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Figure 1: Future prototype design, utilizing situated visualizations based on one example of a participant’s drawing.

ABSTRACT

Visual video analytics research, stemming from data captured by
surveillance cameras, have mainly focused on traditional computing
paradigms, despite emerging platforms including mobile devices.
We investigate the potential for situated video analytics, which
involves the inspection of video data in the actual environment
where the video was captured [14]. Our ultimate goal is to explore
the means to visually explore video data effectively, in situated
contexts. We first investigate the performance of visual analytic
tasks in situated vs. non-situated settings. We find that participants
largely benefit from environmental cues for many analytic tasks.
We then pose the question of how best to represent situated video
data. To answer this, in a design session we explore end-users’ views
on how to capture such data. Through the process of sketching,
participants leveraged being situated, and explored how being in-
situ influenced the participants’ integration of their designs. Based
on these two elements, our paper proposes the need to develop novel
spatial analytic user interfaces to support situated video analysis.
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1 INTRODUCTION

Surveillance cameras are commonly used in public spaces. Video
analysis of this footage enhances understanding of scenes captured
in terms of temporal, spatial, sequential, relational, and interac-
tional features. Based on the analyses of these pieces, users draw
practical/real-world conclusions (e.g., sentencing) about the event
seen in the video. Currently, an analyst would sit in front of a moni-
tor and examine the events of interest with video analysis tools. To
date, video visual analytics and visualization research has predomi-
nantly focused on using non-situated computing paradigms (i.e.,
analysis on a computer while using classical desktop interfaces)
to explore data [18, 19, 25, 28, 30, 33, 38]. However, there is great
potential in the benefits of quickly advancing platforms such as
Augmented Reality (AR)/ Virtual Reality (VR).

While technologies associated with video analyses are advancing
rapidly (e.g., technologies used to make criminal allegations), the
video analysis methods/techniques remain unchanged (e.g., using
traditional desktop interfaces in office setting). Thus, we propose an
alternative video analytical method which integrates video analysis
tools and tasks into the real environment of an event in question.
Our study explores the potential of this proposed approach, and
whether it could improve the reliability of video analysis. The first
study compares users’ performances in situated video analytics
and non-situated analytics. Revisiting the scene where the events in
question took place should expand the understanding of said events
even further. For instance, one can answer some questions only
by revisiting scenes to collect clues that video analysis tools may
not capture adequately (e.g., accurate spatio-temporal information
and details of events that took place partially off camera). In fact,
a revisitation step is essential to make accurate judgements about
any events. For this, emerging mobile technologies and computing
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paradigms could possibly amalgamate video analysis and explo-
ration of the actual environment; this could further enhance the
outcome of Situated Analytics (SA) by enabling the visualization of
actual events in the actual location.

Little is known about the benefit of in-situ exploration of video
data since SA is still an emerging area [16, 39]. Results from Study
1 confirm overall improved accuracy when participants perform
video analysis in-situ, compared to the non-situated settings. This
leads us to the next question. What design considerations are
needed to develop situated video analytics interfaces? Thus, we next
conduct a design session with end-users to explore situated video
visualization potential design. An analysis of participants’ sketches
present some design take-aways for situated video visualizations
that can aid with common video analytic tasks.

Our contributions are threefold. We; 1) conduct an empirical
study comparing Situated and Non-situated Video Analytics, 2)
report user-generated visualization design and interfaces to support
in-situ video analytics tasks. Based on the analysis of visualization,
we use our generated knowledge for how to exploit the user’s
immediate environment to place and represent visualizations [5, 12]
to 3) share our takeaways for designing novel user interfaces for
situated video analytics technology.

2 RELATED WORK
2.1 Exploratory Video Data Analysis

Video data analyses often start out with an exploratory search to
formulate tentative and broad queries. These queries often narrow
down the data to be examined. These primary explorations then lead
to further questions, hypotheses generation, and ultimately answers
to the questions [10, 30]. Several exploratory search tasks have
been investigated thus far; e.g., tasks such as person identification
[8], object movement measurement [27, 33], motion and pattern
analysis [20, 37], and human and object measurement [2, 3, 9].

2.2 Video Visual Analytics and Visualization

Visual Analytics (VA) is defined as “the science of analytical reason-
ing facilitated by visual interactive interfaces” [40]. Visual video
analytics and visualization tools aim to create a visual representa-
tion of raw video footage, to visually highlight important spatio-
temporal data [4, 31]. Current video visual analytics tools include a
variety of approaches consisting of video summarization [24, 32, 34],
video content visualization [27, 30, 33, 37], and video interaction
and navigation [20-22, 30]. The major purposes of these tools are
to: 1) remove redundancies in the analytical step; 2) visualize a
summary of the video data; 3) provide alternative 3D representa-
tions of individuals and object spatio-temporal information, and 4)
introduces novel interaction techniques.

