

PaintBoard

Prototyping Interactive Character Behaviours by

Digitally Painting Storyboards

by

Daniel J. Rea

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

In partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg

Copyright 2014 by Daniel Rea

i

Advisor Author

Dr. James E. Young Daniel J. Rea

PaintBoard:

Prototyping Interactive Character

Behaviours by Digitally Painting Storyboards

Abstract
The creation of interactive worlds, such as those in video games, often include a set of computer

controlled characters that must intelligently act and react in response to dynamic input from the

user. These interactive behaviours usually require authors to programmatically define each

behavior, reaction, and interaction the character should take in response to user input across a range

of scenarios, a process that can take significant time. While this method can successfully create

robust characters, the large development overhead is not conducive to the exploration, prototyping,

and testing of new character ideas.

We designed and developed PaintBoard, a system that enables users to rapidly prototype

interactive character movement by digitally painting a storyboard. PaintBoard promotes

prototyping by facilitating quick, visual authoring, and by enabling immediate testing by allowing

the user to interact in real-time with a behaviour generated from a painted storyboard. To generate

the interactive behavior, we developed a novel algorithm that analyzes a painted storyboard and

uses machine-learning to generalize the painted examples to new situations. Our algorithm uses

ii

this generalized behaviour to control the computer character during real-time interaction with the

user character.

To help ground our design decisions in how real designers approach the problem of creating

interactive behaviours, we conducted two preliminary exploratory studies with industry

professionals and programmers. We further conducted a proof-of-concept workshop with our

prototype to investigate how real developers may use PaintBoard; this illustrated the initial success

of our painting-storyboards authoring metaphor. Finally, we performed an initial evaluation of the

behaviour generation algorithm which informed us of directions for future work to improve

PaintBoardôs performance.

Contributions of this work include the design and evaluation of both a new interaction metaphorð

digitally painting storyboards for interactive behaviour authoringðand a novel behaviour

generation algorithm (for generating real-time interactive behaviours from storyboards). Our

results demonstrate that the PaintBoard approach can be useful to developers as an exploratory

prototyping tool due to its fast and understandable painting metaphor, and that PaintBoard itself

can quickly (in real-time) generate an interactive behavior.

iii

Acknowledgements

Over the past two years, I have been fortunate enough in my professional and social life to meet

many wonderful people who have helped me succeed during my masterôs degree, and thanks are

in order.

I would first and foremost like to thank Jim Young, my supervisor, for all the advice, the pep talks,

the brainstorming, and yes, even the 26739 edits that helped me go from thinking I know how to

write, to realizing I still have a long way to go (and not just in writing!). Thanks especially for all

the opportunities youôve given me, even when you had to drag me kicking and screaming to some

of them. The echoes of these 2 years will undoubtedly be with me for a long time to come.

I would also like to thank Takeo Igarashi, who was my co-supervisor in all but name. Your research

is inspirational, and your advice throughout the project truly set me up to succeed.

Thank you to my committee, Andrea Bunt, and Jonah Corne. Your experience and perspectives

really helped fill out and polish my research, and your guidance was always helpful.

Of course, I would never have gotten through this without my family. Thanks to my mom for

listening to all the rants and times I was stumped, even if you didnôt understand. Thanks to my dad

for always quietly supporting me; sometimes the talk and a coffee helped me get through the next

week. Thanks to my sister, who listened, understood, and supported me; who caused trouble and

shenanigans with me; who drank bubble tea, and ate sushi; who took me out made me laugh when

nothing seemed to be going right: youôre the best.

Thanks to all my friends for being patient. I cancelled a lot of plans throughout this degree, and

you always understood and stayed with me through it all. Thereôs too many of you to thank

individually, but Iôm thinking of you.

To all you crazy people in that sharehouse: thank you so much. I donôt know where Iôd be or who

I would be now if I hadnôt met you. You made my Tokyo internship unbelievably fun, warm, and

full of adventure. Those months will be in my heart, and I hope we can meet again somewhere in

the world, someday soon!

To all the researchers Iôve met throughout these years (and even during my undergrad), you donôt

know it, but youôre the reason Iôm still here, and the reason I started this journey in the first place.

I donôt know if weôll see each other again, but youôre an inspiration to me.

Thank you, all of my labmates, for the movie nights, the LAN parties, the coffee trips and bubble

tea. Thank you for the board games the fun talks, the yelling, the wasted afternoons, and the help.

Thank you for being awesome. Youôve made the 2 hours of travel every day worth it.

Thanks to my cats. Iôm sorry I never wrote any papers with you.

And to everyone else who I helped me somewhere along the way; keep on rockinô.

iv

Dedicated to these two years.

ñIt's a dangerous business, Frodo, going out your door. You step onto the road, and if you

don't keep your feet, there's no knowing where you might be swept off to.ò

ˈ J.R.R. Tolkien, The Lord of the Rings

v

Table of Contents

 Introduction 1

1.1. Methodology 4

1.1.1. Exploratory Investigations 5

1.1.2. PaintBoard Prototype Design and Development 6

1.1.3. Evaluation of the Painting-Storyboards Technique 7

1.1.4. Evaluating the Accuracy of Generated Behaviours 8

1.2. Contributions 9

 Related Work 11

 Exploratory Investigations 17

3.1. Interviews with Industry Game Designers 18

3.2. Programming Workshop 21

3.3. Conclusion 23

 PaintBoard: Interface and Algorithm 25

4.1. PaintBoard Interaction Flow 26

4.1.1. Interaction and Interface Design Rationale 28

4.2. User Interface 30

4.3. Algorithm 33

4.4. Generating Approximation Snapshots 34

4.4.1. State Features 36

4.5. Using an Approximation Snapshot to Generate the Behaviour 38

4.6. Implementation Details 39

4.7. Summary 39

vi

 Evaluation of the Painting-Storyboards Technique 41

5.1. Results 42

5.2. Discussion 46

 Evaluating the Accuracy of Generated Behaviours 49

6.1. Building a Dataset for Evaluation 50

6.2. Comparison of Classifiers 52

6.2.1. Analysis 54

6.2.2. Results 55

6.3. Evaluation of State Features 57

6.4. Discussion 58

6.5. Conclusion 61

 Conclusion 63

7.1. Limitations and Future Work 64

7.1.1. Authoring Interface and Interaction 64

7.1.2. Behaviour Generation and State Features 65

7.1.3. Further Evaluations 66

7.2. Contributions 67

 Bibliography 69

Appendix A: Materials Used in our Initial Investigations 73

Appendix B: Materials used in our Workshop and Algorithm Evaluation 81

vii

List of Tables

Table 3.1: Our classification of the 78 behaviour implementations. N is the number of

implementations in the classification. Implementations were given exactly one classification.

24

Table 6.1: The confusion matrix for radial basis function SVM. Entries represent the accuracy,

ranging from 0 to 1. 57

viii

List of Figures

Figure 1.1: A painted storyboard showing that a computer-controlled interactive character (CPU)

should approach yellow squares (the treasure) while staying out of the red squares (user

controlled characterôs sight). PaintBoard extrapolates and generates the interactive behavior

of ñsneaking to the treasure when the userôs character is not looking.ò 4

Figure 3.1: The scenario provided to the programmers of the programming workshop. The grey

stone areas are not traversable (characters cannot move onto the same space), and the

programmers were told the user and computer characters cannot see through the stones either.

The programmers created behaviours for the red character (CPU) while users controlled the

blue character (User) with the arrow keys on the keyboard. 21

Figure 4.1: The PaintBoard interface: (a) sandbox area, (b) storyboard, (c) paint palette, (d) point

of interest (chest) and characters, (e) play and pause, (f) save and load behaviour, (g) debug

mode, (h) new storyboard frame. 27

Figure 4.2: A sample two-part storyboard for a behaviour of a computer character (CPU) that

sneaks up on the user character (User). In this case, the computer character should not enter

the sights of the user character, (red squares) and should stay close to and behind the user

(gold). 29

Figure 4.3: How state features are calculated, e.g., for the bolded cell. 37

Figure 5.1: A storyboard authored by a participant during our workshop, showing how a computer

character should sneak around a user to get treasure. (a) hide by the only entrance to the room

(b)when the player is not looking, sneak into the room and stay out of sight (c) when the

player is not looking at the inner hallway, run to the treasure (d) if the player is in the hallway,

sneak around the other way (e) when at the treasure, stay there, out of sight (f) take the open

route to the treasure, but in a different context than d (g) if the player is watching both

hallways, get as close to the treasure as possible (h) if spotted by the player, run out of the

room and (i) another example, similar to h. 45

Figure 5.2a: A single-snapshot storyboard from our workshop for a behavior that attempts to teach

the computer character to stay between the user and the treasure. 46

Figure 5.3b: The synthetic snapshot, shown through debug mode. No gold squares are generated

in the same context. 46

Figure 6.1 How we created our evaluation dataset. Each of nine participants made 10 storyboards

with a length at least one panel for each of three behaviours. 51

ix

Figure 6.2: Accuracy of each algorithm for our dataset. Error bars are standard error. From the top:

Support Vector Machine (SVM) with a polynomial kernel, SVM with a radial basis function

kernel, Random Forest, Naïve Bayes, and K-Nearest Neighbours. 56

x

Publications

Some ideas and figures in this thesis have appeared previously in the following publications by

the author.

Daniel J. Rea, Takeo Igarashi, James E. Young. Behavior Primitives for End-User NPC Behavior

Creation. In adjunct proceedings of the international conference on Human-Agent Interaction

(HAI ô13), 2013. (Best Poster Runner Up)

Daniel J. Rea, Takeo Igarashi, James E. Young. PaintBoard - Prototyping Interactive Character

Behaviors by Digitally Painting Storyboards. In proceedings of the international conference on

Human-Agent Interaction (HAI ô14), 2014. (Best Paper Award)

1

 Introduction

Interactive media has become a part of our everyday lives, and is being used in applications such

as video games, art, and training simulations. Computer controlled charactersðthose that have an

artificial intelligence and move around and interact with the player and the environmentðare an

important element of many of these interactive worlds. The creation of these characters is a

complex task that, at the professional level, can require a broad range of specialized and

collaborating experts, including artists for authoring 3D models and animations, writers and voice

actors for dialogue, and programmers to implement artificial intelligence and system logic. When

the computer-controlled characters are highly interactive, the artificial intelligence component

becomes particularly challenging as the characters must assess and interact appropriately in real-

time to dynamic input from users and their environment. The creation of interactive behaviours

can demand significant amounts of time even from expert programmers. For example, in a role

playing game, a designer may want a computer-controlled thief character to ñsneakò: avoid the

user-controlled character when they are nearby while simultaneously approaching a treasure box,

all without being seen. Such behaviours usually require the designer to logically

(programmatically) define the details of the computer characterôs actions for multiple situations

2

based on the user characterôs past and potential activity. This overhead slows development;

however, the ability to quickly create and explore multiple ideas is important for creative tasks

[34].

To aid in the prototyping of digital content for interactive systems, researchers have aimed to

reduce the amount of expertise and time required to make them. This approach includes enabling

people to create 3D models simply by sketching in 2D [21], author advanced animations through

simple mouse or touch manipulations [22,23], or to create complex interactive stories through

point-and-click visual logic programming [28]. Simplifying the creative process provides experts

with prototyping tools for quickly testing, visualizing, and sharing their ideas [34]. These methods

also have the added advantage of improving the accessibility of content creation and prototyping

to potential authors who may not have the required expertise. For example, they can help non-

technical artists program logic, or programmers create 3D models. We extend this body of work

by introducing PaintBoard: a system that enables authors to rapidly prototype interactive computer

controlled character behaviours without programming, simply by digitally painting a storyboard

of a behaviour.

