to gain insighto how PaintBoard is interpreting the storybgaadd can

modify their storyboard or evgraintthe debug framéself to update théehaviour

4.1.1.1 nt eraancd iloniteesrifganc eRat i on al
Enabling rapid and iterative prototyping of ideas was a major interface priorityhas heen

shown toaid creativity and exploratiof27,34,36] Our PaintBoard implementatitrelpsusers to

explore their current behaviour prototype by enabling them to interact with the behaviour resulting

from the painting and supports iteration by enabling autlmorsadify existing snapshots in the
behaviour storyboardr even introduce new snapshdinally, the storyboard techniquweas

chosen to hel@uthors design multifacetdskhavious pieceby-piece, lowering the complexity

required to handle it all at on¢a problem found in prior worfd1]). Storyboarding also helps



29

prototype behaviours as authors can iterate ¢
treasure if the player is nearby, o before exp
leave the treasureroomwherach i ng t he pl ayero). Finally, Pain

not requireany computer programing or logic definitiowhich helps speed up prototyping by

avoiding the need to specify precise and detailed information.

An important design decision was for behaviour authors to be able to iterate a behaviour idea
(create, test, modify, repeat) from single interface PaintBoard enables authors paint
behavious in-situ (as in[21,33)), that is, they createehaviourdn the same environment where

the behaviourwill be interacting with the playerThis enables authors to bypass conceptual
translationsrequired when moving from an authoring to a testing medium (e.g., moving from
visual programming to a game), helpiagthorsto visualize the final resu[B] and thus more

easily creatdehavious.

Figure4.2: A sample twepart storyboardor a behaviouof acomputercharacte(CPU)that sneaks
up on the user character (Usén)this case, the computeharacter should nenter the sights of the
usercharacter(red squaresand should stay close to athind theuser (gold.
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4.2. Us er | nt er f ace

For each snapshot instoryboard authorspaint a sceneHjgure4.1a) to represent one aspect of

the desirecbehaviour.The scene can include user character and a computer character, some
environment features such as walls, angortant entities. Importamintities, ompoints of interest

were a common element of behaviours we discovered during our programming workshop in
Section3.2 Points of interest are objectslocations in the game worttat the behaviour revolves
around,such as treasure chestshideouts For example, a snapshot may have a treasure chest in
a room, with the computer character standing between thechaeacterand the chestyhich

mightrepresent the computeharacteguarding a treasure.

In order to simplify the problem for our initial exploration, both in terms of authoring and
behaviour generation, we had each snapshot be painte@0r28 2D gridfor our authoring
interface,where theauthorpaintssnapshots from an overhead viekiigure 4.1a). Authorscan

drag objects (fronFigure4.1d), including both the computer ander characters ambints of
interest (treasure chest), onto the grid, and position them as dbsoetkr to allow faster creation

of environmentsenvironmentwalls (the bricks fromFigure 4.1c), are placed with a clicknd

drag action, putting a brick in every grid cell along the path of the encwsor. To focus on the
initial problem of oneor+one interaction, wly one computer controlled and one user character, as
well as one point of interei allowed at a tira in this version of PaintBoard;-@vdinating mult

agent behaviours remains inrpant future work.

We designed our painting technique to be similar to common computer painting applications to

make PaintBoard more approachable: authors select a colouafcoiur palette Figure4.1c),
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and then paint on the grid by clicking and dragging the mouse, filling gridatetlg the path of
the mouse cursavith thecolour; as we aimed to keep authoring simple for authmels can only
have one colar at a timeandpainting over an already painted cell will replace the old colour with

the current one

Our choice of paints was a result of our findings in our programming workshop (S8@ipn

where we foundprogrammers often defined types of areas such as goals for the computer
controlled character (e.g. fAgo anywhere near
characte s houl d avoid (e.g. i a v dn adir inderfageyeld @aine t h e
denotes areas where the computer character shouggh; f or exampl e, when pai
up to the user charactebehaviourall grid cells that the user character can see should be red
because a sneaking character does not want to bé~sgere4.2). Gold paint indicategoal areas:

where the computer character wants tofgpéxample, irFigure4.2, the sneaking character wants

to get close and behind the user ch@xdJnpainted (white) squares are neutral and the character
neither avoids nor tends toward thérhey can be thought of as places the computer character can

use freely to get to their goal. In our interface, every cell, by default, starts unpainteained

cells can be made unpainted again by using the white paint, seeguie4.1c. In other words,

the computer character should try to go toward gold areas, while passing thrpagitadareas

and avoiding red ones.

Goal areas and points of interest are similar, bateptually different entities in PaintBoard. Goal
areascan be abstract (not a specific point in the environment) and dynamic areas the computer
characterwantstogoto,andbrae sed on t he user and computer ¢

(e. g.nd ftbheehriugsi®dt @ c k t he )pPaittshof intevestihiowever,are stadicc ur e 0
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objects in the environment that are important to the interactive behaviour (e.g. hideouts, guarded
items) In PaintBoard, not all behaviours may have a point ofeste but we assume they will all

have goal areas.

Il n addi t i o Rkigure42), bdtsen examplés efabled by PaintBoamhilar to those

observedn our programming workshop n ¢ | u d ethefuseodhdrawtetd6 by havi ng a
behind the user character, and Aguard the tre
interest, having the goal (gold paint) between the user and the chestjrdimt) pad squares far

from the chest to keep the computer close. \orants onfi f o | Isane examples include
keepingthe computercharactemehind or to the side by painting the respective areas gold, or

within a radius by painting fesway squares red.