2.2.1 Video Summarization: Video summarization aims at facili-
tating large-scale video data browsing processes via the selective
presentation of meaningful components of an original video [32].
Several examples of video summarization studies highlight the
state-of-the-art, along with opportunities for further study and ex-
ploration. For example, Video Synopsis tool produces a summary
video of the events locations and objects from the original input
video by removing spatio-temporal redundancies, and condensing
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multiple activities, which occurred at different times, into a single,
short output video [34]. Another video summarizing technique was
proposed to visualize the trajectory data of a moving object [24].
This technique automatically divides a video into segments (clips)
based on the detected movements of objects, then, extract trajectory
data from each object. Finally, trajectory paths of moving objects
are visualized on top of each video segment.

2.2.2  Video Content Visualization: Video summarization techniques
are limited to displaying either the original frame or fast playback.
Thus, video content visualization has emerged as an alternative so-
lution to this limitation [30]. Video content visualization techniques

use visual elements and effects, or a modified version of the original

video frame to visually summarize video content. VATAS is a visu-
alization system that enables automated analysis and annotation of
movement trajectory events in videos [27]. Video Summagator is a

video summarization and navigation tool which visualizes object

movement data in a space-time cube [33]. Another method used to

visualize object movement data is to extract movement data from

a video, then lay the results of the extraction on top of the same

video [37].

2.2.3  Video interaction and navigation: Video interaction and nav-
igation techniques aim at supporting video visual analytics via
interactive exploration of video content. Several examples of video
interaction and navigation demonstrate browsing and exploration
techniques for improving the ability to interact with video data. The
authors in [21] proposed an interactive video visual analytics tool
that visualizes object movement trajectories from a given video. In
[22] and [20], the presented tool uses clustering and schematic visu-
alization techniques to visualize moving object trajectories in 2D. In
[30], the authors have proposed an interactive visualization tool for
surveillance video. Their tool extracts object movement data from
videos, then provides three interactive exploration visualizations
of the movement data.

2.3 Situated Analytics (SA)

SA takes advantage of virtual spaces by mapping them to the phys-
ical environment [16, 17]. SA can be defined as “the use of data
representations organized in relation to relevant objects, places,
and persons in the physical world for the purpose of understanding,
sense-making, and decision-making” [39]. Researchers highlighted
important design guidelines related to situated data visualization
and interactions [15]. For example, information should be registered
on physical objects in such a way that the location and appearance
of the information adapts to the changes in the object. Two dif-
ferent types of interactions were highlighted [15]: 1) AR to allow
for interaction (e.g., select/deselect to display data) with physical
objects, in context with a query; and, 2) analytical interaction to
allow to control the exploration and analytic tasks performed on
the data registered to a physical object. Unique and novel video
analysis tools are likely to see increased research focus as develop-
ers take advantage of new case scenarios, made possible through
new computing paradigms and modalities.

Video visual analytics and visualization tools were designed pri-
marily for video analysis on non-situated computing paradigms. So
far, however, no research has empirically investigated how Situated



Exploring the Need and Design for Situated Video Analytics

vs. Non-Situated video analysis differs in terms of users’ perfor-
mance and experiences.

3 STUDY 1: SITUATED VS. NON-SITUATED
VIDEO DATA ANALYSIS

We explore whether SA can facilitate video analytic tasks. For this,
we conducted a study that observes video-analysis activities in
two settings, in-situ (i.e., situated) vs. as traditionally done, at the
desk (i.e., non-situated). The dependent variables for each video
scenario were based on the exploratory search tasks found in video
analysis tools in the literature [2, 3, 7, 9, 20, 26, 27, 27, 29, 33, 35, 37].
Additionally, for an exploratory purpose, we assessed participants’
confidence levels for their own judgements.

3.1 Participants

We recruited 40 participants (M = 18, F = 21, Other = 1), aged be-
tween 18 and 41 years (M = 24.70, SD = 6.59), from a local university.
They were randomly assigned to either Situated or Non-Situated
condition. 20% of the participants reported English as their first
language, and none of the participants had any language issues
throughout the study. All participants reported normal or corrected-
to-normal vision.

3.2 Apparatus

For visual analysis, a Microsoft Surface Pro 2 was used in both
the Situated and Non-Situated conditions. Its screen size was 10.8
inches (27 cm) by 12 inches (30 cm) and the resolution was 1920
x 1080. To support the participants’ mobility during the study in
the Situated condition, they were able to switch between laptop
mode and tablet mode via a detachable keyboard. Participants were
allowed to switch between the two modes as needed. For example,
when a participant wanted to explore the scene physically, they
would choose tablet mode for a better video viewing experience.
Furthermore, participants in both groups were provided with two
measurement tools (a ruler and a measurement tape), pen, paper,
and a stopwatch to help them answer the analytic tasks. To develop
video stimuli (i.e., video clips), a video camera (the Canon HF-M52)
was used (See Section 3.4 for detailed video scenarios).