Low-fidelity iterative design techniques such as paper sketching and storyboarding are low-cost,

fast, easy-to-use tools that support creativity and exploration [5,27,34] by enabling rapid iteration

of ideas [5], and by providing immediate visual feedback of those ideas [5,27,34]. These

approaches also inherently support storytelling, communication, and discussion of design ideas

with others [18]. Because of their utility, such low-fidelity techniques are found in standard toolkits

across a wide range of fields that includes human-computer interaction [21,27,41], film [17],

animation [22,42], and software development [9,27]. Our PaintBoard system and approach

3

leverages these exploration techniques to enable authors to create interactive behaviours by

roughly painting ideas on digital storyboards, a process similar to sketching, and by immediately

generating results that people can interact with, test, refine, iterate over, and show to others.

In this work, we present our PaintBoard prototype that provides a simple storyboarding interface

for painting interactive behaviors (in our case, discrete character movement on a 2D grid), as seen

in Figure 1.1 below. To better understand possible roadblocks encountered when creating

interactive behaviours, we conducted interviews with industry professionals which informed us

that exploring and prototyping behaviours, as well as communicating desired behaviours to

colleagues were important bottlenecks in the creation process. In addition, to guide both the

PaintBoard interface and algorithm design, we conducted a behavior-programming workshop with

a group of experienced programmers and analyzed common approaches to designing and creating

interactive behaviours. From this analysis, we developed a feature set for representing interactive

behaviors, and a machine-learning algorithm that uses these features to generate real-time

interactive behaviors from the user-authored storyboards. As an initial investigation of the

approachability of the painting-storyboards method, we conducted a proof-of-concept hands-on

PaintBoard workshop that highlighted the potential of our techniques. Finally, to better understand

the strengths and weaknesses of our algorithmic approach, we conducted an initial evaluation

where we compared our algorithmôs performance when used with different underlying

configurations and parameters.

4

1.1. Methodology

Our approach to the creation of PaintBoard follows a user-centered design approach [3] where we

first ground our work in the needs of potential users, use this information to build a prototype, and

have potential users evaluate that prototype. To help guide our interface and algorithm design

choices we conducted two initial exploratory studies: interviews with industry professionals to

discover possible difficulties during the design of interactive behaviours, and a behaviour-

programming workshop with experienced programmers to investigate how some programmers are

Figure 1.1: A painted storyboard showing that a computer-controlled interactive character (CPU) should

approach yellow squares (the treasure) while staying out of the red squares (user controlled characterôs sight).

PaintBoard extrapolates and generates the interactive behavior of ñsneaking to the treasure when the userôs

character is not looking.ò

CPU

User

5

already creating interactive behaviours. Our findings aided our prototype design, for which we

developed both a novel interface technique for authoring interactive behaviours and an algorithm

that can generate an interactive behaviour from a painted storyboard and can test it in real-time.

We evaluated our prototype in two phases: we conducted a hands-on PaintBoard workshop to

evaluate our storyboard-painting authoring technique, and we performed an evaluation of our

algorithm by comparing the behaviours generated by different configurations of our system.

1.1.1. Exploratory Investigations

To investigate problems that may occur when creating interactive behaviours and the workflows

used to create them, we conducted interviews with professionals from the video game industry.

Interview questions focused on general approaches to implementation (e.g. programming and

design) and workflows (e.g. design process of interactive behaviours, communication between

designers and developers) used when creating interactive behaviours. We audio recorded the

interviews, and manually transcribed them for analysis; our analysis method was inspired by open

coding techniques [2] where we iteratively grouped data by tagging themes in participantsô

interview answers and let salient themes emerge from the data. Section 3.1 describes the interview

design, analysis, and results of the interviews.

As programmers are already able to create compelling interactive behaviours in code (for example,

the video game series Assassinôs Creed1 is noted for its realistic crowds of computer controlled

characters [29]), in addition to our interviews we decided to explore programmatic approaches in

1 http://assassinscreed.com/

6

order to help inform our PaintBoard prototypeôs interface design and algorithm design. For

example, investigating how programmers conceptually frame behaviours could improve our

interface design; investigating how programmers defined their behaviour in code could inform

how our algorithm analyzes an in-game scene. To this end, we conducted a programming

workshop where we recruited experienced programmers to create interactive behaviours in

computer code, which we analyzed to identify common implementation techniques.

We analyzed the implementations themselves, with exploration and grouping techniques inspired

by open coding [2] in order to better understand concepts in interactive behaviours that could be

included in our authoring interface. Additionally, we looked for common approaches for

computationally describing behaviours in order to inspire our behaviour generation algorithm. We

analyzed the types of behaviours we received by iteratively grouping similar behaviours together

to better understand the variety of possible behaviours, as well as to build a set of target behaviours

we could test during development. The details of the study, analysis, and results of the

programming workshop can be found in Section 3.2.

1.1.2. PaintBoard Prototype Design and Development

We used the knowledge from our exploratory investigations to ground the development of our

PaintBoard prototype. Our prototype had the following design goal: PaintBoard should enable the

rapid prototyping of interactive behaviours. We decided to allow users to digitally paint

storyboards of the behaviour to leverage the benefits of low-fidelity techniques [5,27,34]; painting

allows content to be created in quick strokes. Storyboarding was chosen to allow complex

behavioursðsuch as sneaking around a castle while staying out of sight and trying to find

7

treasureðto be expressed piece-wise as frames in a storyboard. PaintBoardôs behaviour generation

algorithm was designed to analyze a painted storyboard as training data by calculating a set of

training features, and output an interactive behaviour.

The development of PaintBoard presented interface problemsðhow the painting metaphor can be

leveraged to enable users to define interactive behavioursðand algorithmic problemsðhow our

algorithm analyzes the painted storyboard, and how it generates the behaviour from this input.

Details of these components are explained in Section 4.

1.1.3. Evaluation of the Painting-Storyboards Technique

We conducted an exploratory workshop with professional and hobbyist game developers to

investigate their ability to use PaintBoard, as well as to elicit free-form feedback on our overall

approach, interface, and interaction design. Specifically, we explored if our users think

PaintBoardôs approach to painting and storyboarding is a useful way to prototype interactive

behaviours, collected sample behaviours that our users reported were easy or hard to create with

PaintBoard, and inquired as to how users think PaintBoard may fit into their workflows. The goal

of the study was to be a proof-of-concept with a sample user set, and to provide initial insight into

our chosen approach.

In the workshop, our participants used PaintBoard to create interactive behaviours of their choice.

The behaviour storyboards, field notes by the on-site researcher, and post-study questionnaire

responses from each participant were analyzed to explore their experience with our system. The

qualitative analysis method was an open-coding-inspired [2] technique where we iteratively tagged

8

data to let themes emerge. Our analysis helped us understand some of the possibilities of using

painting storyboards as an interactive behaviour creation tool, where its limitations lie, and how

we may improve it in future work. Full details are given in Section 5.

1.1.4. Evaluating the Accuracy of Generated Behaviours

We compared the behaviour output of different underlying machine learning classifiers and

training feature sets to understand how our algorithmic choices impacted the accuracy of

behaviours generated by PaintBoard. For this comparison, we required a dataset of painted

storyboards that allowed us to train and test our algorithm in an ecologically valid way. It was also

necessary to devise a performance metric for measuring the accuracy of a predicted behaviour.

With the dataset and accuracy measure, we performed our comparisons, and our analysis revealed

how we may improve the PaintBoardôs behaviour generation in the future.

From our initial investigations (Section 1.1.1), we knew that the interpretation of a single

behaviour type, such as ñsneak to the user,ò was often different between authors. Thus, we decided

to create a dataset where each behaviour had sufficient storyboard examples from one author to

both train our algorithm, and to test the results. Recruited participants each authored many

storyboards of a behaviour. We chose the test and training sets from these storyboards using a

variant of k-fold cross validation [26]. For each algorithm, we analyzed the performance results

across authors and behaviours to get a measure of the algorithmôs accuracy.

In a separate analysis, we varied the feature set used to analyze the storyboard data. This was to

better understand the impact of each training feature, and if modifying feature sets was a useful

9

direction to improve PaintBoardôs behaviour generation. We designed a simple greedy feature

selection, which helped us arrive at a smaller feature set with similar performance to our full set.

Measuring each algorithmôs performance was a non-trivial challenge: we needed a metric that

enabled us to compare generated output (the behaviour) to a ground truth. With painted storyboards,

no such trivial comparison point exists; for example, there is no straight-forward distance function

that can be applied to a behaviour (PaintBoardôs output) and a painted storyboard. Thus, part of

our evaluation involved the development of such a metric that could be used to calculate the

accuracy of an algorithm variant. Full details of the analysis are provided in Section 6.

1.2. Contributions

Contributions of our research include:

1. A novel interaction methodðdigitally painting storyboardsðthat enables the description

and real-time testing of interactive behaviours for computer controlled characters.

2. An original interface that enables 1.

3. A behaviour generation algorithm that can quickly generate a real-time interactive

behaviour from a painted storyboard.

4. A workshop with developers and interviews with professionals in the game industry that

grounded our design and development of 1, 2, and 3, and provide a baseline understanding

of some approaches of creating interactive behaviours.

10

5. An evaluation of PaintBoardôs overall approach of painting storyboards

6. An evaluation of PaintBoardôs behaviour generation algorithm.

Our research explored how to apply digital painting and storyboarding to aid the rapid design and

prototyping of interactive behaviours for computer controlled characters. Through this research,

we created a novel interface prototype that serves as a proof of concept for how users can paint

storyboards of interactive behaviours, and a novel algorithm to analyze usersô storyboards and

generate interactive behaviours in real-time. We evaluated our approach and interface with a

workshop study, and compared how several different machine learning techniques generalize user

storyboard data to create interactive behaviours. We believe our results will be of interest to

designers of interactive systems such as training programs, public art installations, robots, or video

games.

11

 Related Work

The field of Human-Computer interaction (HCI) has many focuses, including understanding how

people use technology and designing new software and hardware interfaces [10]. One particular

tradition is the development of novel interaction techniques that decrease the complexity of tasks

that require computers. Decreasing complexity allows task-experts to be faster and more efficient,

and often enables non-expert users to perform similar tasks [10]. One area of complex tasks that

use software is the creation of digital content, and of particular interest to this work is game-related

content such as 3D character and environment models, and programmed game logic.

Creating complex content such as 3D worlds, virtual characters, or creating stories for the

characters in these worlds, often requires skilled designers with a variety of skills. For example,

writers could write the story and dialogue for characters whose 3D appearance and movement is

created by animators, and a user could interact with these characters through logic written by a

programmer. Researchers have simplified the creation of such digital content by reducing the

amount of experience and skill required to create them, as traditional mediums such as powerful

3D modelling applications or writing computer code can take hundreds of hours of training to

reach professional proficiency. For example, current research aids authors in exploring storylines

12

[30], enables 3D models and animations to be created in minutes instead of hours without complex

tools [21,22,23], and the game worlds and the logic that runs them can be specified without

knowing a programming language [28]. By reducing the required skill, such research enables faster

authoring as creators can focus more on content instead of technique. This faster authoring in turn

increases the pace of iteration and the ability to explore different ideas [5,34] by freeing up the

authorsô time and resources. An additional benefit of these approaches is the lower barrier of entry:

it is easier for non-experts to author content. We employ this overall approach in PaintBoard to a

problem that has not yet been addressed: lowering the complexity of authoring interactive

behaviours for computer characters in interactive systems.

One way researchers have been able to simplify the design of complex content is to perform low-

fidelity prototyping. This technique enables the rapid creation of content at the expense of a

detailed and precise final result [5]. Such a trade-off is useful for the initial exploration of ideas,

where refined details are not as important [5,34]; these techniques have been successfully

leveraged by many researchers in various domains [9,17,18,21,22,27] and are accessible as design

and prototyping tools for both professional and amateur designers. PaintBoard extends this body

of work to a new domain by applying low-fidelity prototyping techniques to the design of

interactive behaviours for computer-controlled characters.

Storyboarding and sketching are low-fidelity prototyping techniques that have been used to

successfully simplify the design of other forms of digital content. Sketching, for example, has been

used to create 3D character models by sketching simpler 2D representations [21], and sketched

user interfaces for desktop computer software can be turned into working prototypes [27].