In our programmer workshop (Secti8r?), we fourd that the developers often framed the goal

and avoid areas in terms of various quantities their behagengrating programs calculated

while interacting with the user character, such as distance from the user character, or if the
characters can see eagther. PaintBoardenables authors to define behaviours using similar
techniques, but without explicit calculations, by painting areas that have the correct properties:
fi a v lkine af sight can be defined simply by paintingdwhere a character can sééglre4.2);

staying close to the user can be defined by painting areas around the user character gold. We
believe this allows enables authors to tedsehaviours on an intuitive level: instead of authoring

in an abstract way with calculations and computer code, they can author in terms of the

environment and characterds physi ca-bituyr el ati on

The rest of tk sidebain our interfacecontains the storyboard overview, where users can scroll

through and select snapshots to edit theigufe4.1b), save and load buttorisigure4.1f), and a
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button to add a new snapshot to theyioard Figure4.1h). In addition, there are buttons for
changing between painting and testing moé&gegufe4.1e), and for entering a debug moéegiure

4.19).

43A1 gor it hm

The goal of thePaintBoard algorithmis o anal yze an authorés painte
an interactive charactéehaviourthat matches the qualities given in the storybo&odsimplify

the algorithm, we redefine the problem to: given atrone situation (inalding a set of walls, the
computer and wuser characteré6és position, et c.)
charactero6s next movement b a s dimhe stuationtihvery si t u
unlikely to be represented directly in thi®ryboardio encourage rapid prototyping, we envision

storyboards being short andly covemng a few exact situations.

Our solution is to first generate approximation snapshahat estimates how the current situation

would have been painted by thdesigner. The approximation snapshot can be thought of as a
snapshot that is an interpolation between the existing snapshots in the painted stoRdroard.
example, iyen the two snapshots as input fréigure4.2, PaintBoard generated the painting in
Figured.lato have similar characteristics (stay out of line of sight, eteojlowing, we usdhe

painted approximation snapshogt@ ner at e t he comput e rThixploeessact er ¢
is reattime: to inform the axt computer character movemeatnew @proximation snapshot is

generated for the new situation each time the characters move
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4.4Generating Approxi mat

During reaitime interaction, pproximation snapshots need to be generated for sihgationnot
given in the storyboard, while siag similar to the properties of the ugminted snapshots.
Specifically, weneed to determine, for each cellthe game grid, ithe author would have painted
that cellred, gold, orleft it unpainted. The resulif painting all cells isa new fullypanted

approximation snapshot that can be used to generate the boeiywiour

Our approach is to use supervised machine learning to estimate what colours each cell should be
painted in a new approximation snapshot. Supervised machine learning alga@ithgeneric

learning algorithms that, given input training data, create a model that can be used for prediction,
called a classifier. The training data is a list of data points that each have a label, called a class,
that describes the category of thatadaoint. The trained classifier can be used to predict the class

of new data points. For machine learning classifiers, all data points are usually vectors (a list of
numbers) of equal dimension (each vector has the same number of elements). Each rthmber in
vector measures some descriptive quality of the data point. For example, a classifier learning about
rectangles and squares might take vectors of lengthdéthmeg/be height, width, aréawith all

vectors where height and width are equal are labellédsasf u ar e, 0 el se t hey ar e
The classifier would, ideally, learn that, given a vector of length three, if the first two values are
equal, then the | abel shoul d be diestrgining daga. 0 Wi t
generally poduces a better classificati¢b4]. In PaintBoard, storyboards are assumed to only
contain a few entries; to increathe amount of training data available per storyboard, we decided

a single data point is a grid cell in our environment (for examplesigees4.3), and the possible
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classes are the three possible paint colours (red, gold, and unpainted). We use all grid cells to train

our classifier. One challenge of PaintBoard was how to represeidt @l as a data point.

To make a grid cell into a data point, we needed to sedpcesentative featurgdescriptive
numbers and calculations)at capture the appropriate characteristica grid cell. Thiss non

trivial, andwe had to develop owwn domainrspecific features given the lack of prior woRar
PaintBoardwe usedfeatures idetified through our programmer study (Secti®2). Note that

these éatures represent what determines vebédura cell should be painted. We call thesate
features and they take into account the context (the state) of the behaviour; for example, there is
a state feature that quantifies how far away the two charaamterfom each other. The state
features are detailed belowfingure4.3 and Sectiort.4.1 Development of appropriatlomair

specific features is a common challenge and has been done for other applications such as for
reaeating body language from a demonstrafitiy31], norrinteractive behaviosrfor industrial

robots[16], and nature simulatigf32].

For our machine learning algorithmevemployed a Support Vector Machine (SVJd) asit is

known to be a standard, fast classifier. In PaintBoard, we train a new SVM for an authored
storyboard immediately when the author clicks the play buogyute4.1€). We transformthe
storyboardnto a set ofeaturevectorsthesevectoss are calculatefbr every cell in every snapshot

and each contain the measurements of our state features faltks¢e~igure4.3). Each feature
vector islabeledwith thecolourit waspainted by the author (red, gotat,unpainted)All labelled
vectors arajiven to the machine learning algorithm which outputs a trained classifier that can be

used to predict the label of other feature vectors.
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Once we obtain the classifier, we can create the approximation snapshot for the current scenario.
Starting with an upainted snapshot, we calculate the state features of each grid cell. One by one,
we give these state features (a data vector) to the trained classifier, which returns the colour it
believes the author is likely to have painted that céktifained class$ier would ideally label new
unpainted cells of the approximation snapshot to match characteristics (the features) of the training
data for example, as seen Figure4.1, where the classifier predicted red paint where the user

character can see, just like in the storybhard

441.St ate Featur es

This section describes the complete list of state features ugesldarrent version of PaintBoard.

All features, unless otherwise noted, are calculated for each grid cell.