3.3 Method

A two by two mixed between (1: Situated vs. 2: Non-Situated) within
(1: On-Camera vs. 2: Off-Camera) design study was conducted. The
scenario clips and questions were uploaded on an online survey sys-
tem, Qualtrics. The general procedure was explained by a research
assistant after participants signed the consent form. Their main
task was to perform visual analytic to answer questions. Thus, par-
ticipants were asked to watch video clips on the Microsoft Surface
Pro 2 first. Participants were instructed to be as fast and accurate
as possible, but no time limit was set. Measurement tools, pens,
paper, and a stopwatch were provided to the participants to help
them in completing the tasks. The participants in the Situated con-
dition were instructed to walk around and gather information that
could help them to answer questions (See Figure 2). The question-
naire consisted of three main sections. First section was a practice
session. Next section gathered participants’ demographic and vi-
sion data. The last section provided stimuli and questions: There
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Figure 2: After a Situated group participant watched video
clips and read questions related to the scenario, the partici-
pant walks to the location of events in the video to find (a,b)
the ball’s location when it touched the ground and reached
its apex, (c) the marker’s color used in the vandalism act, and
(d) the ball’s locations after it left actors’ hands, (e) the time
it took the actors to reach a predefined location, and (f) the
newspaper stand height.

were five blocks in this section, and each block had its own pur-
pose (i.e., scenario types): 1) projectile trajectories [6, 25], 2) key
changes in the environment [30], 3) movement direction [21, 24, 25],
4) movement/action duration [30], and 5) absolute measurements
[3, 6]). Further, each block contained four questions focusing on its
scenario type. For completion time, the time is captured, in both
groups, from the moment participant start playing the video un-
til the time he/she submit the answer. The selection of scenario
types was made based on common video analysis activities found in
[3, 6, 21, 24, 25, 30]. Participants were presented with one scenario
block at a time, each containing video clips, questions related to
an event in each video, and questions about participant confidence.
To minimize the order effect, scenario order was counterbalanced
for all the participants. Participants were allowed to analyze freely:
replay, pause, rewind, and frame-step, as well as watch the video
multiple times. Completion time, clicks at coordinates on images,
answers to questions, and participants’ confidence were collected.
Participants used the imperial or metric system when reporting
their measurements, based on their preference. Each study lasted
roughly 75 minutes and each participant received a $15 gift card
for their participation.

3.4 Video Clips

Five scenarios were acted out by three actors (two males and one fe-
male). Two conditions for each scenario were produced: video clips
in on-camera condition captured all of the action within camera
Filed of View (FOV), whereas, in the off-camera condition, some
parts of the action occurred outside of the camera FOV. Videos
were shot in a local university building atrium while others were
not present. We positioned our camera at a height akin to that
of the actual security cameras there. All videos were recorded in
1920 x 1080 resolution and 30 frames per second. We used an open
source software called “Tracker” [6] to identify the accurate/correct
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responses (i.e., answer keys) from the video to be shown to partici-
pants. Twenty-six unique video clips were recorded. There were 4
to 8 clips in each scenario block. 44.125 seconds is the mean dura-
tion of all videos. 5 to 215 seconds was the range of duration for all
videos. The experiment was comprised of original and unaltered
footage (no added special effect or modification was present). The
following scenario types were used in the study:

3.4.1 Projectile Trajectories: Participants viewed eight videos. Four
variations of this scenario were created using two types of camera
optical axes (perpendicular or parallel) and two types of FOV (on-
or off-camera) (Figure 3). In the on-camera clip, an actor threw a
soccer ball and the trajectory ends within the camera FOV (see
Figure 3-a and c). However, the trajectory ends on the outside of
the FOV in off-camera clips (see Figure 3-b and d). Questions asked
regarded the ball’s trajectory; 1) after it left the actor’s hands, 2) at
its apex, 3) at contact with the ground.

Figure 3: (a) and (b) show the ball being thrown perpendicu-
lar to the camera, with (a) in FOV and (b) not entirely in FOV.
Image (c) and (d) show the ball being thrown parallel to the
camera, with (c) in FOV and (d) not entirely in FOV. Note the
red arrows and white dots were not shown to participants.

3.4.2 Key Environment Changes: Four videos explored questions
related to physical changes that happen within a scene’s environ-
ment (in this case, a vandalism event). Four white sheets of paper
were posted in four different locations to simulate this event: two
were placed on-camera while others were placed off-camera (see
Figure 4). An actor walked into the camera FOV, sat down at a table
next to the wall for a few seconds, walked toward one of the white
papers, draws a shape with a color marker, then left the scene. Each
sheet was marked with a different color (black, red, green, or blue).
The participants’ was asked to report the color.

3.4.3  Movement Directions: Four videos explored participants’ abil-
ities in tracking object movements and directions. In on-camera
clips, three actors stood in a circle facing each other and threw a
soccer ball between themselves (five passes in). Participants’ tasks
were to; 1) click on the location of the ball after it left an actor’s
hand, and 2) draw the ball movement and direction on a piece of
paper. For off-camera clips, a red bag was placed on a table: the first
actor picks up the bag, walks in a straight-line path and leaves the
camera FOV for a few seconds. The actor then passes the bag to
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Figure 4: A stitched image of the actor acting in the four
video clips. The figure shows different locations of posted
white papers. The locations (1) and (2) in the camera FOV
whereas (3) and (4) are outside the camera FOV. Please note
that the red boxes were not shown to participants.

the second actor, who walks in straight-line into camera FOV for
several seconds, then exits the camera FOV. Then the bag is passed
to the third actor. The third actor then walks in a straight line into
camera FOV for few seconds and stops. Participants were asked
to identify the location and direction of the bag exchanges, using
mouse clicks.