Traditional paper-based storyboarding is useful for planning out long, complex sequences of

13

actions and has been used to aid interface design [18], video editing [17], animation [11], and

software systems [17]. Painting, similar to sketching, has been used as a real-time control method

for non-interactive computer-animated characters [37]. Another key element of these works is that

they keep their interfaces relatively simple, for example, one easy-to-use 3D modelling tool, even

with extra features added, has far less options than modern professional tools such as Maya2 [20].

Our proposed method unifies these approaches and applies them for the first time to the creation

of interactive motion behaviours.

Existing research that simplifies the creation of interactive characters and systems has aimed to

reduce the programming requirements typical to such tasks. One approach for simplifying the

creation of interactive behaviours focuses on programming-assistance tools, such as tools in

software development environments that automatically generate computer code from programmer-

specified relationships between game elements [19]. A related approach is to create programming

languages specifically for programming behaviours [25,38]. These approaches succeed in reducing

the difficulty of programming, but still require logical, step-wise specification of behaviours.

Visual programming, where designers use drag-and-drop, visual representations of game objects

combined with programming-like elements, has been used to simplify the creation of interactive

worlds and the ways users can interact with the world to progress through a gameôs story [28]

(their focus was not on interactive behaviour movement). Another work allows authors to explore

and create complex and varying narratives for interactive stories after specifying the details about

the characters and the world they act in, such as charactersô psychology, goals, and how the

characters can change their world [30]. Other research has found that detail-oriented thinking like

2 http://www.autodesk.com/products/autodesk-maya/overview

14

many programming techniques may slow down prototyping and exploration [36]. Thus, in our

work, we aim to avoid the requirement for users to explain their behaviour logically and enable

them to create it in a less detail-oriented and story-like way.

Research has discovered that in-situ authoring, an interface design technique where content

authors can create, preview, and edit their content, all in the same environment, helps speed up

content creation [3]. The speed up is thought to be because authors do not have to mentally translate

from their creation medium to the final result. For example, it might be difficult for a programmer

to imagine how an interactive behaviour may feel to a user in the game if the programmer makes

a change to textual programming code. Researchers have successfully used in-situ design to aid

visual interactive behaviour authoring [33]; their approach, however, requires users to create

behaviours by entering commands in a valid sequences (a state machine), similar to programming.

With PaintBoard, we aim to use an in-situ authoring approach by having authors create, edit, and

test the behaviour in the environment that the end-user of the interactive system will view it in.

Additionally, in contrast to previous work [33], we designed PaintBoard to avoid strict linear

behaviour authoring techniques: research has suggested that linear thinking holds inhibits

creativity [36]. PaintBoard enables this non-linear authoring by allowing users to paint, create

environments, edit behaviour storyboards and interact with their behaviour in any order at any

time.

Programming by demonstration, where a designer can author a behaviour by simply providing a

performance demonstration, is an inherently in-situ technique that does not require programming-

like thinking. Although this approach is well established, most of this work has been for the

creation of static behaviours without an interactive element. For example, researchers have enabled

15

users to create behaviours for robots when the single goal and action to be performed are well

defined, for example, picking up certain types of objects out of a group [35]; in animation, authors

have used interactive, demonstration-based techniques to animate characters interacting with other

characters in order to produce static videos [11,22]. Interactive work has focused on, for example,

learning reactive body language by recording movement with expensive motion-capture

equipment [12], or learning well-defined sequences of actions that fit into a state-machine model

[15,33]. PaintBoard extends this work by targeting the design of character movement that responds

to a dynamic user character in the context of an environment (buildings, objects), without

expensive equipment such as motion capture devices.

Further, a common problem encountered with programming by demonstration is that the

techniques can often require large numbers of repetitive demonstrations (e.g. [13]). Often it is

important to use real world data of many types of demonstrations (e.g. [24]), which can take time

to acquire. Other work still uses programming after the demonstration, which may require

programming expertise to use effectively (e.g. [40]). To enable its use as a low cost, rapid-

prototyping tool, we designed PaintBoard to work with as little as one example, and avoided

including computer programming in the authoring process.

Perhaps closest to our work is the Puppet Master programing-by-demonstration project [41], which

enables authors to rapidly prototype interactive animation or robotic motion behaviors similar to

the ones targeted by PaintBoard. While Puppet Master emphasizes interactive movement ñstyleò

(texture) of two interacting characters, PaintBoard builds upon their results to cover multi-part

behaviors (e.g., hide when seen, get some treasure when guards are not looking), and enable

characters to interact with the environment (e.g., walls, important objects such as treasure chests).

16

Further, Puppet Masterôs evaluations indicated that users had difficulty envisioning what behavior

would result from their performance demonstration due to the mental load from Puppet Master

requiring the user to successfully author the whole behavior in real-time in one attempt. To avoid

such issues, we purposefully avoid direct performance demonstration and propose a novel

approach by enabling more complex interactive behaviour authoring (with an environment, objects

in the scene, etc.), that allows the behaviour to be created at the authorôs pace in visual frame-by-

frame storyboards.

In summary, PaintBoard continues the research theme of reducing the expertise required for

creating digital content (in our case, prototyping interactive behaviours). By combining the low-

fidelity prototyping techniques painting and storyboarding with in-situ authoring, PaintBoard aims

to speed up the exploration process that is important in the early stages of creative work.

PaintBoard is also designed with a goal to enable non-linear creation styles by allowing behaviour

editing and testing at any time. We extend previous work in programming demonstration by

designing PaintBoard to produce a prototype interactive behaviour with as little as one behaviour

example, and without requiring a real-time demonstration. Finally, PaintBoard builds upon

previous interactive behaviour work by enabling the creation of behaviours that interact with an

environment (walls, objects in the environment, etc.).

17

 Exploratory Investigations

Our interface and algorithm design was guided by two exploratory studies. First, we performed

semi-structured interviews with video game designers and developers to uncover common

problems they faced during the creation of interactive behaviours, as well as workflows used to

overcome them. Qualitative analysis of these interviews resulted in high-level goals for

PaintBoardôs approach to authoring interactive behaviours: enable rapid prototyping and better

communication.

To inform our interface and algorithm implementations, we conducted a programming workshop

through which we explored the range of interactive behaviors people may author, and analyzed

implementations (computer code) to extract strategies and techniques used to implement them.

This led to the identification of behaviour design patterns, such as goal-oriented behaviours (for

example, stay close to the user character), which were included in our interface design.

Additionally, we generalized the set of calculations commonly used by participants to define

behaviours. This helped inform our algorithm design, which used some of the calculations to

analyze in-game situations.

18

3.1. Interviews with Industry Game Designers

To investigate possible workflows used and problems encountered by professionals when creating

interactive behaviours, we conducted interviews with four professionals (developers and

designers) from the video game industry. We focused questions on general approaches to

implementation (e.g. programming and design) and workflows (e.g. design process of interactive

behaviours, communication between designers and developers) used when creating interactive

behaviours. This information helped ground our design in the problems of real interactive system

designers.

To accomplish this exploration, we conducted semi-structured interviews where we prepared a list

of rough goals for the interview and questions to ask the participants; during the interview, when

any of the answers provided interesting or new data, the interviewer explored further investigated

the new aspect by improvising new questions, deviating from their interview plan [39]. The

interviews were one-hour long, and our participants were four professional game designers and

developers. Questions we asked include ñHow are certain interactive behaviours difficult to create,

specifically because of interactions with the player?ò and ñHow do you create these interactive

behaviours?ò The interviews were conducted by phone, and were audio recorded and then

manually transcribed for analysis to explore some problems and workflows that we could target

with PaintBoard; our qualitative analysis method was inspired by open coding techniques [2]

where we iteratively grouped data by tagging themes in participantsô interview answers and let

broad salient themes emerge from the data. Please see Appendix A for materials used in the study,

as well as proof of approval by the Joint-Faculty Research Ethics Board.

19

In the interviews, participants reported spending significant time planning how a behavior would

act and react to the user character. Participants said they did this planning because planning

beforehand can save time because actually implementing behaviours with programming takes

time:

ñI spend a lot of time thinking about what kind of rules to use and what kind of system to use

them in to get the results that I want.ò ï P1

 In addition, participants heavily relied on experimentation and iterative prototyping; they would

write programs, interact with the results, tweak parameters or write different solutions, and iterate:

ñThat whole process that I like which is just seeing what it's like and then adjusting. It doesn't

work that well because you think óUgh. Do I really want to make this adjustment? Because

then I'm going to have to change 8 different [behaviour] states and track down bugs.ôò ï P2

Further, participants reported having difficulty communicating their behaviour to others, and

understanding how an interactive behavior described by another should look. We saw this reported

by both technical developers as well as artistic designers.

ñDesigners will oftentimes knowingly work around bugs in the systemétheyôre very reluctant

to bring things upéIt could be the type of the thing you could fix, as a programmer, in 15

minutesò ï P3

This developer thought a feature was implemented correctly, but the designer authoring the

behaviour did not collaborate well when things went wrong. The developer desired the designers

to better communicate what they wanted. A designer we interviewed did communicate often with

developers, but found it difficult due to behaviours being hard to describe:

20

ñBasically I describe the components...in as much detail as seems useful. Then [the developers]

would interpret it and implement it, then I'd play it and give additional feedback from there.

Just verbal feedback...We do this back and forth.ò ï P4

Here again we can see an iterative prototyping process, however in this participantôs case the

amount of iterations necessary was increased, and this increase was often due to the

misinterpretation of the designersô intent.

The results of the interviews helped guide our high-level goals when designing PaintBoard. We

found that participants could benefit from quick prototyping tools, as so much time is spent

experimenting in the design phase. According to our participants, this time is not spent exploring,

it is spent mostly on planning, programming, and iterations necessary because of

miscommunication between designers and developers. Thus, a primary focus of PaintBoard

become allowing designers to create and interact with multiple behaviours in a span of minutes.

The finding also grounds our initial rapid prototyping motivation in the needs of real users.

Participants also indicated issues with collaboration, and that they could benefit from better ways

of communication. Exploration of this idea led us to the painting metaphor: painting is visual, and

painted storyboards could be understood and discussed by both developers and designers. This

approach further benefits from existing knowledge that suggests that visual tools improve

communication [5,18].

21

3.2. Programming Workshop

We conducted a programming workshop to explore approaches currently used by developers to

implement interactive behaviours. This is useful for our work for two reasons: we should consider

if our interface should accommodate certain ways of framing behavior descriptions, and we can

learn from how people programmatically analyze in-game situations, informing our algorithm

design by implementing similar calculations. To this end we asked 26 fourth-year undergraduate

Computer Science students in a Human-Computer Interaction class (at the University of Tokyo,

spring, 2013) to program a set of behaviors. We used a medieval-theme (common within the role-

playing video game genre) as a representative scenario. Participants were provided with a simple

graphical game board (that looked similar to PaintBoard, see Figure 3.1) and a Java programming

interface that allowed students to programmatically query areas on the board for its contents, and

Figure 3.1: The scenario provided to the programmers of the programming workshop. The grey stone areas are not

traversable (characters cannot move onto the same space), and the programmers were told the user and computer

characters cannot see through the stones either. The programmers created behaviours for the red character (CPU)

while users controlled the blue character (User) with the arrow keys on the keyboard.

User

CPU

22

to provide the next move for the computer-controlled character. Students were tasked with creating

three behaviors each, and were encouraged to develop their own original behaviors. We provided

ñfollow the userò ñprotect treasure from the userò and ñescape from the userò as examples.

We received 78 unique behaviour implementations that we categorized into 19 distinct types of

behaviours through open-coding based techniques [2]. The three most common of these were our

suggested ñfollow the userò (24 participants), ñprotect treasureò (18), and ñescape from the userò

(13) behaviors. The remaining behaviors had less overlap (16 types over 23 implementations) and

can be seen in Table 3.1. Common behaviour types (such as our top three), however, had

significant variation. For example, some ñfollow the userò implementations would stay close

behind the user, others would walk side by side, and yet others would follow from a distance. This

suggests that PaintBoard should accommodate such variation, as opposed to, for instance,

providing premade behaviours.