Position elative tothe usercharacterwith respect to screenaxi$:he cel | 6s positi o

to the wuser c¢har ac tesystem, fomexamples Figsire43¢he old sellis o or d i

two to the left and three above the uskaracterThi s captures the i mport

position (e.g., stay on the left or right side of the environment).

Positionrelative tothe usercharacterwith respect tats look direction Th e ¢ e pdinbo§ and
i nt e positon idrelation to where the user character is looking, for examtegune4.3 the
bold cell is two cells in fronbf and 3 cells to the right of the useraracter This captures the

importanceoh c el | 6fsr gopno stihte ouns er ¢ h@.g..ss@ytbehindthe). poi nt

(0]
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Position elativetot h e u s e r retatioa tothepdineof idtegestWe calculate a coordinate
system rooted at the wuser and oriented to the
space. For example, iigure4.3 the bold cell is 2.6 cells behind afdto the left of the useand

chest This captures the context of the point of interest (e.g., do not go between the user and the

cheststay closed the chegt This is rot used when there is no point of interest.

Visibility: A scalar representation of how wie usercharacter can see that grid cell: we cast rays
from the user to the cell anidh a t naghbats doscalculate visibility, with those blocked by

walls not counted. For example, the bold squaFegnre4.3 has visibility0.6 (6/9) This captures

line of sight information (e.g., how visible cells are to the wsaractey, and the notbinary
classification enables the computer character to capture the difference between being partially and

fully seen.

CPU

~~ | relative touser relatio
'topoint ofinterest

Figure4.3: How state features are calculated, e.qg., for the bolded cell.

-

-
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Absolute distance frothe usercharacterandthe point of interestThe Euclidean distances from
the cell to both the user character and the point of interest. For examiiguia4.3 the bod
square is 3.6 and 7.3 from the user and point of interest respectively. In combination with the

relative features above, this helps emphasize proximity (e.g., how close to be to the user).

45Us1 ng an Approxi mati o
Genetrla¢é eBehavi our

Given an approximation snapshot for the curregdttime situationour challenge was to generate

the next move for the computer controlled charaderr approach was to simply movee
computer character toward the closest goal space (gold paint), while lkiotgathrough walls,

and avoiding red spaces if possible. find the closest goal spachetalgorithm does a breaeth

first searchin polar coordinatesspiraling out from the computer character, where walls are
considered impassable. Red cells may natdmepletely avoidable, for example if all other paths

are blocked. We address this by penalizing red cells by giving them a distance wifur
calculating the nearest gold squamaking longer paths with no red still favorabhleer shorer

paths that wssred but short paths across red areas faw®rable oversignificantly longer
alternates. For the case when the character is stuck with large red areas between it and the goal,
we added a patlength threshold so the character simply would wait iretgafather than
traversing large red areahese values were chosen based on experimentation by a researcher on
the project, but we stress these values are only for+jofeafncept, and more formal studies will

be necessary to explore how this methogaifrplanning could be changed, or improved.
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46.l mpl ement ati on Det ai |

We used the JavaibSVM library (version 2.89)[7] with its default settinggor the SVM
implementation The logic was programmed in Ja{a7.0) using the Processing framework
(versim 2.0.1¥ and the ControlP5 librargversion 2.0.4)provided the graphical user interface

functionality such as the buttons we used in our interface

4.7.Summar y

In this section we presented our PaintBoard implementation, which includethkednteraction

and algorithmic design. Our interface, inspired by our initial investigations, allows authors to paint
environments in a series of snapshots in a storyboard, taking advantage of the benefits of low
fidelity prototyping techniques. The arface also supports iterative prototyping by enabling

authors to edit and test their behaviour in the same environimesitd e si gn) . Pai nt B
algorithm generates a behaviour by analyzing a storyboard and then;timeggdredicting how

the author would paint the current scene and moving the character according to the painting. The

al gorithm anal yz egboadoandhrediima situatonst ubirggtai@ seatuses

guantities that describe the context of an area in the environment, which were derived from the

reaults of our programmer workshop.

3 http://www.processing.org/ http://www.sojamo.de/libraries/controlP5
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5. Eval uation -of t he
Storyboards Techni g

We conducted a préaf-concept workshop to explore reactions to our PaintBoard approach and
interactiondesign by potential erdsersFor participants, weecruitedthreeprofessional antvo

hobbyist game developer§he workshoptook 1.5 hous and comprised of a tutorjiahn
unstructured authoring phase, and a questionnaire period. The tutorial was 15 minutes in duration,
and taught participants about how to uBaintBoard to prototype interactive characters.
Afterwards, they were given one hour to freelgate any behaors they wished, ask questions,

and discuss with other participantie workshop ended with1l5 minute questionnaitieat asked
participants about their experiences with PaintBoaddthough each participant worked
independently, the atmosphere was rnidly and collaborative, and people were having
spontaneous discussions about their experiences. Notes were taken throughout the workshop by

the researchet the workshop

Participants weresked to save their storyboarttsough the PaintBoard functioniglifor later

inspection. In addition, wperformed broad qualitative analysis on the notes and questionnaire
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answergy iteratively tagging answers with keywords describing the statements. Through this, we
identified themes and insights of our participats topics such as viability of painting as a
behaviour authoring technique, or participanggested ways that PaintBoard could be leveraged
in reatworld situationsSee Appendix B for the materials used in this study, including the ethics

amendment appwal certificate from thdointFaculty Research Ethics Board.