3.4.4  Duration of Movement/Action: Four videos explored the par-
ticipants’ measurement perception and estimation of event duration.
For the on-camera material, three meeting points were predefined.
In the video clips, three actors meet at each location for a certain
amount of time, then disperse. Participants’ tasks were to 1) mea-
sure the duration of each meeting. For the off-camera material, two
actors sit at a table and talk for several seconds, then stand up to
walk out of the camera FOV. Participant tasks were to 1) estimate
the time the actors spent to arrive at a predefined location, outside
of the camera FOV.

3.4.5 Absolute Measurements: Participants’ perception regarding
absolute measurements was explored with four videos. For the on-
camera material, an actor places either a piece of duct tape on the
floor or on a newspaper stand next to the wall (two scenarios), then
leaves the camera FOV. Participants’ tasks were to 1) report either
the length of the duct tape and height of the newspaper stand. For
the off-camera material, one actor begins on a lower floor, then
walks halfway up a flight of stairs, stands for a few seconds, then
walks back down to the lower floor. The upper half of the actor’s
body was shown to the camera FOV and was visible within the clip.
Participants’ tasks were to 1) report the height of the actor. The
same action was repeated in another video clip, by an actor of a
different height.

3.5 Results

After checking assumptions, mixed two by two ANOVAs were
conducted throughout Study 1, to explore the effect of condition
(Between: Situated vs. Non-Situated) and the analysis type (Within:
On-camera vs. Off-camera) on each dependent variable. Partici-
pants’ familiarity with the building did not differ across conditions,
F(1,38) = .28, p =.60. Participants’ responses were compared against
the answer keys we had generated. We report a significant value
when p <= .05.
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3.5.1 Projectile Trajectories.

Response error: The distance between the participants’ responses
(i.e., where the participants clicked on the monitor) and the correct
response (in pixels where 1 pixel is equal to 0.0264 centimeter) were
computed to indicate the magnitude of the participants’ response
error. A significant condition effect emerged, F(1, 38) = 16.66, p
= .0002, gp® = .31. Scene type effect was also significant, Wilks’
Lambda = .73, F(1, 38) = 14.14, p = .0006, qu = .27. Further, a signif-
icant interaction effect emerged, Wilks’ Lambda = .38, F (1, 38) =
7.25, p = .011, np® = .16. Simple main effect analyses confirmed that
in for both on- and off-camera scenes, participants in Situated con-
dition made less error(ps < .05, see Figure 5 for the means). Being
in the scene allows participants to view the the video clips from
different view-points, and this reduced their levels of errors. Hence,
interestingly, participants in Non-Situated analysis made greater
errors, compared to Situated condition, even when the video clip
captured the entire scene within the camera FOV.

Estimated Marginal Means of Response
Error in Projectile Trajectories
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Means (centimeter)
COLOO pEppEN
ONRADRNRNDD

On camera Off camera
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Figure 5: The interaction effect on the response error for pro-
jectile trajectories (p = .01).

Completion time: There was a significant condition effect, F(1, 38)
=21.79, p = .00004, p? = .36. Compared to the Situated condition,
participants spent less time when they were in the Non-Situated
condition to complete their tasks. Further, the scene type effect
was also significant, Wilks’ Lambda = .30, F(1, 38) = 88.73, p <
.000001, r7p2 =.70. There was a significant interaction effect, Wilks’
Lambda = .56, F(1, 38) = 29.41, p = .000004, qu = .44 (See Figure
6). Pairwise comparisons indicated that in both on-camera and
off-camera materials, participants in the Situated condition spent
longer time than their counterparts did.

3.5.2  Key Changes In the Environment.

Response accuracy: For the dependent variable, the percentage
of the participants’ correct responses in a color detection task was

used. No interaction effect nor scene type effect emerged (ps > .14).

A main effect of condition emerged, however; F(1, 38) = 667.45,
p < .000001. As predicted, participants in the Situated condition
responded perfectly (M = 1.00, SD = .00) on color detection task
while participants in the Non-Situated condition did poorly (M =
.18, SD = .14).
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Estimated Marginal Means of Completion
Time in Projectile Trajectories
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Figure 6: The interaction effect on the completion time in
projectile trajectories (p = .000004).

Completion time: The effect of analysis type was found, Wilks’
Lambda = .34, F(1, 38) = 75.34, p < .001, with a large effect, r]pz =.67.
Participants processed the on-camera materials faster (M = 109.88,
SD = 45.82) than the off-camera materials (M = 186.03, SD = 73.62).
There were no significant interaction nor condition effects (ps >
05).

3.5.3 Duration of Movement/Action.
Response accuracy: No significant effects were found (ps > .15).

Completion time: A significant condition effect was found, F(1,38)
=21.57, p < .00004, np? = .36. Further, there was a significant analysis
type effect, Wilks’ Lambda = .52, F(1, 38) = 34.81, p < .000001,
np? = .48. Finally, there was a significant interaction effect (Wilks’
Lambda = .76, F(1, 38) = 12.11, p = .001, rypz = .24). Simple main
effect analysis confirmed that the only off-camra, participants in
Situated condition took significantly longer than those who were
in Non-Situated condition, but not with on-camera(p < .00001, see
Figure 7).