Our post-workshop exploration of the developersô behaviour implementations illuminated some

programming strategies that our participants used to define their behaviors. We iteratively tagged

implementation strategies in all behaviours, which allowed us to identify common techniques and

approaches. Participants consistently used two techniques. The first a small set of commonly

calculated quantities, such as the charactersô relative positions, to decide on how the computer

character should interact with the user. We explored such calculations in our development of our

PaintBoard algorithm (Section 4.3). Another common technique was to specify goal locations or

points of interest, for example, a treasure chest to ñguard,ò a ñhideoutò to run to, or the more

abstract ñstaying in close proximity to the user.ò We included the ability to specify such areas in

PaintBoardôs interface by enabling users to paint goal areas.

23

3.3. Conclusion

Our initial investigation informed us not only of the variety of interactive behaviours possible, but

also of some of the common techniques used by our developers to implement those behaviours.

Initial interviews with professional game designers informed us that iterative prototyping is central

to early explorative work, but this process is often hampered by the slow nature of programming

or difficulties communicating interactive behaviour ideas with their colleagues. Our behaviour

programming workshop told us that a behaviour was envisioned differently by different authors;

PaintBoard will need to accommodate not only a variety of behaviours, but allow variations of

those behaviours. By exploring our participantsô implementation methods, we found that framing

behaviours in terms of goal states (be hidden, stay in front of user, etc.) was common, which

motivated us to enable the user to define goal areas with our painting-interface, and to look at the

context of the goal areas themselves (such as identifying if the goal is to be hidden, rather than to

simply stand behind a certain wall). It also revealed calculations frequently used to define the state

of a behaviour, such as if the character can be seen, and how far it is from the user. Thus, we

explored these calculations for our algorithmôs method of analyzing the painted storyboard input

detailed in Section 4.3.

24

Behaviour

Name
Description of the behaviour N

Follow Follow the player 24

Protect

treasure

Protect a point in the environment marked by a

treasure box
18

Escape Run away from the player 13

Lead Lead the player towards a point in the

environment marked by a treasure box
4

Block Path
Block the movement of the player by standing

in front of them
3

Hide Stay out of the sight of the player 2

Imitate Copy the movement of the player 2

Mirror Copy the movement of the player in reverse 2

Hideouts
Hide from the player by travelling between

certain points in the environment
1

Drive away
Chase the player away from a certain point in

the environment
1

Path Follow a preset path 1

Panic Run around the area in quick, large movements 1

Dog
Run back and forth between the player and a

point in the environment
1

Boo
Move towards the player when the player is not

facing the computer character
1

Move along

wall

Sneak around the area by staying close to the

walls
1

Steal treasure Move the treasure out of the environment 1

Safe Steal Steal treasure, but Escape if seen 1

Antisocial
Stay away from the player, preferring to be out

of sight, but moving far is unnecessary
1

Possessive
Stay near a treasure chest whenever the player

is near
1

Table 3.1: Our classification of the 78 behaviour implementations. N is the number of

implementations in the classification. Implementations were given exactly one classification.

25

 PaintBoard: Interface and Algorithm

Our PaintBoard prototype enables people to prototype interactive behaviours by digitally painting

a scene (as seen in Figure 4.1). While designing and developing PaintBoard, we had two

challenges: create an interface that enables behaviour authors to quickly describe their desired

behaviours, and create an algorithm that takes the behaviour described by the authors with the

interface and produces an interactive behaviour instance. For the interface, we took advantage of

the benefits of low-fidelity prototyping techniques, discussed in Section 2 [18,27,34], and

developed a novel approach that enables users to quickly define a behaviour by digitally painting

simple scenes, similar to sketching. Our approach further draws from the practice of storyboarding

to enable authors to design behaviours piece-wise, to focus on one part of the behaviour at a time.

In PaintBoard, this piece-wise creation is realized through enabling authors to digitally paint one

or more static snapshots that make up a storyboard (Figure 4.1b), where the overall storyboard

represents the entire behaviour.

PaintBoardôs algorithm has to interpret a user-painted storyboard and generate an interactive

behaviour result. The behaviour generation algorithm analyzes an author-painted storyboard by

extracting information from the storyboards that is relevant to the behaviour; in order to identify

26

which elements of a behaviour storyboard provides this important information, we draw on the

results from our programming workshop (Section 3.2). We then use the extracted information to

learn how the author painted the behaviour. During interaction as the user moves their character,

we extract information about the real-time situation that enables us to use what we learned from

the authored storyboard to predict how the author would have painted the current scene. From this

painting, we decide the next move for the computer character. Below we address the interface

design in detail before covering the PaintBoard algorithm.

4.1. PaintBoard Interaction Flow

To facilitate rapid and iterative prototyping, it is important to enable users to not only quickly

create behaviours, but to continuously modify them and easily interact with the prototype

behaviour. In PaintBoard, behaviour authors first create a game scene for the behaviour to take

place in by placing bricks that can represent buildings and walls, and by placing the user and

computer controlled characters in that environment. The authors then paint a behaviour. When

done, they can interact with the behaviour by controlling the user character and seeing how the

computer character reacts with the behaviour generated by our system from the authorôs painted

storyboard. The author can then update the behaviour, or try a new behaviour, iterating the author-

test-update cycle until they are satisfied.

In PaintBoard, authors paint each snapshot of the behaviour storyboard by choosing a colour from

the palette (Figure 4.1c) and then by clicking-and-dragging on screen in the game environment

(Figure 4.1a), similar to common computer painting applications. Our paint colours were chosen

27

based on trends observed in our programming study (Section 3.2); we discovered that

programmers often defined areas that were desirable (goals) or undesirable (areas to be avoided).

Thus, we chose three paint colours: red paint to represent areas that the computer character should

avoid, gold paint to represent areas the computer character should move towards, and an unpainted

ñcolourò to represent areas that are neither desirable, nor undesirable. Painting is described in more

detail in Section 4.2.

While painting, users can interact with their behaviour by pressing a single button (ñplayò) (Figure

4.1e), and the system, in real-time (without delay), compiles the behaviour and generates a result

that the users can interact with using the keyboard controls (arrow keys). At any time, the author

can modify the behaviour by pressing ñstopò (Figure 4.1e), which stops the computer-controlled

playerôs movements. The author can then edit any of the paintings in the storyboard, or create a

Figure 4.1: The PaintBoard interface: (a) sandbox area, (b) storyboard, (c) paint palette, (d) point of

interest (chest) and characters, (e) play and pause, (f) save and load behaviour, (g) debug mode, (h)

new storyboard frame.

CPU

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Painted

area

User

(h)

28

new snapshot to add a new part of the behaviour. While interacting with the behaviour (ñtest

modeò), if the computer character moves in an unintended way, the author can stop the interaction

and use the current problematic scenario as a new snapshot by painting it to become a new

storyboard frame, clarifying how the behaviour should act. Thus the author can rapidly change

between modifying their storyboard and interacting with their results.

PaintBoard has a debug mode that is identical to test mode except that it provides real-time visual

feedback of the computer-controlled characterôs behaviour in the current situation: PaintBoard

paints squares to indicate whereðin the given situationðit believes the character should and

should not go, and does this with the same red, gold, and white paints authors use to describe

behaviours. For example, given the snapshots in Figure 4.2 as the storyboard input, Figure 4.1a is

actually the debug-mode paintingða visual representation of what PaintBoard has learned.

Authors can use this to gain insight into how PaintBoard is interpreting the storyboard, and can

modify their storyboard or even paint the debug frame itself to update the behaviour.

4.1.1. Interaction and Interface Design Rationale

Enabling rapid and iterative prototyping of ideas was a major interface priority, as it has been

shown to aid creativity and exploration [27,34,36]. Our PaintBoard implementation helps users to

explore their current behaviour prototype by enabling them to interact with the behaviour resulting

from the painting and supports iteration by enabling authors to modify existing snapshots in the

behaviour storyboard, or even introduce new snapshots. Finally, the storyboard technique was

chosen to help authors design multifaceted behaviours piece-by-piece, lowering the complexity

required to handle it all at once (a problem found in prior work [41]). Storyboarding also helps

29

prototype behaviours as authors can iterate on a single part of a behaviour, such as ñguard the

treasure if the player is nearby,ò before expanding the storyboard to new situations (e.g. ñdonôt

leave the treasure room when chasing the playerò). Finally, PaintBoardôs behaviour authoring does

not require any computer programing or logic definition, which helps speed up prototyping by

avoiding the need to specify precise and detailed information.

An important design decision was for behaviour authors to be able to iterate a behaviour idea

(create, test, modify, repeat) from a single interface. PaintBoard enables authors to paint

behaviours in-situ (as in [21,33]), that is, they create behaviours in the same environment where

the behaviour will be interacting with the player. This enables authors to bypass conceptual

translations required when moving from an authoring to a testing medium (e.g., moving from

visual programming to a game), helping authors to visualize the final result [3] and thus more

easily create behaviours.

Figure 4.2: A sample two-part storyboard for a behaviour of a computer character (CPU) that sneaks

up on the user character (User). In this case, the computer character should not enter the sights of the

user character, (red squares) and should stay close to and behind the user (gold).

CPU

User

User

CPU

30

4.2. User Interface

For each snapshot in a storyboard, authors paint a scene (Figure 4.1a) to represent one aspect of

the desired behaviour. The scene can include a user character and a computer character, some

environment features such as walls, and important entities. Important entities, or points of interest,

were a common element of behaviours we discovered during our programming workshop in

Section 3.2. Points of interest are objects or locations in the game world that the behaviour revolves

around, such as treasure chests or hideouts. For example, a snapshot may have a treasure chest in

a room, with the computer character standing between the user character and the chest, which

might represent the computer character guarding a treasure.

In order to simplify the problem for our initial exploration, both in terms of authoring and

behaviour generation, we had each snapshot be painted in a 20x20 2D grid for our authoring

interface, where the author paints snapshots from an overhead view (Figure 4.1a). Authors can

drag objects (from Figure 4.1d), including both the computer and user characters and points of

interest (treasure chest), onto the grid, and position them as desired. In order to allow faster creation

of environments, environment walls (the bricks from Figure 4.1c), are placed with a click-and-

drag action, putting a brick in every grid cell along the path of the mouse cursor. To focus on the

initial problem of one-on-one interaction, only one computer controlled and one user character, as

well as one point of interest is allowed at a time in this version of PaintBoard; co-ordinating multi-

agent behaviours remains important future work.

We designed our painting technique to be similar to common computer painting applications to

make PaintBoard more approachable: authors select a colour from a colour palette (Figure 4.1c),

31

and then paint on the grid by clicking and dragging the mouse, filling grid cells along the path of

the mouse cursor with the colour; as we aimed to keep authoring simple for authors, cells can only

have one colour at a time, and painting over an already painted cell will replace the old colour with

the current one.

Our choice of paints was a result of our findings in our programming workshop (Section 3.2),

where we found programmers often defined types of areas such as goals for the computer

controlled character (e.g. ñgo anywhere near the player characterò), or types of areas the computer

character should avoid (e.g. ñavoid anywhere the player can seeò). In our interface, red paint

denotes areas where the computer character should not go; for example, when painting a ñsneak

up to the user characterò behaviour all grid cells that the user character can see should be red

because a sneaking character does not want to be seen (Figure 4.2). Gold paint indicates goal areas:

where the computer character wants to go (for example, in Figure 4.2, the sneaking character wants

to get close and behind the user character). Unpainted (white) squares are neutral and the character

neither avoids nor tends toward them. They can be thought of as places the computer character can

use freely to get to their goal. In our interface, every cell, by default, starts unpainted, but painted

cells can be made unpainted again by using the white paint, seen in Figure 4.1c. In other words,

the computer character should try to go toward gold areas, while passing through unpainted areas

and avoiding red ones.