51.Resul t s

Overall, participants were able to use PaintBoard to quickly and successfully prototype a range of
interactive behaviorécreate 3 or more behaviours in the one hour). These incfuded | | ow t he
usercharacteoi hi de, 0 0 o bcharactercét g utahred ,Quastdira m ehhis was
achievedwith a relaxedgpace 15 minute tutoriabuggesting thabur painting and storyboarding

approach and implementatiaras approachable to newars

Participant responses in our questionnaire da

theyreported that PaintBoard would be useful for planning and prototyping ideas:

In its current state, could be handy for prototyping and visualiziegaios.- P3

| would use this as a prototyping tool to make quick behaviors that | would then implement with

code- P2

and for communicating with others:
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Easy to visually show others simple behavior that can be expanded to more complex situations.

-P5

Same participantaoted that it may be useful for team members with less technical expertise:

I'm not sure if it'll be useful in my workflow (yet), but I think it'll be great for desigriets

The previougquotes highlighthe goals we identified in owxploratory investigationsSgction
3.1): facilitating prototyping angommunication between designers and developérs indicates
that our results matched amotivation. Participants fountiéquick,visual and interactive nature
of PaintBoard to bémportantand useful for behaviour prototyping. In additios, RaintBoard
requires no coding knowledge nitay enabléwo-way communicatiomluring prototypingasboth

designers and developers could modify interactive behaviote enhance discussions.

Participants praised theenef i t s of Paint Boarddbés iterative

existing workflows

| like the iterative design process. Gamexdtto follow on iterative design, so this fits nicely.

-P1

Even though our participants were experienced programmers, they were very receptive to the use

of painting rather than writing computer code,the behavior design process:

| think the abstractn of the concepts to be very easy t

alter states during play, and ability to watch the goal and avoid state chdve

All participants also felt the performance of the test matleere PaintBoard generates the

behaviour from the storyboard and moves the computer character according to thevassult,
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reasonableHowever , s ome di d show concern over Pai

complex behaviors:

It's a bit hard to convey a behavior sometimes, but malyat doesn't need to be a goal. It

seems to work with simpler behaviors and | think it can be used as such udetully

We receivedseveral examples where the painted storyboard was very clear and descriptive from
a personds per s mglmehaviorsewere hoti genetatedesuccesssully! However,
while this is a failure of the current learning algorithm, we believe that this is a success for the
painting interface: it illustrates the ability to represent and communicate a diedeettive
behaviourthrough our storyboardSeeFigureb5.1, a storyboargroduced by a participant in our
workshop: 1 has easyo-understandsnapshots of specific behavior aspects and the overall
storyboardclearly describes a complete behayibut the generated behavior usually predicted
only unpainted cells thus while there are algorithmic problems still to be solved, the interaction

paradgm itself was successful in our case

While PaintBoard often properly identified large areas of colon,or highly mixed areas of color

often disappeared upon testing the behavior fegure5.2):

Established "safe zones" or "goal zones" to attract the "passive” NPC. The system would

"forget"” the yellow anes even despite consistency [across the skgtclir3

| wanted to create &ehaviorthat had the NPC directly between the player and the éhést

did not get the expected resutB2 (seerigure 5.2)

Another interesting trend was how tthevelopers spotted our use of state features even though the

underlying implementation (i.e. which state features we used) were not explained in the workshop:
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[l easily created] 6llow and hide. Few instructions required. Uses all of the data (location and

direction) being processédP5

9) i) LTl

User ? 2 CPU

Figure5.1: A storyboard authored by a parfiant during ouworkshop showing how a computer character
should sneak around a user to get treagajéhide by the only entrance to the room (b)when the player is not
looking, sneak into the room and stay out of sight (c) when the player is not l@dkheginner hallway, run to t
treasure (d) if the player is in the hallway, sneak around the other way (e) when at the treasure, stay the
sight (f) take the open route to the treasure, but in a different context than d (g) if the playehiisgNzoth
hallways, get as close to the treasure as possible (h) if spotted by the player, run out of the room and (i) another
example, similar to h.
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Figure5.2a: A singlesnapshostoryboardrom ourworkshopfor a behaviothat attempts$o teach the computer
character to stay between the user and the treasure.

Figure5.3b: The syntheticsnapshot, shown through debug mode gilal squares are generated in #ame context
Though location and direction were not actually all of our state features, the developers did not
know that we were using LibSVMyr how each state feature was calculated. However, our
observations suggest that they could still reason about what PaintBoard was doing in intuitive

terms that made sense to them.

52D1 scussi on

PaintBoard was successful in its goal of being an initial atteahgnabling prototyping of
interactive behaviors through painting and storyboardiagicipant feedbackupportedhat we
addressdsome of the issues raised in our preliminary studies, such as supporting communication

and enabling rapid iteration (e.ghrough theterative andn-situ design). In addition to being an
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approach accessible to people with programming gkilish as those in this workshopke aimed

for PaintBoard tdoe useful even fahose without any programming experience at all

We received feedback specifically regarding our algorithm. Some quotes highlighted that
participants discovered our state featureg;implementation came through in a transparent way,
and this suggests that our selection of state features may cover shmmeval/s developers think
about behaviourdAlthoughsome behaviours were not able to be generated succedsiislhyas
generally a result of the algorithm and not the painting approach itself, as the storyboards

themselves (e.dzigure5.1) were clear.