Estimated Marginal Means of Completion
Time in Duration of Movement

—252.11

100 107.45

Estimated Marginal
Means (seconds)

On camera Off camera

=== Non-situated e=== Sjtuated

Figure 7: The interaction effect on the completion time in
duration of movement/action (p = .00001).

3.5.4 Movement Direction.
Response accuracy: No significant effects were found (ps > .19).

Completion time: No significant condition effect nor interaction
effects were found (ps > .28). An analysis type effect emerged, how-
ever (Wilks’ Lambda = .66, F(1, 38) = 19.98, p = .00007, np> = .35.
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On average, processing on-camera material required longer time
(M =575.40, SD = 475.15) than processing off-camera materials (M
=366.23, SD = 231.20) regardless the condition.

3.5.5 Absolute Measurements.

Response accuracy: A main effect of condition emerged, F(1, 38)
= 28.61, p = .000004, p? = .43. The analysis type effect was not
found (p > .05), however. An interaction effect emerged, Wilks’
Lambda = .89, F(1, 38) = 4.91, p = .03, r]pz =.11. Simple main effect
analyses yielded that only with In-scene material, participants in
Non-Situated condition made larger errors than the participants in
the Situated condition did(p = .00001).

Completion time: A condition effect emerged; F(1, 38) = 13.95,
p =.001, np? = .27. Participants in the Situated condition spent
longer time (M = 181.83; SD = 65.23) than their counterparts did
(M =107.75, SD = 60.06). An effect of analysis type was also found:
Wilks’ Lambda = .77, F(1, 38) = 11.64, p = .002, p? = .23. Participants
spent longer time when they were analyzing on-camera materials
(M =118.88, SD = 51.32) than off-camera materials (M = 170.69, SD
= 113.16). There was no interaction effect (p =. 06).

Estimated Marginal Means of Response
Error in Absolute Measurement

0-35 \
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Figure 8: The interaction effect on the response error for ab-
solute measurements: (p = .03).

3.5.6 Overall Confidence. A question (“How confident are you
about the answer you provided above?”) assessed the participant’s
confidence level regarding their own analytical performance using
a 7-point Likert scale. This question was provided immediately
after each task. For the analysis, the mean of each task confidence
was used. A main effect of condition and analysis type were found.
When participants were in Situated condition, their confidence was
significantly higher; F(1, 38) = 8.74, p = .005, M = 5.52, SD = .41,
than their counterparts’ (M = 4.90, SD = .84). Further, analyzing on-
camera materials made the participants feel more confident about
their analytic performance; F(1, 38) = 21.38, p = .00004, r]pz = .36,
M =5.36, SD = .75, compared to the off-camera materials, M = 5.09,
SD = .75. No interaction effect was found.

3.6 Discussion

Significant effects around the response error/accuracy confirmed
potential benefits of SA in comparison to the traditional Non-
Situated analytic method. Participants’ errors were generally larger
when they analyzed the videos in an office as opposed to the actual
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location, as expected. Furthermore, participants’ Non-Situated anal-
ysis performances were often affected by the type of analysis; the
magnitude of errors the participants made varied depending on the
type of analysis (on/off-camera) when they performed estimations
on projectile trajectories and absolute measurement tasks. When
Non-Situated analyses (i.e., common visual analysis) were con-
ducted, participants’ errors were greater compared to the Situated
analyses, even when the video clip contained the whole incident
within the Camera FOV. While the differences we found might ap-
pear insignificant, if any decisions related to sentencing are made
based on such data for example, the true consequences of these dif-
ferences could be rather significant. This finding potentially implies
the importance of situated analyses.

The accuracy came with a cost, however. Although the situ-
ated analytic method improved accuracy, users moving through
the scene naturally increased the amount of time it takes to make
estimate judgements. This trade-off is further justified when we
observed participants’ effort to be accurate. Participants in SA used
additional techniques to find answers to their questions. For ex-
ample, some participants made initial overall survey of the scene
then performed the task in question. Some other participants used
the measurement tools twice to ensure that they provided correct
answers. One can argue that in the non-situated settings, a better
video quality or multiple camera angles could provide benefits sim-
ilar to situated video-analysis. However, going over multiple video
clips could be inconvenient. The generalizability of this study is
limited due to participants characteristics in term of their video
analysis experience. Almost none (97.5%) of our participants had
experience in video analysis: A future study examining experience
effect will be fruitful. Finally, situated video analysis improved the
participants’ confidence on their judgement; such increased confi-
dence could be important when they are using visual analyses to
make decisions, for example. In summary, the results of Study 1
generally indicate sufficient potentials for us to explore SA further,
with the caveat that it can take participants longer. In the next step,
thus, we head towards an exploration of SA platform, using Mixed
Reality (MR).