Goal areas and points of interest are similar, but conceptually different entities in PaintBoard. Goal

areas can be abstract (not a specific point in the environment) and dynamic areas the computer

character wants to go to, and are based on the user and computer charactersô current configuration

(e.g., ñbehind the userò or ñblock the path to the treasureò). Points of interest, however, are static

32

objects in the environment that are important to the interactive behaviour (e.g. hideouts, guarded

items). In PaintBoard, not all behaviours may have a point of interest, but we assume they will all

have goal areas.

In addition to ñsneakò (Figure 4.2), other examples enabled by PaintBoard similar to those

observed in our programming workshop include ñfollow the user character,ò by having a goal

behind the user character, and ñguard the treasureò by defining the treasure chest as a point of

interest, having the goal (gold paint) between the user and the chest, and painting red squares far

from the chest to keep the computer close. For variants on ñfollow,ò some examples include

keeping the computer character behind or to the side by painting the respective areas gold, or

within a radius by painting far-away squares red.

In our programmer workshop (Section 3.2), we found that the developers often framed the goal

and avoid areas in terms of various quantities their behaviour-generating programs calculated

while interacting with the user character, such as distance from the user character, or if the

characters can see each other. PaintBoard enables authors to define behaviours using similar

techniques, but without explicit calculations, by painting areas that have the correct properties:

ñavoid line of sightò can be defined simply by painting red where a character can see (Figure 4.2);

staying close to the user can be defined by painting areas around the user character gold. We

believe this allows enables authors to create behaviours on an intuitive level: instead of authoring

in an abstract way with calculations and computer code, they can author in terms of the

environment and characterôs physical relationships in the context of the game itself (in-situ).

The rest of the sidebar in our interface contains the storyboard overview, where users can scroll

through and select snapshots to edit them (Figure 4.1b), save and load buttons (Figure 4.1f), and a

33

button to add a new snapshot to the storyboard (Figure 4.1h). In addition, there are buttons for

changing between painting and testing modes (Figure 4.1e), and for entering a debug mode (Figure

4.1g).

4.3. Algorithm

The goal of the PaintBoard algorithm is to analyze an authorôs painted storyboard and to generate

an interactive character behaviour that matches the qualities given in the storyboard. To simplify

the algorithm, we redefine the problem to: given a run-time situation (including a set of walls, the

computer and user characterôs position, etc.), PaintBoard must generate the computer controlled

characterôs next movement based on that situation. However, this run-time situation is very

unlikely to be represented directly in the storyboard: to encourage rapid prototyping, we envision

storyboards being short and only covering a few exact situations.

Our solution is to first generate an approximation snapshot that estimates how the current situation

would have been painted by the designer. The approximation snapshot can be thought of as a

snapshot that is an interpolation between the existing snapshots in the painted storyboard. For

example, given the two snapshots as input from Figure 4.2, PaintBoard generated the painting in

Figure 4.1a to have similar characteristics (stay out of line of sight, etc.). Following, we use the

painted approximation snapshot to generate the computer characterôs next movement. This process

is real-time: to inform the next computer character movement, a new approximation snapshot is

generated for the new situation each time the characters move.

34

4.4. Generating Approximation Snapshots

During real-time interaction, approximation snapshots need to be generated for a new situation not

given in the storyboard, while staying similar to the properties of the user-painted snapshots.

Specifically, we need to determine, for each cell in the game grid, if the author would have painted

that cell red, gold, or left it unpainted. The result of painting all cells is a new fully-painted

approximation snapshot that can be used to generate the output behaviour.

Our approach is to use supervised machine learning to estimate what colours each cell should be

painted in a new approximation snapshot. Supervised machine learning algorithms are generic

learning algorithms that, given input training data, create a model that can be used for prediction,

called a classifier. The training data is a list of data points that each have a label, called a class,

that describes the category of that data point. The trained classifier can be used to predict the class

of new data points. For machine learning classifiers, all data points are usually vectors (a list of

numbers) of equal dimension (each vector has the same number of elements). Each number in the

vector measures some descriptive quality of the data point. For example, a classifier learning about

rectangles and squares might take vectors of length threeðmaybe height, width, areaðwith all

vectors where height and width are equal are labelled as ñsquare,ò else they are labelled ñrectangle.ò

The classifier would, ideally, learn that, given a vector of length three, if the first two values are

equal, then the label should be ñsquare.ò With machine learning classifiers, more training data

generally produces a better classification [14]. In PaintBoard, storyboards are assumed to only

contain a few entries; to increase the amount of training data available per storyboard, we decided

a single data point is a grid cell in our environment (for example, see Figure 4.3), and the possible

35

classes are the three possible paint colours (red, gold, and unpainted). We use all grid cells to train

our classifier. One challenge of PaintBoard was how to represent a grid cell as a data point.

To make a grid cell into a data point, we needed to select representative features (descriptive

numbers and calculations) that capture the appropriate characteristics of a grid cell. This is non-

trivial, and we had to develop our own domain-specific features given the lack of prior work. For

PaintBoard we used features identified through our programmer study (Section 3.2). Note that

these features represent what determines what colour a cell should be painted. We call these state

features, and they take into account the context (the state) of the behaviour; for example, there is

a state feature that quantifies how far away the two characters are from each other. The state

features are detailed below in Figure 4.3 and Section 4.4.1. Development of appropriate domain-

specific features is a common challenge and has been done for other applications such as for

recreating body language from a demonstration [12,31], non-interactive behaviours for industrial

robots [16], and nature simulation [32].

For our machine learning algorithm, we employed a Support Vector Machine (SVM) [8] as it is

known to be a standard, fast classifier. In PaintBoard, we train a new SVM for an authored

storyboard immediately when the author clicks the play button (Figure 4.1e). We transform the

storyboard into a set of feature vectors: these vectors are calculated for every cell in every snapshot,

and each contain the measurements of our state features for that cell (see Figure 4.3). Each feature

vector is labelled with the colour it was painted by the author (red, gold, or unpainted). All labelled

vectors are given to the machine learning algorithm which outputs a trained classifier that can be

used to predict the label of other feature vectors.

36

Once we obtain the classifier, we can create the approximation snapshot for the current scenario.

Starting with an unpainted snapshot, we calculate the state features of each grid cell. One by one,

we give these state features (a data vector) to the trained classifier, which returns the colour it

believes the author is likely to have painted that cell. The trained classifier would ideally label new

unpainted cells of the approximation snapshot to match characteristics (the features) of the training

data (for example, as seen in Figure 4.1, where the classifier predicted red paint where the user

character can see, just like in the storyboard).

4.4.1. State Features

This section describes the complete list of state features used in the current version of PaintBoard.

All features, unless otherwise noted, are calculated for each grid cell.

Position relative to the user character with respect to screen axis: The cellôs position in relation

to the user character, in the screenôs coordinate system, for example, in Figure 4.3 the bold cell is

two to the left and three above the user character. This captures the importance of the screenôs

position (e.g., stay on the left or right side of the environment).

Position relative to the user character with respect to its look direction: The cellôs and point of

interestôs position in relation to where the user character is looking, for example, in Figure 4.3 the

bold cell is two cells in front of and 3 cells to the right of the user character. This captures the

importance of a cellôs position from the user characterôs point of view (e.g., stay behind them).

37

Position relative to the user characterôs relation to the point of interest: We calculate a coordinate

system rooted at the user and oriented to the point of interest, and use the cellôs position in that

space. For example, in Figure 4.3 the bold cell is 2.6 cells behind and 2.5 to the left of the user and

chest. This captures the context of the point of interest (e.g., do not go between the user and the

chest, stay close to the chest). This is not used when there is no point of interest.

Visibility: A scalar representation of how well the user character can see that grid cell: we cast rays

from the user to the cell and that cellôs neighbours to calculate visibility, with those blocked by

walls not counted. For example, the bold square in Figure 4.3 has visibility 0.6 (6/9). This captures

line of sight information (e.g., how visible cells are to the user character), and the non-binary

classification enables the computer character to capture the difference between being partially and

fully seen.

Figure 4.3: How state features are calculated, e.g., for the bolded cell.

User

relative to user relation

to point of interest

CPU

visibility

raycasts

relative to user

orientation

38

Absolute distance from the user character and the point of interest: The Euclidean distances from

the cell to both the user character and the point of interest. For example, in Figure 4.3 the bold

square is 3.6 and 7.3 from the user and point of interest respectively. In combination with the

relative features above, this helps emphasize proximity (e.g., how close to be to the user).

4.5.Using an Approximation Snapshot to

Generate the Behaviour

Given an approximation snapshot for the current real-time situation, our challenge was to generate

the next move for the computer controlled character. Our approach was to simply move the

computer character toward the closest goal space (gold paint), while not walking through walls,

and avoiding red spaces if possible. To find the closest goal space, the algorithm does a breadth-

first search in polar coordinates, spiraling out from the computer character, where walls are

considered impassable. Red cells may not be completely avoidable, for example if all other paths

are blocked. We address this by penalizing red cells by giving them a distance of four when

calculating the nearest gold square, making longer paths with no red still favorable over shorter

paths that cross red, but short paths across red areas are favorable over significantly longer

alternates. For the case when the character is stuck with large red areas between it and the goal,

we added a path-length threshold so the character simply would wait in safety rather than

traversing large red areas. These values were chosen based on experimentation by a researcher on

the project, but we stress these values are only for proof-of-concept, and more formal studies will

be necessary to explore how this method of path-planning could be changed, or improved.

39

4.6. Implementation Details

We used the Java LibSVM library (version 2.89) [7] with its default settings for the SVM

implementation. The logic was programmed in Java (1.7.0) using the Processing framework

(version 2.0.1)3 and the ControlP5 library (version 2.0.4)4 provided the graphical user interface

functionality such as the buttons we used in our interface.

4.7. Summary

In this section we presented our PaintBoard implementation, which included both the interaction

and algorithmic design. Our interface, inspired by our initial investigations, allows authors to paint

environments in a series of snapshots in a storyboard, taking advantage of the benefits of low-

fidelity prototyping techniques. The interface also supports iterative prototyping by enabling

authors to edit and test their behaviour in the same environment (in-situ design). PaintBoardôs

algorithm generates a behaviour by analyzing a storyboard and then, in real-time, predicting how

the author would paint the current scene and moving the character according to the painting. The

algorithm analyzes both the authorôs storyboard and real-time situations using state features,

quantities that describe the context of an area in the environment, which were derived from the

results of our programmer workshop.

3 http://www.processing.org/ 4http://www.sojamo.de/libraries/controlP5

41

 Evaluation of the Painting-

Storyboards Technique

We conducted a proof-of-concept workshop to explore reactions to our PaintBoard approach and

interaction design by potential end-users. For participants, we recruited three professional and two

hobbyist game developers. The workshop took 1.5 hours and comprised of a tutorial, an

unstructured authoring phase, and a questionnaire period. The tutorial was 15 minutes in duration,

and taught participants about how to use PaintBoard to prototype interactive characters.

Afterwards, they were given one hour to freely create any behaviors they wished, ask questions,

and discuss with other participants. The workshop ended with a 15 minute questionnaire that asked

participants about their experiences with PaintBoard. Although each participant worked

independently, the atmosphere was friendly and collaborative, and people were having

spontaneous discussions about their experiences. Notes were taken throughout the workshop by

the researcher at the workshop.

Participants were asked to save their storyboards through the PaintBoard functionality for later

inspection. In addition, we performed broad qualitative analysis on the notes and questionnaire

42

answers by iteratively tagging answers with keywords describing the statements. Through this, we

identified themes and insights of our participants on topics such as viability of painting as a

behaviour authoring technique, or participant-suggested ways that PaintBoard could be leveraged

in real-world situations. See Appendix B for the materials used in this study, including the ethics

amendment approval certificate from the Joint-Faculty Research Ethics Board.