In addition to reflecting on the potential benefits of PaintBoard, participants described specific
functionality that they believkecould improve PaintBoard. For example, participants requested the
addition of story branches, where a condition indicated in a snapshot may lead to a new set of
snapshots. This could easily fit within the PaintBoard storyboard interaction, but woule requ
new algorithmic solutions. Participants also suggested adding the ability to make hard rules about
the environment, for example, to mark specific squares in the environment which should always
be avoidedAnother paint related suggestion was the abibtweigh painted cells, where some

are more important than others (e.g. prefer not b&ag sver reaching the treasuf®r example,

in Figure5.1 there are many goals in different situations (if the character is seen, if a path to the
treasure is open, etc.), however, the developer wanted the computer character to prefer not being
seenover reaching the treasudhile the ability to specify such detailould give more creative

power and control to a PaintBoard user, such features should be added with careful consideration
of P ai ndf Bebazioudauthoringpeedand simpleinteradion flow, else they may slow

down PaintBoardoés rapid and iterative nature.
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6.Eval uating the Acc
Behaviours

For our proof of concept interface evaluation (Sechpnve selecte@ standard learning classifier
andachievedreasonabl®ehaviour generation, according to our initial user stusiyortunately,

to our knowledge, there is no previous work on-aadr authoring of interactive behaviors to
which a comparison can be made. To provide a quantitative baseline for future work and to
understand how our choices of machine learning algowihdfeature set affect the quality of the
behaviour generated by PaintBoaxe, performednanalyss ofbehaviours generated Hifferent
variations of our algorithm. We modified our algorithm on two dimensions: classifier, and feature
set used to trairhe classifier. Thigvaluatiorhad three components: we developed a datasge
enough to facilitate both training and testing of an algoréhanaccuracy metric that could be
used tomeasure the performance of an algorithve tested the accuracyafet ofclassification
algorithm variants on our dataseand using the best performing classifiave explored the

accuracy of different combinations of state features



50

6.1.Bui |l ding a Dataset fo

To build a dataset for training and testalgorithms we recruitegarticipantsand had therpaint

behaviours witHPaintBoard Participants were asked to make multiple example storyboards of a
behaviour so we could train PaintBoard on some examples, and test the resulting behaviour on the
remaining &amples. It is important that a storyboard does not appear in both sets in order to test
each algorithmés ability to generalize a behay

data.

In our experiment, we trained each algorithm on onlyexsnple storyboarfvhich is made up

of at least one painted panely) other words, we use no more training data than PaintBoard
normally gets during normal usghis setup wasn explicit decision becauseir target use case

is rapid prototyping and, @hlly, aPaintBoarduser will paint minimal datgone storyboard
example)and test thdehaviourin many situationsAdditionally, training and testing sets were
comprised of storyboards from a single authorwe di d not, for etteampl e,
user charactero behaviour with one authords si
This is because we knew from our programming workshop (Se2#pthat the same behaviour

varies between authors: data from one author is likely to produce a different behaviour than the
behaviour produced from another authorés dat a

to create many example sgboards of the same behaviour

In our study, participants were asked to create a series of examples for three different behaviours
escape from the user charactemosen as a potentially simple behaviameak up to the user

characterchosen to requirtne use of environmental featurasd protect a treasure from the user
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character chosen to force the use of a point of interésir eachof the threebehaviaurs, the

participant was instructed to createseries oflO differentstoryboardexamplesresuting in 30
storyboards(with at least 1 panel per storyboaridm each participan{Figure 6.1). The
participants were told thaach examplstoryboard they create (comprised of one or more painted
snapshots) should fully define thehaviour In other words, each storyboard could be used by
itself to generate t he aThistvasemdpbasized topur gsérein d e s i

order for us to be able to use each storybeaainpé as standalone training data. Additionally,

participants behaviours storyboards
x9) (x3) (x10)

escape . f) l o]
i

wr e
=]
Egﬁ
CI-?T‘(_D
.
-

each storyboard consists of
at least 1 painted panel

Figure 6.1 How we created our evaluation dataset. Each of nine participants made 10 storyboards
with a length at least one panel for each of three behaviours.
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having different behaviours enabled us to furtheestigate if certain algorithms performed better

on specific behaviours.

We recruited 9 articipantsvhowere 4" year and graduate computer science students. They were
given al0 minute tutorialbbf how PaintBoard worked, including a demonstration of painting a
A f ol bebawidur Participants were informed that their data would be used for evaluating
behaviour genation algorithms, though they were not allowed to Bse i n t Bbehaviodrd s

generation in order to avoid them influencing their authoring approaches to a specific algorithm.

6.2Compari son of Cl assi f

To our knowledge, there is no other previous work teclvive could compare PaintBoard, se w
insteadcompared the performance RaintBoard with fivedifferent machine learning classifiers:

SVM with a Radial Basis kernel, SVM with a polynomial kernelNKarestNeighbous, Random

Forest, and Naive Bayes cldigs. These algorithms are a sample of supervised learning
techniques covering several different approaches to machine lea®ViMps are standard, fast
classifiers used in a variety of modern applicationg\Ndarest Neighbours is a simple but
commonly usd clustetbased algorithm, Random Forest is a moderntiesed approach, and the

Naive Bayes classifier is based on Bayesian statistics and provides an adequate baseline for most
applicationg6]. We used the implementations of these algorithms provided by the Java Machine
Learning Library{1]. The two SVMs used the libSVM default parameters; k was chosen as 5 for

K-NearestNeighbous asin initial testing,it had similar performance to higher values (e.g. k=10)
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with faster rurtime; the tree count for the random forest wasiggtto 100, baed on the evidence

suggesting random forests do not often ovéngir generated results to their training ddfa

We needed to develop a performance meihnigt could compare the output from difént

classifier® that is, we needed a method to determine which algorithm generated a behaviour
closest to the one the author intended to crddtes is nortrivial for our problem domaias we

must know what t he aut h o rfusctionthat neeasureswhe similariyn d d €
of that intent to the trained classifier. We
storyboard snapshots. Thus we compared the painted storyboard snapshots from the test set to
snapshots generatey the classifiers trained on the trainisgt storyboards; recall that the test set

does not contain any data from the storyboard used to train the algorithm. The performance of a
classifier was then defined to be the similarity of the author paintedrota@nd the snapshots

generated by PaintBoard.