4 STUDY 2: SITUATED VIDEO DATA
VISUALIZATION

In HCI research, elicitation studies and design workshops have been
commonly used for various purposes; for example, to explore user
gesture interaction designs [41], to gain insight on current needs
for exploring data and visualization designs [1], and to present new
situated visualizations of data, which is displayed in proximity to
the physical referents in the environment [5, 12]. However, as far
as we are aware, there is no research exploring the means to design
visual analytical tools for situated video analysis. Encouraged by
the results of Study 1 which confirmed the potential of SA, we con-
ducted an elicitation study which included sketching and ideation
activities for SA. The goal of this study was to capture visualization
designs to support situated video data Visualization, potentially to
enhance the analytical process in MR environment.
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4.1 Participants

The study was advertised on campus bulletin boards at a local
university. 12 participants (M = 8, F = 4) were recruited, none of
whom partook in the first study. Their age ranged between 20
and 31 (M = 24.50, SD = 4.37). 25% of them reported that English
was their first language and 16% preferred not to report their first
language. No language issues were exhibited during the study. All
participants reported normal or corrected-to-normal vision. Each
session was conducted with two participants (i.e., pair). Two people
were required so the participants could bounce back and forth
their ideas with their partner. For the time constraint, we did not
include more than 2 people in a session, however. Participants
took turns throughout the session. They received a $20 gift card as
compensation for their time.

4.2 Apparatus

A Microsoft Surface Pro 2 and Microsoft HoloLens were used for
the following reasons, 1) to familiarize participants with the ex-
periences of video viewing while being mobile and in-situ, 2) to
have platforms which incorporate participants’ sketches using MR
while making them aware that their drawings will not be in VR
in the study, 3) to help participants understand the mapping of
the events they see in the video clip in the actual location. Partici-
pants were informed not to consider VR platform to ensure they
understand in-situ visualization in which their drawing will be
attached into physical environment of the event of interest [16, 17].
Although Microsoft Surface Pro 2 and Microsoft HoloLens differ in
terms of input modality and interaction, participants’ interaction
with HoloLens and Microsoft Surface Pro 2 was limited to only
video playing. We consider participants’ interaction in both device
as a minimum exposure to different interaction techniques to see
whether participants will incorporate these interaction into their
sketching ideas per scenario as well as contribute toward novelty.

Once again, for the ability to switch from laptop mode to tablet
mode and vice-versa, a detachable keyboard was provided to the
paired participants to support their mobility. A video camera, the
Canon HF-M52, was used to record video scenarios in a similar
manner to that of Study 1. All five scenarios were performed in FOV
and on one clip (1:24 mins). The video clips’ size and format were the
same for both the Microsoft Surface Pro 2 and Microsoft HoloLens
to counterbalance the large screen size difference between the two
devices. A4 sheets of paper (21 cm X 29.7 cm) were provided to
participants with a 2D and 3D representation of the space the video
was captured. Colored pens for use in sketching activities were
also provided to participants, with this technique showing positive
results in situated visualizations [5].

4.3 Method

Six workshop sessions were coordinated with two participants each.
Each session took between 1.5 and 2 hours (including 10 minutes
of interview). At the beginning of each session, a research assistant
was introduced as a moderator/note taker. After signing a consent
form, they filled out a short demographic questionnaire. The Mi-
crosoft Surface 2 and Microsoft HoloLens were introduced, and
instruction for watching video on both devices was provided. The
two participants, in groups of two, were then taken to a university
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atrium where the video was captured, thus situated. Participants
sat at a table next to each other, and were informed that their
help was needed to develop a situated visualization in 3D space
of event data from a video scenario. Participants were provided
with one scenario at a time, each containing a set of instructions.
The order of scenarios was counterbalanced for all groups. First,
participants were asked to watch the video using both Microsoft
Surface 2 and Microsoft HoloLens, and walk toward the location
where the event(s) took place. Second, participants were asked to
discuss how they would visually represent an event in the video.
Third, participants were asked to sit at a table and sketch their
visualization ideas on the provided paper, to represent the events
from the video. Participants were asked to produce two 2D sketches
to describe their ideas per scenario; they processed one scenario at
a time. A post-study interview with participants was conducted to
explore participants’ experiences further.

4.4 Results

We systematically coded the transcripts, sorted the photos based
on ideas, analyzed the use of different form factors in participants’
sketches, and created a summary of all findings with relevant quotes
from the transcripts. Sixty sketches were generated in total (i.e., 6
pairs x 2 per scenario x 5 scenarios). These sketches were redrawn
digitally, copying the original drawings as closely as possible. Each
digital sketch was summarized and analyzed in detail. For the analy-
sis, a research assistant watched the video clip participants watched,
looked at the participants’ drawings, then drafted a short explana-
tion of what each drawing expresses. These processes yielded three
major components from the participants’ ideas: 1) Information Den-
sity Levels, 2) Interactivity, and 3) Event-Narrative. Examples of
the emergent sketch themes are provided in Table 1.