5.1. Results

Overall, participants were able to use PaintBoard to quickly and successfully prototype a range of

interactive behaviors (create 3 or more behaviours in the one hour). These included ñfollow the

user character,ò ñhide,ò ñobstruct the user character,ò ñguard an area,ò and ñsneak.ò This was

achieved with a relaxed-pace 15 minute tutorial, suggesting that our painting and storyboarding

approach and implementation was approachable to new users.

Participant responses in our questionnaire data also contained support for PaintBoardôs success;

they reported that PaintBoard would be useful for planning and prototyping ideas:

In its current state, could be handy for prototyping and visualizing scenarios. - P3

I would use this as a prototyping tool to make quick behaviors that I would then implement with

code - P2

and for communicating with others:

43

Easy to visually show others simple behavior that can be expanded to more complex situations.

- P5

Some participants noted that it may be useful for team members with less technical expertise:

I'm not sure if it'll be useful in my workflow (yet), but I think it'll be great for designers - P1

The previous quotes highlight the goals we identified in our exploratory investigations (Section

3.1): facilitating prototyping and communication between designers and developers. This indicates

that our results matched our motivation. Participants found the quick, visual, and interactive nature

of PaintBoard to be important and useful for behaviour prototyping. In addition, as PaintBoard

requires no coding knowledge, it may enable two-way communication during prototyping as both

designers and developers could modify the interactive behaviors to enhance discussions.

Participants praised the benefits of PaintBoardôs iterative nature, noting that it matches their

existing workflows:

I like the iterative design process. Games tend to follow on iterative design, so this fits nicely.

- P1

Even though our participants were experienced programmers, they were very receptive to the use

of painting, rather than writing computer code, in the behavior design process:

I think the abstraction of the concepts to be very easy to understand é as well as the ability to

alter states during play, and ability to watch the goal and avoid state change - P4

All participants also felt the performance of the test mode, where PaintBoard generates the

behaviour from the storyboard and moves the computer character according to the result, was

44

reasonable. However, some did show concern over PaintBoardôs ability to scale up to more

complex behaviors:

It's a bit hard to convey a behavior sometimes, but maybe that doesn't need to be a goal. It

seems to work with simpler behaviors and I think it can be used as such usefully - P1

We received several examples where the painted storyboard was very clear and descriptive from

a personôs perspective, but the resulting behaviors were not generated successfully. However,

while this is a failure of the current learning algorithm, we believe that this is a success for the

painting interface: it illustrates the ability to represent and communicate a desired interactive

behaviour through our storyboards. See Figure 5.1, a storyboard produced by a participant in our

workshop: it has easy-to-understand snapshots of specific behavior aspects and the overall

storyboard clearly describes a complete behavior, but the generated behavior usually predicted

only unpainted cells ï thus while there are algorithmic problems still to be solved, the interaction

paradigm itself was successful in our case.

While PaintBoard often properly identified large areas of color, thin or highly mixed areas of color

often disappeared upon testing the behavior (e.g. Figure 5.2):

Established "safe zones" or "goal zones" to attract the "passive" NPC. The system would

"forget" the yellow zones even despite consistency [across the sketches]. - P3

I wanted to create a behavior that had the NPC directly between the player and the chesté I

did not get the expected results - P2 (see Figure 5.2)

Another interesting trend was how the developers spotted our use of state features even though the

underlying implementation (i.e. which state features we used) were not explained in the workshop:

45

[I easily created] follow and hide. Few instructions required. Uses all of the data (location and

direction) being processedðP5

Figure 5.1: A storyboard authored by a participant during our workshop, showing how a computer character

should sneak around a user to get treasure. (a) hide by the only entrance to the room (b)when the player is not

looking, sneak into the room and stay out of sight (c) when the player is not looking at the inner hallway, run to the

treasure (d) if the player is in the hallway, sneak around the other way (e) when at the treasure, stay there, out of

sight (f) take the open route to the treasure, but in a different context than d (g) if the player is watching both

hallways, get as close to the treasure as possible (h) if spotted by the player, run out of the room and (i) another

example, similar to h.

User User User

User User

User

User User

CPU

CPU

CPU

CPU

CPU

CPU

a)

User CPU CPU

CPU

b) c)

d) e) f)

g) h) i)

46

Though location and direction were not actually all of our state features, the developers did not

know that we were using LibSVM, or how each state feature was calculated. However, our

observations suggest that they could still reason about what PaintBoard was doing in intuitive

terms that made sense to them.

5.2. Discussion

PaintBoard was successful in its goal of being an initial attempt at enabling prototyping of

interactive behaviors through painting and storyboarding; participant feedback supported that we

addressed some of the issues raised in our preliminary studies, such as supporting communication

and enabling rapid iteration (e.g., through the iterative and in-situ design). In addition to being an

Figure 5.2a: A single-snapshot storyboard from our workshop for a behavior that attempts to teach the computer

character to stay between the user and the treasure.

Figure 5.3b: The synthetic snapshot, shown through debug mode. No gold squares are generated in the same context.

a) b)

CPU

User User

CPU

47

approach accessible to people with programming skills (such as those in this workshop), we aimed

for PaintBoard to be useful even for those without any programming experience at all.

We received feedback specifically regarding our algorithm. Some quotes highlighted that

participants discovered our state features; the implementation came through in a transparent way,

and this suggests that our selection of state features may cover some of the ways developers think

about behaviours. Although some behaviours were not able to be generated successfully, this was

generally a result of the algorithm and not the painting approach itself, as the storyboards

themselves (e.g. Figure 5.1) were clear.

In addition to reflecting on the potential benefits of PaintBoard, participants described specific

functionality that they believed could improve PaintBoard. For example, participants requested the

addition of story branches, where a condition indicated in a snapshot may lead to a new set of

snapshots. This could easily fit within the PaintBoard storyboard interaction, but would require

new algorithmic solutions. Participants also suggested adding the ability to make hard rules about

the environment, for example, to mark specific squares in the environment which should always

be avoided. Another paint related suggestion was the ability to weigh painted cells, where some

are more important than others (e.g. prefer not being seen over reaching the treasure). For example,

in Figure 5.1 there are many goals in different situations (if the character is seen, if a path to the

treasure is open, etc.), however, the developer wanted the computer character to prefer not being

seen over reaching the treasure. While the ability to specify such details would give more creative

power and control to a PaintBoard user, such features should be added with careful consideration

of PaintBoardôs of behaviour authoring speed and simple interaction flow, else they may slow

down PaintBoardôs rapid and iterative nature.

49

 Evaluating the Accuracy of Generated
Behaviours

For our proof of concept interface evaluation (Section 5), we selected a standard learning classifier

and achieved reasonable behaviour generation, according to our initial user study. Unfortunately,

to our knowledge, there is no previous work on end-user authoring of interactive behaviors to

which a comparison can be made. To provide a quantitative baseline for future work and to

understand how our choices of machine learning algorithm and feature set affect the quality of the

behaviour generated by PaintBoard, we performed an analysis of behaviours generated by different

variations of our algorithm. We modified our algorithm on two dimensions: classifier, and feature

set used to train the classifier. This evaluation had three components: we developed a dataset large

enough to facilitate both training and testing of an algorithm and an accuracy metric that could be

used to measure the performance of an algorithm, we tested the accuracy of a set of classification

algorithm variants on our dataset, and, using the best performing classifier, we explored the

accuracy of different combinations of state features.

50

6.1. Building a Dataset for Evaluation

To build a dataset for training and testing algorithms, we recruited participants and had them paint

behaviours with PaintBoard. Participants were asked to make multiple example storyboards of a

behaviour so we could train PaintBoard on some examples, and test the resulting behaviour on the

remaining examples. It is important that a storyboard does not appear in both sets in order to test

each algorithmôs ability to generalize a behaviour to situations it has not seen before in the training

data.

In our experiment, we trained each algorithm on only one example storyboard (which is made up

of at least one painted panel). In other words, we use no more training data than PaintBoard

normally gets during normal use. This setup was an explicit decision because our target use case

is rapid prototyping and, ideally, a PaintBoard user will paint minimal data (one storyboard

example) and test the behaviour in many situations. Additionally, training and testing sets were

comprised of storyboards from a single author; we did not, for example, train a ñsneak up to the

user characterò behaviour with one authorôs storyboard and test on a different authorôs storyboard.

This is because we knew from our programming workshop (Section 3.2) that the same behaviour

varies between authors: data from one author is likely to produce a different behaviour than the

behaviour produced from another authorôs data. Thus, to facilitate this, each participant was asked

to create many example storyboards of the same behaviour

In our study, participants were asked to create a series of examples for three different behaviours:

escape from the user character, chosen as a potentially simple behaviour; sneak up to the user

character, chosen to require the use of environmental features; and protect a treasure from the user

51

character, chosen to force the use of a point of interest. For each of the three behaviours, the

participant was instructed to create a series of 10 different storyboard examples, resulting in 30

storyboards (with at least 1 panel per storyboard) from each participant (Figure 6.1). The

participants were told that each example storyboard they create (comprised of one or more painted

snapshots) should fully define the behaviour. In other words, each storyboard could be used by

itself to generate the authorôs complete desired behaviour. This was emphasized to our users in

order for us to be able to use each storyboard example as standalone training data. Additionally,

Figure 6.1 How we created our evaluation dataset. Each of nine participants made 10 storyboards

with a length at least one panel for each of three behaviours.

52

having different behaviours enabled us to further investigate if certain algorithms performed better

on specific behaviours.

We recruited 9 participants who were 4th year and graduate computer science students. They were

given a 10 minute tutorial of how PaintBoard worked, including a demonstration of painting a

ñfollowò behaviour. Participants were informed that their data would be used for evaluating

behaviour generation algorithms, though they were not allowed to use PaintBoardôs behaviour

generation in order to avoid them influencing their authoring approaches to a specific algorithm.

6.2.Comparison of Classifiers

To our knowledge, there is no other previous work to which we could compare PaintBoard, so we

instead compared the performance of PaintBoard with five different machine learning classifiers:

SVM with a Radial Basis kernel, SVM with a polynomial kernel, K-Nearest Neighbours, Random

Forest, and Naïve Bayes classifier. These algorithms are a sample of supervised learning

techniques covering several different approaches to machine learning: SVMs are standard, fast

classifiers used in a variety of modern applications, K-Nearest Neighbours is a simple but

commonly used cluster-based algorithm, Random Forest is a modern tree-based approach, and the

Naïve Bayes classifier is based on Bayesian statistics and provides an adequate baseline for most

applications [6]. We used the implementations of these algorithms provided by the Java Machine

Learning Library [1]. The two SVMs used the libSVM default parameters; k was chosen as 5 for

K-Nearest Neighbours as, in initial testing, it had similar performance to higher values (e.g. k=10)

53

with faster run-time; the tree count for the random forest was set high to 100, based on the evidence

suggesting random forests do not often overfit their generated results to their training data [4].

We needed to develop a performance metric that could compare the output from different

classifiersðthat is, we needed a method to determine which algorithm generated a behaviour

closest to the one the author intended to create. This is non-trivial for our problem domain as we

must know what the authorôs intent was, and devise a distance function that measures the similarity

of that intent to the trained classifier. We defined the authorôs intent to be how they painted their

storyboard snapshots. Thus we compared the painted storyboard snapshots from the test set to

snapshots generated by the classifiers trained on the training-set storyboards; recall that the test set

does not contain any data from the storyboard used to train the algorithm. The performance of a

classifier was then defined to be the similarity of the author painted snapshots and the snapshots

generated by PaintBoard.

Specifically, we trained a classifier with one storyboard (the training set). That classifier then was

used to generate synthetic snapshots for situations given in test-set snapshots painted by the same

author of the training storyboard. The situation for which we generate the synthetic snapshot is

defined by the user and computer characterôs positions, and the environment (walls and points of

interest) in the author-painted snapshots. The synthetic snapshot is generated the same way

PaintBoard would normally generate the snapshot if that situation was encountered during real-

time testing (Section 4.4).