Specifically, we trained a classifier with one storyboard (the training set). That classifier then was
used to generate synthetic snapshots for situations given-setestapshots painted by the same
autha of the training storyboard. The situation for which we generate the synthetic snapshot is
defined by the user and computer characteros
interest) in the authguainted snapshots. The synthetic snapsbagenerated the same way
PaintBoard would normally generate the snapshot if that situation was encountered during real

time testing (Section.4).

We compare theuthored snapshots with the correspondggtheticsnapshots at the grickll
level, the paint of each grid cell in the authmainted snapshot is compared to the paint of the

corresponding griatell in the synthetic snapshot. If the paints are the same colour (gold, red, or
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unpainted), it is considered a direct match, otherwise the feésigsiconsidered to have made a
mistake. The ecuracy ofthe prediction for onesnapshois defined to be the percent of true
positives (direct matches) betwabeauthorpainted test snapshot andsigtheticsnapshatThe
accuracies of all snapshatsa storyboard are averaged together to give one accuracy measurement

for that storyboard when using a given algorithm.

For each algorithm, we perform cresalidation[26] to gain a better understandingtsfaccuracy

when trained with different storyboard&or a givenp ar t i chel@adonyt we strained
PaintBoard with only one ohe provided 10 examplstoryboards. Thushé remaining nine

examples are used as test data, and then we measure the accuracy as described above. This is done
once for each examp#toryboardtraining a new classifiavith the new storyboard and measuring

its accuracy against the other nine storyboards for each iteration of the valitlhése accuracies

are averaged togethty give us one accuracy valieor t hat par t.iTeimpaant 0 s

accuracy of an algorithm is defined to be the averageacyg over all participants amhehavious.

6.21.Anal ysi s

Each of the nine participants created 10 example storyboards for each of three behaviours. By the
method described above, we calculated one accuracy metric for each of the three behaviours for
each of he nine participants, giving us 27 accuracy values for each algorithm. To analyze these
values, we performed an Analysis of Variance (ANOVA) on the data which provides us with an
effect size that measures the impact of the choice of algorithm on the@cobitae resulting
behaviour, as well as the ability to detect interaction effects (for example, if the choice of author

or behaviour affected the accuracy of the algorithm).
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Our patrticipants found PaintBoard fast enough in our workshop, but differenttiatgs with

higher performance may also have slower execution speed. It is important for the algorithms to be
quick to maintain fluid authoring and interaction. As such, we also performed an ANOVA on the
execution time of each algorithm; for each itenatd k-fold validation, we recorded an execution

time. These were averaged to give a time for each behaviour of each participant (27 values for
each algorithm). The ANOVA was performed on these values, similar to how we analyzed

accuracy.

6.22Resul t s

We present thenean accuracygf each algorithm ifrigure6.2. Errors bars show standard error.

Statistical analysis revealadnain effect of the algithm on the accuracy of the synthetic snapshot
(F(4,12) = 11. 92=.2B4. Rostho®t6sts (witfHonferronicorrection)revealed that

the radial basifunctionSVM performed better than Naive Bayes(001), and polynomial SVM
(p<.05).Coopari sons of the radial b as i RandormForest i on S

andK-NearesNeighbouralgorithm® per f or mance showed no signi f|

We grouped accuracies by behaviour type across participants. The behaviour type had a main
effect on theaccuracy of the synthetic snapshefy, 132) = 8 . 0 2=.14% Pob6tbot tess d

(with Bonferroni correctionf eveal ed waat mdse@eea&our ate than e
(10% more)p < .005.There was nanteraction effect between algorithmdibehaviourtype on

accuracyof the synthetic snapshot
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SVM-POLY [
SVM-RBF [
RandomForest FE e
NaiveBayes [
KNN - e

0 0.2 0.4 0.6 0.8 1

Figure6.2: Accuracy of each algorithm for our dataset. Error bars are standard

error. From the top: Support Vector Machine (SVM) with a polynokeahel,

SVM with a radial basis function kernel, Random Forest, Naive Bayes,-and K
Nearest Neighbours

One problem with interpreting the above accuracy results is that, in our data, a cell is much more
likely to be unpainted (clear) than painted (red ddgahis biases classifiers to give us high
accuracy for unpainted cells while possibly lowering the accuracy for the other colors. To provide
insight we present a confusion matrix for the radial basis $Vable6.1), showing theaverage

accuracy across all participants @®haviousas a percentage Each entry can be
value] percent of all authgrainted [column] cells in the test dat@re predicted to be [row] by
PaintBoard. 0 For exampl e, we belkavouss %% oftgdida t |, ac

painted cells were predicted to be unpainted in the synthetic snapshots

Although our current implementah is sufficiently fast for interactive results, we analyzed
execution time as a significantly faster algorithm could be important for future Wuoeke was a
main effect of the algorithm on the time taken to run (perform erakdation)per participahper
behaviouy (F(4, 22) = 19.430, p<. 0 0 4=,649q Posthoc test (with Bonferroni correction)

revealed thaall algorithms rarat least 650%aster tharthe polynomial kernel SVM, g .001.
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The difference in execution time of the crasgidationwith the iadial basis function kernel SVM
when compared td-NearesiNeighbous or Random Forestas not shown to be significafthere
was noeffectof behaviourtype and no interaction effect between algorithm and behaviour type

onthe runtime of the classifiers.

authorpaintedcolour

SVMRBF red unpainted gold

red 0.25 0.09 0.09
predicted  ynpainted | 0.70 0.85 0.76
colour

gold 0.05 0.06 0.15

Table6.1: The confusion matrix for radial basis function SVM. Entries represent
accuracy, ranging from 0 to 1.