4.4.1 Information Density Levels: Participants in our study had
mid-level video analysis experience (M = 3.33, SD = 1.92) while only
3 participants scored above the mid-point(i.e., 3.5). Also, partici-
pants reported low to no experience with HWD (M = 2.25, SD = 1.60)
where 5 participants have no experience and only 3 participants
scored over the midpoint. The analysis of participants’ drawings
revealed two levels of analysis: low- and high-density levels. While
low-density drawings did not include details of any event data,
they provided an abstract view of the event and a quick sense of
the event. Participants were generally inclined to produce sketches
that revealed a minimum amount of event data. An example of a
low-density drawing in which a character is shown throwing a ball
is demonstrated in Figure 9-b. Drawings falling into the category
of high-density detail of visualization; more detailed information
about the events such as time, location, duration, etc, can be seen
in Figure 9-a, 9-c, and 9-f. High-density drawings captured impor-
tant and relevant event data (see Figure 9). 60.00% of drawings fell
into low-density category. The level of analysis (i.e., Low vs. High)
varied depending on the video event scenarios (see Section 3.4). For
example, the absolute measurements scenario is a simple scenario
where data, (e.g., the height of person) can be communicated with a
simple visual representation(see Table 1); more overview drawings
(10) than detailed drawings (2) were produced by participants. On
the other hand, users were prompted to create more high-density
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Table 1: The distribution of theme categories of participants’ sketches.

Event-Narrative: Non-narrative

. Information Density Levels Interactivity Event-Narrative
Scenario - - - < - - - -
Low-density High-density Interactive Non-interactive Narrative Non-narrative
Projectile Trajectories 4 8 2 10 3 9
Key Changes in the Environment 7 5 3 9 1 11
Movement Direction 8 4 1 11 4 8
Duration of Movement/Action 7 5 2 10 3 9
Absolute Measurements 10 2 1 11 2 10
Total (%) 36 (60.00%) 24 (40.00%) 9 (15.00%) 51 (85.00%) 13 (21.67%) 47 (78.33%)
Density Level: High Density Level: Low
Interactivity: ~ Non-interactive Interactivity: =~ Non-interactive
| Event-Narrative: Non-narrative

from PO to P1 =1 second

5 seconds

AR
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Figure 9: Sample of participants’ sketches.

detail drawing than low-density detail drawings for more complex
scenarios such as the projectile trajectories scenario.

4.4.2  Interactivity: Only 15% of the sketches contained an inter-
active component. Various interactive functions were introduced
by participants. For example, functions such as clicking on a van-
dalized wall to reveal more information; the time of occurrence,

duration of the act, and height of the actor (see Figure 9-f). The use
of physical movement was also proposed in the sketches. In Figure
9-c, a participant indicates the location of an object or an individual
standing.

4.4.3 Event-Narrative: Annotations were included by some partici-
pants to directly instruct a user to explore (e.g., asking users to click,
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stand at the location of interest) for further information (Figure
9-c). Another example of annotation usage leveraged chronological
order of events in the video to inform users (Figure 9-d). 21.67% of
the sketches included event narratives.

4.4.4 Interview: Participants were interviewed after the design
session, to capture their thoughts about their experiences and draw-
ings. Analysis of the participants’ interviews revealed following
four themes.

2D and 3D Data Visualization: All the participants preferred 3D
over 2D representations: Rationales for this preference were sup-
porting in-situ video analysis approach, physical mobility between
events, and different viewpoints. For example, P1 mentioned that
3D visualization “...helps you to move around different event in
the video and can look at them as you are part of the event” [sic].
P2 reported “...video events happened in 3D space and to make
sense of the event data it should be visualized in the same 3D space”
[sic]. Further, participant P10 stated that “...you can see the ob-
ject from all viewpoint” [sic]. Other participants suggested that
3D visualization supports a multivariate representation of events
where “you can add depth into it you can add more information”
[sic] (P3). Thus, all the participants recognized the strength of 3D
visualization.

Benefits of Situated Video Visualization: Participants reported
several anticipated benefits of the video visualization techniques;
1) reduction of video browsing time (P1, P2, P3), 2) providing a better
understanding of events (P3, P4, P5, P8, P11), and 3) supporting
interactivity which increases engagement with events (P4, P5, P9,
P12). Participants felt that visualizing the information could reduce
the time and effort of event exploration. For example, P1 mentioned
that “in the video you have to watch 1 to 2 mins where in the
picture drawing (drawing of the video events) you can see the data
and people can look at it in like 10 seconds ...video watching is
sequential you have to watch all the video." In addition, participants
felt that their drawings could enhance user understanding of video
events. As reported by P3 and P4 “I think for people less trained,
our drawing will help them understand the 3D aspect by adding
depth into the scenario” [sic] (P3), and “data that we draw has all
the necessary information that someone needs to examine events
in the video” [sic] (P5).

Situated Video Analysis Platform: Participants reported their anal-
ysis platform preference (i.e., Microsoft Surface 2 vs. Microsoft
HoloLens) if they were to conduct future analysis of 3D drawing of
a video. 41.67% of them preferred tablet use, whereas 58.33% pre-
ferred the Head Worn Display (HWD); X?(1, N = 12) = .33, p = .56.
Despite a stated appreciation for HWD, device weight, size, complex
interactions, and social acceptability were the main reasons and
limitations participants cited for preferring the tablet. Interestingly,
however, none of these comments refer to the efficacy of HWD.
Freehand interactions, mobility, and a better sense of immersion
between the virtual and physical environment were among the ra-
tionale provided by participants who felt positive about the HWD.
For example, P1 felt that using HWD will help her to focus on the
task, stating “...(you) are not distracted and you can focus on the
objects” [sic]. Participants P9, P11, and P12 mentioned that tablets
do not support full immersion with a digital world. For example,
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P11 stated “...I was seeing the same video using the tablet, it was
very hard for me to generate the sense of the location, time, and
direction.” [sic]. Participants P5, P7, and P8 expressed the ease of
mobility in a 3D scene using HWD. For example, P8 stated “...It
gives the ability to move easily and have your hand free” (P8). Thus,
they recognized the potential of HWD.