We compare the authored snapshots with the corresponding synthetic snapshots at the grid-cell

level; the paint of each grid cell in the author-painted snapshot is compared to the paint of the

corresponding grid-cell in the synthetic snapshot. If the paints are the same colour (gold, red, or

54

unpainted), it is considered a direct match, otherwise the classifier is considered to have made a

mistake. The accuracy of the prediction for one snapshot is defined to be the percent of true

positives (direct matches) between the author-painted test snapshot and its synthetic snapshot. The

accuracies of all snapshots in a storyboard are averaged together to give one accuracy measurement

for that storyboard when using a given algorithm.

For each algorithm, we perform cross-validation [26] to gain a better understanding of its accuracy

when trained with different storyboards. For a given participantôs behaviour, we trained

PaintBoard with only one of the provided 10 example storyboards. Thus, the remaining nine

examples are used as test data, and then we measure the accuracy as described above. This is done

once for each example storyboard, training a new classifier with the new storyboard and measuring

its accuracy against the other nine storyboards for each iteration of the validation. These accuracies

are averaged together to give us one accuracy value for that participantôs behaviour. The mean

accuracy of an algorithm is defined to be the average accuracy over all participants and behaviours.

6.2.1. Analysis

Each of the nine participants created 10 example storyboards for each of three behaviours. By the

method described above, we calculated one accuracy metric for each of the three behaviours for

each of the nine participants, giving us 27 accuracy values for each algorithm. To analyze these

values, we performed an Analysis of Variance (ANOVA) on the data which provides us with an

effect size that measures the impact of the choice of algorithm on the accuracy of the resulting

behaviour, as well as the ability to detect interaction effects (for example, if the choice of author

or behaviour affected the accuracy of the algorithm).

55

Our participants found PaintBoard fast enough in our workshop, but different algorithms with

higher performance may also have slower execution speed. It is important for the algorithms to be

quick to maintain fluid authoring and interaction. As such, we also performed an ANOVA on the

execution time of each algorithm; for each iteration of k-fold validation, we recorded an execution

time. These were averaged to give a time for each behaviour of each participant (27 values for

each algorithm). The ANOVA was performed on these values, similar to how we analyzed

accuracy.

6.2.2. Results

We present the mean accuracy of each algorithm in Figure 6.2. Errors bars show standard error.

Statistical analysis revealed a main effect of the algorithm on the accuracy of the synthetic snapshot

(F(4, 130) = 11.9, p < .001, ɖ2 = .284). Post-hoc tests (with Bonferroni correction) revealed that

the radial basis function SVM performed better than Naïve Bayes (p < .001), and polynomial SVM

(p < .05). Comparisons of the radial basis function SVMôs performance with the RandomForest

and K-Nearest Neighbour algorithmsô performance showed no significance.

We grouped accuracies by behaviour type across participants. The behaviour type had a main

effect on the accuracy of the synthetic snapshot (F(2, 132) = 8.0, p=.001, ɖ2 = .117). Post-hoc tests

(with Bonferroni correction) revealed that ñsneakò was more accurate than ñescapeò or ñprotectò

(10% more) p < .005. There was no interaction effect between algorithm and behaviour type on

accuracy of the synthetic snapshot.

56

One problem with interpreting the above accuracy results is that, in our data, a cell is much more

likely to be unpainted (clear) than painted (red or gold); this biases classifiers to give us high

accuracy for unpainted cells while possibly lowering the accuracy for the other colors. To provide

insight we present a confusion matrix for the radial basis SVM (Table 6.1), showing the average

accuracy across all participants and behaviours as a percentage. Each entry can be read as ñ[entry

value] percent of all author-painted [column] cells in the test data were predicted to be [row] by

PaintBoard.ò For example, we can see that, across all participants and behaviours, 76% of gold

painted cells were predicted to be unpainted in the synthetic snapshots.

Although our current implementation is sufficiently fast for interactive results, we analyzed

execution time as a significantly faster algorithm could be important for future work. There was a

main effect of the algorithm on the time taken to run (perform cross-validation) per participant per

behaviour, (F(4, 22) = 19.430, p < .001, ɖ2 =.649). Post-hoc tests (with Bonferroni correction)

revealed that all algorithms ran at least 650% faster than the polynomial kernel SVM, p < .001.

0 0.2 0.4 0.6 0.8 1

KNN

NaiveBayes

RandomForest

SVM-RBF

SVM-POLY

Figure 6.2: Accuracy of each algorithm for our dataset. Error bars are standard

error. From the top: Support Vector Machine (SVM) with a polynomial kernel,

SVM with a radial basis function kernel, Random Forest, Naïve Bayes, and K-

Nearest Neighbours.

57

predicted

colour

author-painted colour

The difference in execution time of the cross-validation with the radial basis function kernel SVM

when compared to K-Nearest Neighbours or Random Forest was not shown to be significant. There

was no effect of behaviour type and no interaction effect between algorithm and behaviour type

on the runtime of the classifiers.

SVM-RBF red unpainted gold

red 0.25 0.09 0.09

unpainted 0.70 0.85 0.76

gold 0.05 0.06 0.15

6.3. Evaluation of State Features

To investigate the effect of our set of state features on PaintBoardôs performance, we briefly

explored accuracy variation with subsets of our features. Using only the radial basis kernel SVM

(as we found it to be one of the best performing), we performed a naïve greedy feature selection:

we measured the accuracy (as above) with each state feature on its own. We picked the feature

with the highest mean accuracy across all behaviours and participants. We then measured the

accuracy of each feature combined with the selected best feature. This was repeated for all features

until no statistically significant improvement was made with the addition of any other feature.

Table 6.1: The confusion matrix for radial basis function SVM. Entries represent the

accuracy, ranging from 0 to 1.

58

The two selected state features were ñrelative to user with respect to userôs look direction,ò and

ñrelative to userôs relation to point of interest.ò With these features, PaintBoard had a 77.5%

accuracy, while it achieved a 77.3% accuracy with all features. This difference was not found to

be statistically significant.

6.4. Discussion

Our comparison of multiple algorithms showed our original choice of SVM with a radial basis

function kernel was among the fastest of the machine learning techniques we tested. In addition,

our workshop (Section 5) suggested that it was fast enough for real-time interactivity. At least,

with our algorithmic approach and feature set, we found that there is likely no easy benefit to using

similar out-of-the-box machine learning solutions. Even so, PaintBoard sometimes struggled to

properly generate a prototype behaviour, despite the storyboards themselves (e.g., Figure 5.1)

being clear, suggesting that an alternative, perhaps fundamentally different learning solution may

be necessary to improve PaintBoardôs behaviour generation accuracy.

As seen by Table 6.1, the largest type of error made by our approach was misclassifying red and

gold cells as unpainted. One possible cause is the statistical nature of our machine learning

algorithms; due to the large number of unpainted cells typical in our approach, the probability of

a cell being similar to unpainted cells becomes higher. Thus, even if all author-painted gold cells

are very similar in terms of state features, it is likely that an even larger number of unpainted cells

are also similar to those gold cells, making classifiers more likely to paint a cell unpainted. In our

case, one possible solution is to carefully balance the data fed into the SVM by clustering the

59

disproportionately large number of uncolored squares to a representative subset that is similar in

size to the other colors. Such a change would benefit from a comparison similar to what we did in

this chapter, as different algorithms may react differently to the balanced dataset. Further, many

other techniques exist for dealing with imbalanced data, and is an active field of research in

machine learning [14]. Changes to PaintBoardôs interface may also help because it is possible that,

due to all cells initially being unpainted, they are more likely to be left unpainted, as it takes a

decision from the user to change this. Despite this limitation in our results, we highlight that

labelling a square as unpainted is as equally important as painting it (incorrectly painting them red

or gold could create incorrect behaviours), and that the generated behaviours were robust enough

for most prototyping, as suggested from the results of our workshop (Section 5).

A key area of potential improvement is our selection of state features. Our greedy feature selection

resulted in only two features giving similar accuracy to our full feature set, implying that we may

have overlap in our full set. However, our test data in this experiment only included 3 behaviours;

our state features resulted from analyzing 19 different behaviours types, and so itôs possible that

our full feature set may have higher accuracy over a larger variety of behaviours, though further

testing would be required to validate this. Completely new features are also a likely source of

improvement. For instance, our current feature set cannot learn behaviours that require a change

in speed, limiting the behaviours we can generate. Other features may not enable new behaviours,

but improve current accuracies. For example, adding a feature that calculates distance in terms of

shortest possible path (taking into account walls, etc.) as opposed to Euclidean distance may

improve accuracies in more complicated environments.

60

Our definition of a generated behaviourôs accuracy should be taken into account when interpreting

our results. PaintBoardôs goal was to prototype behaviours, yet our definition of a successful

prediction is very strict (an exact match between corresponding grid cells), and as such, lower

accuracies may be permissible. For example, a snapshot that performs well in practice may score

poorly with our metric if the colours were offset by one square either vertically or horizontally.

Additional accuracy metrics may be more appropriate, such as counting a match if the desired

colour is in a nearby cell. Finally, as our input storyboard provides very limited data for relatively

complex behaviours, it is highly unlikely to achieve near-100% accuracies with generic techniques.

Modern games are commonly not discrete grid-like areas, and have characters moving about

smoothly in a continuous space. In order to bring PaintBoard to such spaces in its current form,

many algorithmic problems must be solved. One problem in doing this is that calculating state

features for every pixel in the game world is computationally too expensive in most cases. A naïve

solution could be range thresholds, perhaps definable by the author, that limit how far away from

the user and computer characters the calculations take place. A solution to combat the complexity

of a continuous space could be to discretize the spaceðplacing an artificial grid, similar to what

we already use in PaintBoard, over the continuous area. This algorithmic trick could even be

invisible to the author: allow them to paint in a continuous space, and apply the grid only when

calculating the state features.

61

6.5. Conclusion

The PaintBoard algorithm was sufficient for our initial exploration of our painting-storyboards

approach, and enabled rapid, iterative prototyping of interactive behaviours. Our initial choice of

radial basis function SVM and state feature set used in our workshop proved to be adequate choices

when compared to other learning techniques used with our PaintBoard system. However, different

machine learning algorithms did not yield performance gains, suggesting that a fundamentally

different approach for behaviour generation may be necessary for better accuracy. Further, our

state features used to train our SVM were able to successfully reproduce behaviours to a reasonable

(sufficient for prototyping) level, as indicated by our performance measurements. However, our

analysis suggested that our initial set may contain redundant features, and is likely incomplete,

therefore a more systematic investigation to identify possible missing features is important future

work.

63

 Conclusion

This work detailed a novel technique for prototyping interactive character behaviours by painting

and storyboarding. We presented results from exploratory interviews and a programmer study,

which informed our development and interface design, resulting in PaintBoard: a novel painting

and storyboarding interface. The algorithm we developed is based on machine learning and can

generate real-time interactive behaviours based solely on a few digitally painted snapshot

examples. As part of this, we developed a novel feature set (state features) that can represent

important characteristics of paired interactive behaviours which may be useful to other algorithms

in the same problem domain. Further, we conducted a workshop where people used PaintBoard,

and the results highlighted the strengths of our approach, showing how developers, with minimal

training, can easily use PaintBoard to prototype behaviours. Finally, we devised a metric to

evaluate the quality of generated behaviours and used it to explore variants of our algorithmic

approach. This lead to us discovering that little can be gained by simple algorithm or parameter

adjustment in our system and current algorithmic approach.

64

7.1. Limitations and Future Work

This work served as a proof-of-concept of PaintBoardôs approach of enabling people to generate

behaviours by painting storyboards. However, the interface, algorithm, and evaluation

methodology all require further study to make behaviour generation authoring more fluid,

accessible, and reliable. In spite of these limitations, we have shown support for PaintBoardôs

approach, and it extends previous work to provide a baseline for future work in authoring

interactive behaviours.

7.1.1. Authoring Interface and Interaction

Beyond the additions mentioned in our workshop, such as branching storyboards and painting with

different weights, we need to explore extending the painting metaphor to enable more interactive

behaviours. For example, it is not immediately obvious how to paint non-static properties such as

character movement speed. Another challenge is the inherent chronology of storyboards.