6.3.Eval uati on of St at e F

To investigate the effect of our set of stat
explored accuracy variation with subsets of our features. Wsilygthe radial basis kernel SVM

(as we found it to be one of the best performimg) performed a naive greedy feature selection:

we measured the accuracy (as above) with each state feature on its own. We picked the feature
with the highest mean accuraagross allbehavious and participants. We then measured the
accuracy of each feature combined with the seldmstieature. This was repeated for all features

until no statistically significant improvement was made with the addition of any other feature
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The two selectededtadtievef ¢ @t wrseey wdrteh fands pect
fel ative to user 0s r Withathesedeaturds,oPaiiBoardhad a077.5% nt er
accuracy, while it achieved a 77.3% accuracy with all featurhis difference was not found to

be statistically significant.

64D1I scuUussi on

Our comparison of multiple algorithms showed our original choice of SVM with a radial basis
function kernel was among the fastest of iiiechine learning techniquese testedIn addition,

our workshop(Section5) suggested that it was fast enbugr reattime interactivity At least,

with our algorithmic approach and feature set, we foundtieat idikely no easy benefit to using
similar outof-the-box machine learning solutions. Even so, PaintBoard sometimes struggled to
properly generate a prototyfeehaviouy despite ie storyboards themselves (elgigure 5.1)

being clearsuggesting that an alternative, perhaps fundamentally different learning solution may

be necessary to i mprove PaintBoardés behaviou

As seen byTable6.1, the largestype of error made by our approach was misclassifying red and
gold cells as unpainted. One possible cause is the statistical nature of our machine learning
algorithms; due to thiarge number of unpainted cells typical in our approach, the probability of

a cell being similar to unpainted cells becomes higher. Thus, even if all qatihéed gold cells

are very similar in terms of state features, it is likely that an even laugdver of unpainted cells

are also similar to those gold cells, making classifiers more likely to paint a cell unprted.

case,one possible solution is toarefully balance the data fed into the SVM by clustetiray
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disproportionately largaumberof uncolored squares to a representative suhaeis similar in

size to the other colorSuch a change would benefit from a comparison similar to what we did in

this chapter, as different algorithms may react differently to the balanced dataset., [ruathe

other techniques exist for dealing with imbalanced data, and is an active field of research in
machine learninfl4d]. Changes to PaintBoardds interface n
due to all cells initially being unpainted, they are more likely to be left unpainted, as it takes a
decision from the user to change this. Despite this limitation inresults, we highlight that

labelling a square as unpainted is as equally important as painting it (incorrectly painting them red

or gold could create incorrect behaviours), and that the generated behaviours were robust enough

for most prototyping, as sugsted from the results of our workshop (Sechpn

A key area of potential improvement is our selection of state features. Our greedy feature selection
resultedn only two features giving similar accuracy to our full feature set, implying that we may

have overlap in our full set. However, our test data in this experiment only included 3 behaviours;

our state features resulted from analyzing 19 different behaviour y p e s , and so ito
our full feature set may have higher accuracy over a larger variety of behaviours, though further
testing would be required to validate this. Completely new features are also a likely source of
improvement. For instanceur current feature set cannot learn behaviours that require a change

in speed, limiting the behaviours we can generate. Other features may not enable new behaviours,
but improve current accuracies. For example, adding a feature that calculates didizmeg @f

shortest possible path (taking into account walls, etc.) as opposed to Euclidean distance may

improve accuracies in more complicated environments.
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OQur definition of a generated behaviourds acc!
ou r resul ts. P ai prot@ypebehdviowrs, yetooarl defimtors of & successful
prediction is very strict (an exact match between corresponding grid cells), and as such, lower
accuracies may be permissible. For example, a snapshot thatrzewetl in practice may score

poorly with our metric if the colours were offset by one square either vertically or horizontally.
Additional accuracy metrics may be more appropriate, such as counting a match if the desired
colouris in a nearby cell. Fingl] as our input storyboard provides very limited data for relatively

complex behaviours, it is highly unlikely to achieve rR#@0% accuracies with generic techniques.

Modern games are commonly not discrete -fjke areas, and have characters moving &bou
smoothly in a continuous space. In order to bring PaintBoard to such spaces in its current form,
many algorithmic problems must be solved. One problem in doing this is that calculating state
features for every pixel in the game world is computationatiyeixpensive in most cases. A naive
solution could be range thresholds, perhaps definable by the author, that limit how far away from
the user and computer characters the calculations take place. A solution to combat the complexity
of a continuous space wad be to discretize the spac@lacing an artificial grid, similar to what

we already use in PaintBoard, over the continuous area. This algorithmic trick could even be
invisible to the author: allow them to paint in a continuous space, and apply thelgrishen

calculating the state features.
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6.5.Concl usi on

The PaintBoard algorithm was sufficient for our initedploration of our paintingtoryboards
approachand enabled rapid, iterative prototyping of interactighavious. Our initid choice of

radial basis function SVM arxlate feature seftsed in our workshop proved to dgequatehoices

when compared to other learning techniques used with our PaintBoard.dystgaver, different
machine learning algorithms did ngield performace gainssuggesting that fundamentally
different approaclhior behaviourgeneration may be necessary for better accuracy. Further, our
state features used to train our SMMre able to successfully reproduce behaviours to a reasonable
(sufficient for pototyping) level, as indicated by our performance measurements. However, our
analysis suggested that our initial sedy contain redundant features, and is likely incomplete,
thereforea more systematic investigatitmidentify possiblemissing featuress important future

work.
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7.Concl usi on

This work detaileda noveltechniquefor prototypinginteractivecharactebehavious by painting

and storyboarding We presented results from exploratory interviews and a programmer study,
which informed our development and interface design, resulting in PaintBoard: a novel painting
and storyboarding interfac&he algorithmwe developed i®ased on machine learniagd can
generate redime interactivebehaviours based solely on a few digitapginted snapshot
examples As part of this, we developea novel feature set (state features) that can represent
important characteristics of paired interactive behagiwhich may be useful to other algorithms

in the same problem domaiRurther, we conductedworkshopwhere people used PaintBoard,

and the resultkighlighted thestrengthof our approach, showing how developensth minimal
training, can easily use PaintBad to prototypebehavious. Finally, we devised a metric to
evaluate the quality of generated behaviours and usedekpiore variant®of our algorithmic
approach. This lead to us discovering that little can be gained by simple algorithm or parameter

adustment in our system and current algorithmic approach.