Situated Video Visualization Challenges: One participant felt that
the visualization of the extracted video data could capture important
and relevant data, such that it could replace traditional videos,
stating that “The drawing we come up with will make it easy for
video analyzers to understand and make sense of what happened
even if they did not see the video” [sic] (P6). On the other hand,
several participants expressed their concerns about possible errors
made in the process of transferring and encoding extracted data
from a video to visualization. For example, P4 mentioned that “...the
hindrances of transforming video events is that if designers made
mistakes or wrongly transform the data”

4.5 Discussion

Participants’ responses revealed interesting visualization themes,
insight, and challenges. The information density levels in visualiza-
tion, which was found in our participants’ sketches, is a common
finding in information visualization [36]. The high-density visu-
alization is considered as a first step in visual investigation and
exploration techniques, “Overview first, zoom, filter, and then focus
details-on demand” [36]. A situated visual investigation and explo-
ration require perception and action [42]. Participants expressed
interaction in their drawings to support both embodied cognition
[42] and embodied interaction [11]. For example, hand gesture (i.e.,
clicking) and physical body movement (i.e., standing at a certain lo-
cation) are in accord with the exploration activity of video analysis.
Further investigation is required to explore different interaction
techniques that are suitable for immersive analytic (i.e., situated
video visualization) [13]. Furthermore, narrative visualization incor-
porates information, communication, and exploration visualization
to convey a story [23]. Some of the participants maintain a narrative
of the events when they sketched video clips of the scenarios. Tex-
tual annotation is a design tactic used to leverage the information
presented, to direct user attention, stress the chronological order of
events, or show transitions in an event [23]. When extracting data
from the video, it is important to use tools that ensure the validity
and accuracy of the data. Based on the observation of the studies,
a shortcoming of the situated video analysis technique would be
the physical effort required by users when there are in the place
of the event. However, situated video analysis techniques could
be beneficial for different application domain. For example, during
a sport training session (e.g., a soccer player visualizing kicked
ball trajectories using situated video analysis, they will have better
understanding during training regarding how to replicate such a
kick).

5 DESIGN TAKE-AWAYS

Two studies investigated situated video analysis and visualization
sketches in a rather holistic manner. The results of the first study
repeatedly indicated the potential benefit of situated video analysis.
Furthermore, results from the second study revealed meaningful
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themes and design considerations for future prototypes. The follow-
ing take-aways are presented for future consideration by designers
of situated Video Analytic interfaces:

o For situated video analysis, future analytical program should
incorporate a low- and a high-level detail visualization of
events, to provide the capability to interact with the event
data, and narrative of the event.

e Visualizations for situated video analysis should include the
original video footage as a tool for validation or reference.

o The use of annotations in situated video analysis visualiza-
tion supports event narrative via grabbing users’ attention,
clarifying chronological order of events, and indicating event
transitions. Also, textual annotation could be used as a way
to capture and exchange user insight and conclusions.

e Situated video analysis visualization could incorporate multi-
ple levels of contextual information, to support multivariate
types of analyses (e.g., including fine details relating to, but
not limited to, the variables of time, duration, object classifi-
cation, objection location, object direction, object velocity,
event summary, etc).

e Situated visualization should incorporate embodied cogni-
tion and embodied interaction.

6 FUTURE DIRECTION

Our results suggest that situated video analysis can improve users’
performance in common video analytic tasks. Although traditional
video analyses are normally conducted in non-situated settings,
rapid advances in mixed reality systems has created valuable new
opportunities. In this vein, we explore the design of novel user
interfaces to support situated video analysis. Figure 1 shows a
situated video visualization of projectile trajectory made by one
group.A necessary step is to follow up with experts to confirm
what themes and feature that would be useful in practice. We are
interested in the implementation of situated video visualization
sketches; however, we may look to also explore their effect on non-
situated analysis as well. Situated video visualization could be useful
in non-situated setting as well especially when surveillance areas
are not accessible for further analysis. Situated data visualization
interaction, to some extent, adopts traditional non-situated controls
and interaction metaphors (e.g., using buttons or sliders, to interact
with data). Future considerations for the extension/continuation of
this research project will include the study of interaction methods
which use physical body movements to perform data exploration
and interaction functions, and ultimately, the development of the
analytic tool for situated analyses.

7 CONCLUSION

This paper offers an early look at video analysis activities and per-
formance in both a situated and a non-situated setting. From our
first study, we observed that compared to the performance of par-
ticipants in a traditional non-situated setting, users’ performance
improved in the situated settings with heightened accuracy and con-
fidence in their judgement tasks. The situated tasks naturally took
participants longer as it involved physical inspection of the environ-
ment. This paper further attempts to provide practical requirements

Alallah, et al.

and take-aways for situated video analysis designs, including in-
formation density levels, interaction, and event-narrative which
should be considered. In future work, we plan to explore the design
of interfaces for video analysis.
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