PaintBoard should be extended to consider the order of the snapshots in the storyboard, as people

expect them to be chronological; currently, this is not handled in the interface, nor the algorithm,

and may be useful in learning more complicated behaviours. Temporally constraining each

snapshot, however, further constrains an already limited input set (a short storyboard), and

requiring additional data from a user may limit their productivity with PaintBoard. This remains

challenging and important future work.

65

Looking to successful painting software for inspiration, it may be useful to explore how PaintBoard

could use layers (e.g., as used in Adobe Photoshop5or the GIMP6 software packages). This enables

users to separate varying aspects of what they are drawing, and may be useful for representing

speed, or other features such as character orientation, without cluttering the snapshots. For example,

temporal behaviour aspects, such as speed of movement, might be expressed on its own layer,

possibly with interactions that benefit those parts of the behaviour.

7.1.2. Behaviour Generation and State Features

We discussed many of PaintBoardôs algorithmic limitations, such as our definition of a correct

prediction, in Section 6.4, but we have, to our knowledge, been the first to attempt to quantitatively

evaluate generated interactive behaviours. This provides a solid baseline for future work including

even entirely different authoring techniques that change the way users create behaviours, the data

to be analyzed, or the generation technique itself.

While the subset of algorithms we compared in our study was diverse, it was incomplete. However,

our results suggested that general machine learning techniques will not easily provide significant

performance increases. Thus, we suggest that new machine learning or analytical techniques

tailored specifically for learning interactive behaviours may be a promising direction.

Different approaches to state features may greatly improve the accuracy of generating behaviours

as well as enable an even wider variety of behaviour that can be authored. While a subset of our

5 http://www.photoshop.com/ 6 http://www.gimp.org/

66

features seemed to perform as well as the full set, we caution that our evaluation was only tested

with a small number of behaviours, and our accuracy metric was strict and possibly not suited to

evaluate prototyping environments. Our results simply highlight that selection of features for

analyzing storyboard input is non-trivial, and that different feature sets may have similar

performance for specific subsets of behaviours. Fundamentally different approaches to state

features may enable more complicated behaviours; for example, instead of calculating state

features at the grid cell level, higher level features that encapsulate state information (e.g. the user

character is moving towards the treasure) may be enable behaviours that rely upon knowing past

movements.

7.1.3. Further Evaluations

Our studies were high-level and focused on obtaining a general sense of PaintBoardôs qualities,

but targeted follow up studies with more rigorous evaluations need to be conducted; we could

perform a follow-up study targeted at PaintBoardôs potential as a communications tool where

developers and non-technical designers work together to create a behaviour, and use PaintBoard

as the prototyping and communication medium. This will enable us to more concretely reflect on

PaintBoardôs potential as a communication and prototyping tool in a real-world scenario. As

previously mentioned, new evaluations targeted at improving PaintBoardôs algorithm or state

features should look to refine our method of measuring the accuracy of a generated behaviours as

well. For example, being less strict on what counts as a successfully painted cell (as PaintBoard is

a prototyping tool), or even evaluating the behaviour on the scene level instead of the grid level

may be an improvement.

67

7.2. Contributions

Contributions of our research include:

1. A novel interaction methodðdigitally painting storyboardsðthat enables the description

and real-time testing of interactive behaviours for computer controlled characters.

2. An original interface that enables 1.

3. A behaviour generation algorithm that can quickly generate a real-time interactive

behaviour from a painted storyboard.

4. A workshop with developers and interviews with professionals in the game industry that

grounded our design and development of 1, 2, and 3, and provide a baseline understanding

of some approaches of creating interactive behaviours.

5. An evaluation of PaintBoardôs overall approach of painting storyboards

6. An evaluation of PaintBoardôs behaviour generation algorithm.

Overall, PaintBoard serves as a proof of concept for how real-time interactive behaviours can be

prototyped through painting and storyboarding, and provides an initial solution to the interface and

algorithmic design problems. Our interface and interaction design was evaluated with a design

workshop, and our algorithmic solutions were analyzed by comparing different learning

algorithms with PaintBoard. The evaluations highlighted the success of the painting-storyboards

approach, and we envision that PaintBoard will serve as a proof of concept and baseline for future

work, for example, extending PaintBoard into 3D continuous worlds. We hope that tools for

68

simplifying the authoring of interactive behaviours will improve, making interactive content

creation faster and more accessible to a broader audience

69

 Bibliography

1. Abeel, T., de Peer, Y. V., and Saeys, Y. Java-ML: A Machine Learning Library. Journal of Machine

Learning Research 10, (2009), 931ï934.

2. Berg, B.L. Open Coding. In Qualitative Research Methods for the Social Sciences. 1989, 364 ï

366.

3. Beyer, H. and Holtzblatt, K. Contextual design: defining customer-centered systems. Elsevier, 1997.

4. Breiman, L. Random Forests. Machine learning 45, 1 (2001), 5ï32.

5. Buxton, B. Sketching User Experiences: Getting the Design Right and the Right Design. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

6. Caruana, R. and Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms.

Proceedings of the 23rd international conference on Machine learning - ICML ô06, ACM Press

(2006), 161ï168.

7. Chang, C.-C. and Lin, C.-J. LIBSVM. ACM Transactions on Intelligent Systems and Technology

2, 3 (2011), 1ï27.

8. Cortes, C. and Vapnik, V. Support-vector networks. Machine Learning 20, 3 (1995), 273ï297.

9. Diethelm, I. Systematic story driven modeling: a case study. ñThird International Workshop on

Scenarios and State Machines: Models, Algorithms, and Tools (SCESM04)ò W5S Workshop - 26th

International Conference on Software Engineering, IEE (2004), 65ï70.

10. Dix, A., Finlay, J.E., Abowd, G.D., and Beale, R. Human-Computer Interaction. Prentice Hall PTR,

2003.

70

11. Dontcheva, M., Yngve, G., and Popoviĺ, Z. Layered acting for character animation. ACM

SIGGRAPH 2003 Papers on - SIGGRAPH ô03, (2003), 409.

12. Förger, K., Takala, T., and Pugliese, R. Authoring Rules for Bodily Interaction: From Example

Clips to Continuous Motions. Intelligent Virtual Agents, (2012), 341ï354.

13. Forte, D., Gams, A., Morimoto, J., and Ude, A. On-line motion synthesis and adaptation using a

trajectory database. Robotics and Autonomous Systems 60, 10 (2012), 1327ï1339.

14. Garcia, E.A. Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data

Engineering 21, 9 (2009), 1263ï1284.

15. Gebhard, P., Kipp, M., Klesen, M., and Rist, T. Authoring scenes for adaptive, interactive

performances. Proceedings of the second international joint conference on Autonomous agents and

multiagent systems - AAMAS ô03, (2003), 725.

16. Gleeson, B., Maclean, K., Haddadi, A., Croft, E., and Alcazar, J. Gestures for industry: intuitive

human-robot communication from human observation. Proceedings of the 8th ACM/IEEE

international conference on Human-robot interaction (HRI ô13), IEEE Press (2013), 349ï356.

17. Goldman, D.B., Curless, B., Salesin, D., and Seitz, S.M. Schematic storyboarding for video

visualization and editing. ACM Transactions on Graphics 25, 3 (2006), 862.

18. Greenberg, S., Carpendale, S., Marquardt, N., and Buxton, B. The narrative storyboard: telling a

story about use and context over time. interactions 19, 1 (2012), 64ï69.

19. Hernandez, F.E. and Francisco, R., 2011. Reducing Video Game Creation Effort with Eberos

GML2D. In M. Ansari, ed., Game Development Tools. CRC Press, 2011, 267.

20. Igarashi, T. and Hughes, J.F. Smooth meshes for sketch-based freeform modeling. ACM

SIGGRAPH 2007 courses on - SIGGRAPH ô07, ACM Press (2007), 22.

21. Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: a sketching interface for 3D freeform design.

Proceedings of the 26th annual conference on Computer graphics and interactive techniques -

SIGGRAPH ô99, ACM Press (1999), 409ï416.

22. Igarashi, T., Moscovich, T., and Hughes, J.F. Spatial keyframing for performance-driven animation.

Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation -

SCA ô05, ACM Press (2005), 107.

23. Igarashi, T., Moscovich, T., and Hughes, J.F. As-rigid-as-possible shape manipulation. ACM

Transactions on Graphics 24, 3 (2005), 1134.

24. Ju, E., Choi, M.G., Park, M., Lee, J., Lee, K.H., and Takahashi, S. Morphable crowds. ACM

Transactions on Graphics 29, 6 (2010), 1.

71

25. Kelly, S. and Tolvanen, J.-P. Domain-specific Modeling: Enabling Full Code Generation. Wiley,

2008.

26. Kohavi, R. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model

Selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, (1995),

1137ï1143.

27. Landay, J.A. and Myers, B.A. Interactive sketching for the early stages of user interface design.

Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ô95, ACM

Press (1995), 43ï50.

28. McNaughton, M; Cutumisu, M; Szafron, D; Schaeffer, J; Redford, J; Parker, D. ScriptEase :

Generative Design Patterns for Computer Role-Playing Games. Proceedings of the 19th IEEE

international conference on Automated software engineering, IEEE Computer Society Washington,

DC, USA (2004), 386ï387.

29. Peszko, J.P. óAssassinôs Creedô: Redefining the Action Game. 2007.

http://www.awn.com/vfxworld/assassins-creed-redefining-action-game.

30. Pizzi, D. and Cavazza, M. From Debugging to Authoring : Adapting Productivity Tools to

Narrative Content Description. Lecture Notes in Computer Science 5334, (2008), 285ï296.

31. Pugliese, R. and Lehtonen, K. A Framework for Motion Based Bodily Enaction with Virtual

Characters. Intelligent Virtual Agents, (2011), 162ï168.

32. Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH

Computer Graphics 21, 4 (1987), 25ï34.

33. Shen, E.Y. and Chen, B. Toward gesture-based behavior authoring. International 2005 Computer

Graphics, (2005), 59ï65.

34. Shneiderman, B. Creativity support tools: accelerating discovery and innovation. Communications

of the ACM 50, 12 (2007), 20ï32.

35. Suay, H.B., Toris, R., and Chernova, S. A Practical Comparison of Three Robot Learning from

Demonstration Algorithm. International Journal of Social Robotics 4, 4 (2012), 319ï330.

36. Terry, M. and Mynatt, E.D. Recognizing creative needs in user interface design. Proceedings of the

fourth conference on Creativity & cognition - C&C ô02, (2002), 38ï44.

37. Ulicny, B., Ciechomski, P. de H., and Thalmann, D. Crowdbrush. Proceedings of the 2004 ACM

SIGGRAPH/Eurographics symposium on Computer animation - SCA ô04, ACM Press (2004), 243.

38. Walter, R. and Masuch, M. How to integrate domain-specific languages into the game development

process. Proceedings of the 8th International Conference on Advances in Computer Entertainment

Technology - ACE ô11, ACM Press (2011), 1.

72

39. Wengraf, T. Qualitative research interviewing: Biographic narrative and semi-structured methods.

Sage, 2001.

40. Wolber, D. Pavlov: Programming by stimulus-response demonstration. Proceedings of the SIGCHI

conference on Human é, (1996), 252ï259.

41. Young, J.E., Sharlin, E., and Igarashi, T. Teaching Robots Style: Designing and Evaluating Style-

by-Demonstration for Interactive Robotic Locomotion. HumanïComputer Interaction 28, 5 (2013),

379ï416.

42. Yu, K., Wang, H., Liu, C., and Niu, J. Interactive Storyboard : Animated Story Creation on Touch

Interfaces. Active Media Technology, (2009), 93ï103.

73

Appendix A: Materials Used in our Initial

Investigations

¶ Ethics approval certificate

¶ Recruitment e-mail

¶ Informed consent form

¶ Semi-structured interview outline

74