64

71.L1 mitatir ons and Futur

This workservedas a proobf-c oncept of Pai nt Bo apeaple $o gengrgier o a c h
behaviours by painting storyboards However, the interface, algorithm, anevaluation
methodology all require further study to make behaviour generation authoring more fluid,
accessi bl e, and reliable. I n spite of these |
approach, and it extends previous work to provide a basétiin future work in authoring

interactive behaviours.

71.1Aut hdmitreg f ace and I nter a

Beyond the additions mentioned in our workshop, such as branching storyboards and painting with
different weights, we need to explore extending the painting metaplemable more interactive
behavioursFor exampleit is not immediately obvious how to paint netatic properties such as
character movement speednother challenge is the inherent chronology of storyboards.
PaintBoardshould be extended to considiee order of the snapshots in the storyboard, as people
expect them to be chronological; currently, this is not handled in the interface, nor the algorithm
and may be useful in learning more complicated behavidtesporally constraining each
snapshot, dwever, further constrains an already limited input set (a short storyboard), and
requiring additional data from a user may limit their productivity with PaintBoard. This remains

challenging and important future work.
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Looking to successful painting softvediior inspiration, it may be useful to explore how PaintBoard
could use layers (e.g., as used in Adobe Phot8shtpe GIMP software packages). This enables

users to separate varying aspects of what they are drawing, and may be useful for representing
speed, or other features such as character orientation, without cluttering the sn&oslei@mple,
temporal behaviour aspects, such as speed of movement, might be expressed on its own layer,

possibly with interactions that benefit those parts of the\beta

7.1.2Be hav3demuwerrand oSt at e Featur

We discussed many of PaintBoardos algorithmic
prediction, in SectioB.4, but we have, to our knowledge, been the first to attempt to quantitatively
evaluate generated interactive behaviours. This provides a solid baseline for future work including
even entirely dferent authoring techniques that change the way users create behaviours, the data

to be analyzed, or the generation technique itself.

While the subset of algorithms we compared in our study was diverse, it was incomplete. However,
our results suggestedat general machine learning techniques will not easily provide significant
performance increases. Thus, we suggest that new machine learning or analytical techniques

tailored specifically for learning interactive behaviours may be a promising direction.

Different approaches tate features may greatly imprae accuracyof generating behaviours

as well as enable an even wider variety of behaviour that can be authriézla subset of our

S http://www.photoshop.com/ 6 http://www.gimp.org/
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features seemed to perform as wel the full setwe cautio thatour evaluation was only tested

with a small number of behaviours, and our accuracy metric was strict and possibly not suited to
evaluate prototyping environment®ur results simply highlight that selection of features for
analyzing storyboard inpuis nontrivial, and that different feature sets may have similar
performance for specific subsets of behaviotgndamentally different approaches to state
features may enable more complicated behaviours; for example, instead of calculating state
features at the grid cell level, higher level features that encapsulate state information (e.g. the user
character is moving towards the treasure) may be enable behaviours that rely upon knowing past

movements.

713 Furt her Eval uati ons

Our studies were higlevel andf ocused on obtaining a gener al S
but targeted follow up studies with more rigorous evaluations need to be condueteduld
perform a followup studyt ar get ed at Paint Boardds whereent i al
developers and netechnical designers work together to creabelaaviouy and use PaintBoard

as the prototyping and communication medium. This will enable us to more concretely reflect on
PaintBoardds potenti al as ohin @ eaworldrs¢ecadotAs on  an ¢
previously mentioned, new evaluations target e
features should look to refine our method of measuring the accuracy of a generated behaviours as
well. For example, being less stran what counts as a successfully painted cell (as PaintBoard is

a prototyping tool), or even evaluating the behaviour on the scene level instead of the grid level

may be an improvement.
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72.Contri buti ons

Contributions of our research include:

1. A novelinteraction metho@ digitally painting storyboards thatenables thelescription

and realtime testingof interactive behaviouf®r computer controlled characters.
2. An original interface that enables 1.

3. A behaviour generatioralgorithm that canquickly generate areaktime interactive

behaviour from a painted stioard.

4. A workshop with developers and interviews with professionals in the game industry that
grounded our design and development of 1, 2, and 3, and provide a baseline understanding

of some approacheg creating interactive behaviours.
5. AnevaluatiorofPai nt Boardés overall approach of pa
6. An evaluation of PaintBoarddés behaviour ge

Overall, PaintBoard serves as a proof of concept for howtirealinteractive behaviours can be
prototyped through painting and storyboarding, and provides an initial solution to the interface and
algorithmic design problems. Our interface and interaatiesign was evaluated with a design
workshop, and our algorithmic solutions were analyzed by comparing different learning
algorithms withPaintBoard.The evaluations highlighted the success of the pahsiiogyboards
approach, and venvision that PaintBwd will serve as a proof of concept and baseline for future

work, for example, extendinBaintBoardinto 3D continuous worldsWe hope that tools for
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simplifying the authoring of interactive behaviours will improve, making interactive content

creationfager andmore @cessible to a broader audience
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